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To obtain strong convergence rates of numerical schemes, an overwhelming majority of existing works 
impose a global monotonicity condition on coefficients of stochastic differential equations (SDEs). 
Nevertheless, there are still many SDEs from applications that do not have globally monotone coefficients. 
As a recent breakthrough, the authors of (Hutzenthaler and Jentzen 2020, Ann. Prob., 48, 53–93) originally 
presented a perturbation theory for SDEs, which is crucial to recovering strong convergence rates of 
numerical schemes in a non-globally monotone setting. However, only a convergence rate of order 1/2 
was obtained there for time-stepping schemes such as a stopped increment-tamed Euler–Maruyama 
(SITEM) method. An interesting question arises, also raised by the aforementioned work, as to whether 
a higher convergence rate than 1/2 can be obtained when higher order schemes are used. The present 
work attempts to give a positive answer to this question. To this end, we develop some new perturbation 
estimates that are able to reveal the order-one strong convergence of numerical methods. As the first 
application of the newly developed estimates, we identify the expected order-one pathwise uniformly
strong convergence of the SITEM method for additive noise driven SDEs and multiplicative noise driven
second-order SDEs with non-globally monotone coefficients. As the other application, we propose and
analyze a positivity preserving explicit Milstein-type method for Lotka–Volterra competition model driven
by multi-dimensional noise, with a pathwise uniformly strong convergence rate of order one recovered
under mild assumptions. These obtained results are completely new and significantly improve the existing
theory. Numerical experiments are also provided to confirm the theoretical findings.

Keywords : SDEs with non-globally monotone coefficients; explicit method; exponential integrability 
properties; pathwise uniformly strong convergence; order -one strong convergence; stochastic Lotka– 
Volterra competition model.

1. Introduction 

In order to describe the time evolution of many dynamical processes under random environmental effects, 
stochastic differential equations (SDEs) 

Xt = X0 +
∫ t 

0 
f (Xs) ds +

∫ t 

0 
g(Xs) dWs, t ∈ [0, T] (1.1) 

are widely used in various science and engineering fields such as finance, chemistry, physics and 
biology. In practice, the closed-form solutions of non-linear SDEs are r arely available and one usually
falls back on their numerical approximations. For SDEs possessing globally Lipschitz coefficients,
the monographs Kloeden & Platen (1992); Milstein & Tretyakov (2004) established a f undamental
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2 L. DAI AND X. WANG

framework to analyze a batch of numerical schemes including typical methods such as the explicit Euler– 
Maruyama (EM) method and explicit Milstein method. Nevertheless, a majority of SDEs arising from 
applications have superlinearly growing coefficients and the globally Lipschitz condition is violated. A 
natural question thus arises as to whether the traditional numerical methods designed in the globally
Lipschitz setting are still able to perform well when used to solve SDEs with superlinearly growing
coefficients. Unfortunately, the authors of Hutzenthaler et al. (2011) gave a negative answer, by showing 
that the popularly used EM method is divergent in the sense of both strong and weak convergence, 
when used to solve a large class of SDEs with superlinearly growing coefficients. Therefore, special care 
must be taken to construct and analyze convergent numerical schemes in the absence of the Lipschitz
regularity of coefficients. In recent years, a prospering growth of relevant works is devoted to numerical
approximations of SDEs with non-globally Lipschitz coefficients. Roughly speaking, people either rely
on implicit Euler/Milstein schemes Higham (2000); Higham et al. (2002); Alfonsi (2013); Mao & 
Szpruch (2013); Neuenkirch & Szpruch (2014); Andersson & Kruse (2017); Zong et al. (2018); Wang 
et al. (2020); Wang (2023) or some explicit schemes based on modifications of the traditional explicit
EM/Milstein methods Li et al. (2019); Hutzenthaler et al. (2012); Liu & Mao (2013); Tretyakov & Zhang 
(2013); Wang & Gan (2013); Hutzenthaler & Jentzen (2015); Mao (2015); Sabanis (2016); Beyn et al. 
(2017); Kumar & Sabanis (2019); Fang & Giles (2020); Brehier (2023); Kelly et al. (2023) for SDEs 
with superlinearly growing coefficients. To get the desired convergence rates of numerical schemes, a 
frequently used argument is based on Gronwall’s lemma together with the popular global monotonicity
condition, for all x, y ∈ R

d,

〈x − y, f (x) − f (y)〉 +  q 
2‖g(x) − g(y)‖2 ≤ K|x − y|2, (1.2)

where f and g are the drift and diffusion coefficients of SDEs (1.1), respectively, and K is a positive 
constant independent of x, y. Indeed, an overwhelming majority of existing works on convergence rates
carry out the error analysis under the global monotonicity condition (1.2). 

However, such a condition is still restrictive and many momentous SDEs from applications fail to
obey (1.2). Examples include stochastic van der Pol oscillator, stochastic Lorenz equation, stochastic 
Langevin dynamics and stochastic Lotka–Volterra (LV) competition model (see, e.g., Mao (2007); 
Hutzenthaler & Jentzen (2015)). What if we did not have the condition (1.2) available? In fact, the 
analysis of the convergence rates of numerical schemes without the global monotonicity condition
turns out to be highly non-trivial (see Hutzenthaler & Jentzen (2015, 2020)). As a recent breakthrough, 
Hutzenthaler and Jentzen in Hutzenthaler & Jentzen (2020) made significant progress in this direction 
and originally developed a framework known as perturbation theory for SDEs beyond the global
monotonicity assumption (1.2). This theory, combined with exponential integrability properties of both
numerical solutions and exact solutions (see Hutzenthaler et al. (2018); Cox et al. (2024)) enables one 
to reveal strong convergence rates of numerical schemes in a non-globally monotone setting. Following
this argument, the authors of Hutzenthaler & Jentzen (2020) analyzed the pointwise strong error 

sup 
t∈[0,T]

∥∥Xt − Yt

∥∥
Lr(Ω;Rd)

(1.3) 

of an explicit stopped increment-tamed EM (SITEM) method {Yt}t∈[0,T] proposed by Hutzenthaler et al. 
(2018) (cf. (4.1) in Section 4), which was shown there to inherit exponential integrability properties 
of SDEs. Successfully, the authors identified the pointwise strong convergence rate of order 1

2 for the
SITEM method. An interesting question arises as to whether a higher convergence rate than order 1

2
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ORDER-ONE STRONG APPROXIMATIONS OF SDEs WITHOUT MONOTONE COEFFICIENTS 3

can be obtained when the considered SDEs are driven by additive noise or when high-order (Milstein-
type) schemes are used, which is also expected by Hutzenthaler & Jentzen (2020) (see Remark 3.1 
therein). Unfortunately, following (Hutzenthaler & Jentzen, 2020, Theorem 1.2), the convergence rates 
of any schemes would not exceed order 1 

2 , which is nothing but the order of the Hölder regularity of the
approximation process.

In the present article, we attempt to present some new perturbation estimates that can be used to reveal 
the order-one pathwise uniformly strong convergence of numerical methods for sev eral SDEs with non-
globally monotone coefficients (see Theorem 3.2). Different from Hutzenthaler & Jentzen (2020),  we  
use the Itô formula to expand the difference for the drift term, i.e., f (Ys) − a(s) in Lemma 3.1 and rely 
on Burkholder–Davis–Gundy type inequalities to carefully treat the related terms (see estimates of S2
and T2 in Theorem 3.2). This approach essentially enables one to attain order-one strong con vergence
for the error analysis of numerical schemes.

As the first application of the newly developed estimates, we identify the expected order-one pathwise 
uniformly strong convergence of the SITEM method for some SDEs with nonglobally monotone
coefficients (see Theorem 4.2 and subsequent example models), including the additive noise driven SDEs 
(e.g., the stochastic Lorenz equation with additive noise, Brownian dynamics and Langevin dynamics) 
and multiplicative noise driven second-order SDEs (i.e., second-order ordinary differential equations 
perturbed by multiplicative white noise) such as the stochastic van der Pol oscillator and stochastic
Duffing–van der Pol oscillator: ∥∥∥ sup 

t∈[0,T] 
|Xt − Yt|

∥∥∥
Lr(Ω;R) 

≤ Ch. (1.4)

Here {Yt}t∈[0,T] is produced by the SITEM method (4.1), r > 0 is an arbitrary constant and h > 0 
is the uniform stepsize. These findings thus fill the gap left by Hutzenthaler & Jentzen (2020) and also 
significantly improve relevant convergence results in Hutzenthaler & Jentzen (2020), where the pointwise 
strong convergence rate of only order 1 

2 was obtained for the SITEM method applied to these models.
As the other application, we propose and analyze a positivity preserving explicit Milstein-type

method (5.4) for stochastic LV competition model driven by multi-dimensional noises, with a pathwise 
uniformly strong convergence rate of order one recovered (Theorem 5.6). To the best of our knowledge, 
this is the first paper to obtain the order-one pathwise uniformly strong con vergence of an explicit
positivity preserving scheme for the general LV competition model.

The paper is structured as follows. In the next section, we introduce some notations and inequalities
that may be used later. In Section 3, we present new perturbation estimates for SDEs beyond the global 
monotonicity assumption. Equipped with these estimates, we derive the order-one strong con vergence of
the SITEM method for some additive noise driven or second-order SDE models. In Section 5, we propose 
and analyze an explicit Milstein method for the LV competition model with multi-dimensional noise. 
Some numerical experiments are provided to confirm the theoretical findings and a short conclusion is
made in Section 6. 

2. Preliminaries 

2.1 Notations 

Throughout this paper, unless otherwise specified, the following notations are used. Let (Ω ,F , 
{Ft}t≥0, P) be a complete probability space with a filtration {Ft}t≥0 fulfilling the usual conditions, 
that is, the filtration is right continuous and increasing, and F0 contains all P-null sets. Let {Wt}t≥0 be an
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4 L. DAI AND X. WANG

m-dimensional standard Brownian motion defined on (Ω ,F , {Ft}t≥0, P).  For  a ∈ R, we define a 
∞ := 0 

and for a ∈ R\{0}, a 
0 :=  ∞. For a fixed integer number d ≥ 1 and a vector x ∈ Rd, x(i), i = 1, ..., d 

denotes the ith component of x and |x| denotes the Euclidean norm induced by the vector inner 
product 〈·, ·〉. For a matrix A ∈ Rd×m, d, m ∈ N, A(i), i = 1, ..., m denotes the ith column of A and 
A(ij), i = 1, ..., d, j = 1, ..., m represents the element at ith row and jth column of A.  Let  A∗ be the 
transpose of A and ‖A‖ := 

√
trace(A∗A) be the Hilbert–Schmidt norm induced by Hilbert–Schmidt 

inner product 〈·, ·〉HS. For a random variable ξ : Ω → H, where H is a separable Banach space endowed 
with norm ‖ · ‖

H
, E[ξ ] denotes its expectation and for any r > 0, ‖ξ‖Lr(Ω;H) := (E[‖ξ‖r 

H
])1/r.  For  

f = (f (1), ..., f (d) )∗ ∈ C2(Rd, Rd),  we  use  f ′(x) to denote the Jacobian matrix of f (x), in which the ith 
row is f (i)′(x) := (∇f (i) (x)

)∗ : Rd → R1×d. The notation Hessx 
(
f (x)

)
is a generalized Hessian matrix

including d components where the ith is the Hessian matrix Hessx

(
f (i)(x)

)
: R

d → R
d×d of f (i)(x).

Further, for f : Rd → R
d, g : Rd → R

d×m and U ∈ C2(Rd,R), we denote

(Af ,gU)(x) := U′(x)f (x) + 1 
2 trace

(
g(x)g(x)∗ Hessx

(
U( x)

))
. (2.1)

Let T ∈ (0, ∞), N ∈ Z
+, let a uniform mesh

0 = t0 < t1 < · · ·  < tN = T (2.2)

be constructed with the time step h = T/N, and for s ∈ [0, T], define

�s�N := sup 
n=0,...,N 

{tn : t n ≤ s}.

Moreover, we introduce a class of functions C3
D(Rd,R) as follows:

C3 
D(Rd, R) := 

⎧⎪⎪⎨⎪⎪⎩Λ ∈ C2(
R

d,R
)

: 

Every element of Hessx

(
Λ(x)

)
is locally Lipschitz 

continuous and for i ∈ {1, 2, 3}, a.s. (Lebesgue 
measure) x ∈ Rd, there exist p, c ≥ 3 such that

‖Λ[i](x)‖L[i](Rd ,R) ≤ c
(
1 + |Λ(x)|)1−i/p

⎫⎪⎪⎬⎪⎪⎭ . (2.3)

Here for i = 1, 2, 3, we denote

‖Λ[i](x)‖L[i](Rd ,R) := sup 
v1,...,vi∈Rd\{0} 

|Λ[i](x)(v1, ..., vi)| 
|v1| · · · |vi |

, (2.4)

where

Λ[i](x)(v1, .  .  .  , vi) = 
d∑

l1,...,li=1

(
∂ iΛ 

∂xl1 ...∂xli

)
(x) · v(l1) 

1 · v(l2) 
2 · . . . · v(li)

i . (2.5)

Note that C3
D(Rd,R) forms a linear space containing a batch of functions such as

Λ(x) =
( d∑

i=1 
x2ci 

i

)r 
, ci ≥ 1, r ≥ 1.
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ORDER-ONE STRONG APPROXIMATIONS OF SDEs WITHOUT MONOTONE COEFFICIENTS 5

For a metric space (E, ρ),  we  say  Λ ∈ C1 
P (Rd, E) with constants KΛ, cΛ,  if  Λ ∈ C

(
R

d, E
)

and there exist 
constants KΛ, cΛ ≥ 0 such that 

ρ(Λ(x), Λ(y)) ≤ KΛ(1 + |x| + |y|)cΛ |x − y| (2.6) 

holds for all x, y ∈ R
d. One can easily see that if Λ : Rd → R is differentiable and Λ ∈ C1 

P (Rd,R) with 
constants KΛ, cΛ, then there exists s ome constant K1 such that for all x ∈ R

d,

|Λ(x)| ≤  K1(1 + |x|)cΛ+1, |Λ′(x)| ≤  K1(1 + |x|)c Λ .

Finally, we use C (resp. C with some subscripts) to denote a generic positive constant independent of the
time step (resp. dependent on the subscripts), which may differ from one place to another.

2.2 Burkholder–Davis–Gundy type inequalities

In what follows we recall two Burkholder–Davis–Gundy type inequalities, which are frequently used in
the subsequent analysis.

LEMMA 2.1. Let S :  [0, T] × Ω → Rd×m be a predictable stochastic process satisfying P(
∫ T 

0 ‖St‖2 

dt < ∞) = 1 and let {Wt}t≥0 be a m-dimensional standard Brownian motion. Then for any p ≥ 2,

∥∥∥ sup 
t∈[0,T]

∣∣∣ ∫ t 

0 
Sr dWr

∣∣∣∥∥∥
Lp(Ω;R) 

≤ p
( ∫ T 

0 

m∑
i=1

‖S(i) 
r ‖2 

Lp(Ω;Rd ) dr
)1/2

. (2.7)

LEMMA 2.2. Let M ∈ N and S1, ..., SM : Ω → R be random variables satisfying supi∈{1,...,M} ‖Si ‖L2(Ω;R) 
< ∞ and for any i ∈ {1, ..., M−1}, E[Si+1|S1, ..., Si] = 0. Then for any p ≥ 2, there exists some positive
constant Cp such that

‖S1 + · · · +  SM‖Lp(Ω;R) ≤ Cp

(
‖S1‖2 

Lp(Ω;R) + · · · + ‖SM‖2 
Lp(Ω;R)

)1/2
. (2.8)

The first lemma can be found in (Wang & Gan, 2013, Lemma 2.7) and the other one is quoted from
(Hutzenthaler & Jentzen, 2011, Lemma 4.1).

3. New perturbation estimates f or SDEs

In this section, let us focus on the following SDEs of Itô type:

{
Xt − X0 =

∫ t 
0 f (Xs) ds + ∫ t 

0 g(Xs) dWs, t ∈ [0, T],
X0 = ξX ,

(3.1)
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6 L. DAI AND X. WANG

where f : Rd → Rd stands for the drift coefficient, g : Rd → Rd×m the diffusion coefficient and 
ξX : Ω → Rd the initial data. Also, we consider an approximation process given by{

Yt − Y0 =
∫ t 

0 a(s) ds + ∫ t 
0 b(s) dWs, t ∈ [0, T], 

Y0 = ξ Y ,
(3.2)

where a : Ω × [0, T] → Rd and b : Ω × [0, T] → Rd×m are two stochastic processes that are integrable
in the sense of Lebesgue integral and Itô stochastic integral, respectively. This can be regarded as a
perturbation of the solution process of the original SDE (3.1). For example, when the Euler–Maruyama 
method is used to approximate (3.1) on a uniform grid {tn = nh}0≤n≤N with stepsize h = T 

N , one can get 
a continuous version of the approximation as

Yt − Y0 =
∫ t 

0 
f (Y�s�N ) ds +

∫ t 

0 
g(Y�s�N ) dWs, t ∈ [0, T], Y0 = ξX , (3.3)

where in the notation of (3.2)  we  have  a(s) = f (Y�s�N ), b(s) = g(Y�s �N
) and ξY = ξX .

The following lemma provides two estimates, which will be essentially used later to obtain the desired 
perturbation estimates. The first assertion can be regarded as a modification of (Hutzenthaler & J entzen,
2020, Proposition 2.9) and the second one is new.

LEMMA 3.1. Let f : Rd → Rd, g : Rd → Rd×m be measurable functions. Let a :  [0, T] × Ω → Rd, b : 
[0, T] × Ω → Rd×m be predictable stochastic processes and let τ : Ω → [0, T] be a stopping time.
Let {Xs}s∈[0,T] and {Ys}s∈[0,T] be defined by (3.1) and (3.2) with continuous sample paths, respectively. 
Assume that

∫ T 
0 |a(s)| + ‖b(s)‖2 + |f (Xs)| + ‖g(Xs)‖2 + |f (Ys)| + ‖g(Ys)‖2 ds < ∞ P-a.s. and for 

ε ∈ (0, ∞), p ≥ 2 with P-a.s.∫ τ 

0

[
〈Xs−Ys,f (Xs)−f (Ys)〉+ (1+ε)(p−1) 

2 ‖g(Xs)−g(Ys)‖2 

|Xs−Ys|2
]+ 

ds < ∞. (3.4)

Then for any u ∈ [0, T] it holds

sup 
t∈[0,u]

∥∥∥∥ |Xt∧τ −Yt∧τ | 
exp(

∫ t∧τ 
0 

1 
p ηp,r dr)

∥∥∥∥
Lp(Ω;R) 

≤ sup 
t∈[0,u]

[
‖ξX − ξY‖p 

Lp(Ω;Rd) + E
[ ∫ t∧τ 

0 

p|Xs−Ys|p−2 

exp(
∫ s 

0 ηp,r dr)

〈
Xs − Ys,

(
g(Xs) − b(s)

)
dWs

〉 ]
︸ ︷︷ ︸

=:S1 

+ E
[ ∫ t∧τ 

0 

p|Xs−Ys|p−2〈Xs−Ys,f (Ys)−a(s)〉
exp(

∫ s 
0 ηp,r dr) ds

]
︸ ︷︷ ︸

=:S2 

+ E
[ ∫ t∧τ 

0 

p|Xs−Ys|p−2 (p−1)(1+1/ε) 
2 ‖g(Ys)−b(s)‖2

exp(
∫ s

0 ηp,r dr)
ds

]
︸ ︷︷ ︸

=:S3

]1/p

. (3.5)
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ORDER-ONE STRONG APPROXIMATIONS OF SDEs WITHOUT MONOTONE COEFFICIENTS 7

Furthermore, we have∥∥∥∥ sup 
t∈[0,u] 

|Xt∧τ −Yt∧τ | 
exp(

∫ t∧τ 
0 

1 
2 η2,r dr)

∥∥∥∥
Lp(Ω;R) 

≤
[
‖ξX − ξY‖2 

Lp(Ω;Rd) +
∥∥∥∥ sup 

t∈[0,u]

∫ t∧τ 

0 
2〈Xs−Ys,(g(Xs)−b(s)) dWs〉

exp(
∫ s 

0 η2,r dr)

∥∥∥∥
Lp/2(Ω;R)︸ ︷︷ ︸

=:T1 

+
∥∥∥∥ sup 

t∈[0,u]

∫ t∧τ 

0 
2〈Xs−Ys,f (Ys)−a(s)〉

exp(
∫ s 

0 η2,r dr) ds

∥∥∥∥
Lp/2(Ω;R)︸ ︷︷ ︸

=:T2 

+
∥∥∥∥ sup 

t∈[0,u]

∫ t∧τ 

0 

(1+ 1 
ε )‖g(Ys)−b(s)‖2 

exp(
∫ s 

0 η2,r dr) ds

∥∥∥∥
Lp/2(Ω;R)︸ ︷︷ ︸

=:T3

]1/2 
. (3.6)

Here for z ≥ 2, we denote

ηz,r := z1r≤τ (ω)

[
〈Xr−Yr ,f (Xr)−f (Yr)〉+ (z−1)(1+ε) 

2 ‖g(Xr)−g(Yr)‖2 

|Xr−Yr| 2
]+

. (3.7)

Proof. For fixed p ≥ 2, it is easy to validate that ηp,r : [0, T] × Ω defined by (3.7) is well-defined due 
to (3.4). The Itô formula, the Itô product rule and the inequality (a + b)2 ≤ (1 + ε)a2 + (1 + 1

ε
)b2 yield

|Xt∧τ −Yt∧τ |p 

exp(
∫ t∧τ 

0 ηp,r dr) 
= |ξX − ξY |p +

∫ t∧τ 

0 
p|Xs−Ys|p−2 

exp(
∫ s 

0 ηp,r dr)
〈Xs − Ys, (g(Xs) − b(s)) dWs〉

+
∫ t∧τ 

0 

p|Xs−Ys|p−2〈Xs−Ys,f (Xs)−a(s)〉−|Xs−Ys|pηp,s 
exp(

∫ s 
0 ηp,r dr) ds 

+
∫ t∧τ 

0 

p(p−2) 
2 |Xs−Ys|p−4|(Xs−Ys)

∗(g(Xs)−b(s))|2+ p 
2 |Xs−Ys|p−2‖g(Xs)−b(s)‖2 

exp(
∫ s 

0 ηp,r dr) ds 

≤ |ξX − ξY |p +
∫ t∧τ 

0 
p|Xs−Ys|p−2 

exp(
∫ s 

0 ηp,r dr)
〈Xs − Ys, (g(Xs) − b(s)) dWs〉

+
∫ t∧τ 

0 

p|Xs−Ys|p−2
(

(p−1)(1+ε) 
2 ‖g(Xs)−g(Ys)‖2+〈Xs−Ys,f (Xs)−f (Ys)〉

)
−|Xs−Ys|pηp,s 

exp(
∫ s 

0 ηp,r dr) ds 

+
∫ t∧τ 

0 

p|Xs−Ys|p−2 
(

(p−1)(1+1/ε)
2 ‖g(Ys)−b(s)‖2+〈Xs−Ys,f (Ys)−a(s)〉

)
exp(

∫ s
0 ηp,r dr)

ds. (3.8)

Then we arrive at (3.5) by taking expectation of both sides of (3.8). Similarly, to sho w (3.6), letting p = 2
in (3.8) deduces that 

|Xt∧τ −Yt∧τ |2 

exp(
∫ t∧τ 

0 η2,r dr) 
≤ |ξX − ξY |2 +

∫ t∧τ 

0 
2〈Xs−Ys,(g(Xs)−b(s)) dWs〉

exp(
∫ s 

0 η2,r dr) 

+
∫ t∧τ 

0 

2〈Xs−Ys,f (Ys)−a(s)〉+(1+ 1 
ε )‖g(Ys)−b(s)‖2 

exp(
∫ s 

0 η2,r dr) ds. (3.9) 

This clearly implies (3.6), after taking supremum and ‖ · ‖Lp/2(Ω;Rd)-norm of both sides of (3.9). �
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8 L. DAI AND X. WANG

As a consequence of Lemma 3.1, we state the main results of this section.

THEOREM 3.2. Let f : Rd → Rd, g : Rd → Rd×m be measurable functions with f ∈ C2(Rd, Rd), 
let f ∈ C1 

P (Rd, Rd) with constants Kf , cf and g ∈ C1 
P (Rd, Rd×m) with constants Kg, cg and let a : 

[0, T] × Ω → Rd, b :  [0, T] × Ω → Rd× m be predictable stochastic processes. Let τN : Ω → [0, T]
be a stopping time which may depend on N, let {Xs}s∈[0,T] and {Ys}s∈[0,T] be defined by (3.1) and (3.2) 
with continuous sample paths, respectively, and let the uniform mesh be constructed by (2.2). Assume 
that

∫ T 
0 |a(s)| + ‖b(s)‖2 + |f (Xs)| + ‖g(Xs)‖2 + |f (Ys)| + ‖g(Ys)‖2 ds < ∞ P-a.s. and for ε ∈ (0, ∞) 

with P-a.s.

∫ τN 

0

[ 〈Xs−Ys,f (Xs)−f (Ys)〉+ (1+ε)(p−1) 
2 ‖g(Xs)−g(Ys)‖2 

|Xs−Ys|2
]+ 

ds < ∞. (3.10) 

Moreover, let Ksup > 0 be some constant that is independent of N,  let  ξ0 := (ξX − ξY) ∈ Lp(Ω;Rd), p ≥
4, and suppose that

(a) {s ≤ τN} ∈ F�s�N
;

(b) sups∈[0,T]

∥∥∥∥1s≤τN

[
〈Xs−Ys,f (Xs)−f (Ys)〉+ (1+ε)(p−1) 

2 ‖g(Xs)−g(Ys)‖2 

|Xs−Ys|2
]+ ∥∥∥∥

L3p(Ω;R) 
≤ Ksup;

(c) for any i = 1, ..., d, sups∈[0,T] ‖Hessx(f
(i) (Ys))‖L3p(Ω;Rd×d) ≤ Ksup and

sup 
s∈[0,T]

‖Xs‖L6pcg∨3pcf ∨3p 
(Ω;Rd)

∨
sup 

s∈[0,T]
‖Ys‖L6pcg∨3pcf (Ω;Rd)

∨
sup 

s∈[0,T]
‖a(s)‖L3p(Ω;Rd)

∨
sup 

s∈[0,T]
‖b(s)‖L3p(Ω;Rd×m ) ≤ Ksup.

(3.11)

1. Then for any u ∈ [0, T], v ∈ (0, ∞), q ∈ (0, ∞] with 1 
p + 1 

q = 1 
v , there exists some positive constant 

C that might depend on p, ε, d, m, T , Kf , cf , Kg, cg, Ksup, but do not depend on h, such that

sup 
t∈[0,u]

‖Xt∧τN − Yt∧τN ‖Lv(Ω;Rd) ≤
[
‖ξ0‖p 

Lp(Ω;Rd) 

+ C
(

hp + E
[ ∫ u 

0 
1s≤τN ‖g(Ys) − b(s)‖p ds

]
+ h 

p 
2 −1

∫ u 

0

∫ s

�s�N

(
E

[
1r≤τN

∥∥g(Yr) − b(r)
∥∥p

]) 1 
2 dr ds 

+ E
[ ∫ u 

0 
1s≤τN |f (Y�s�N ) − a(s)|p ds

]
+ h 

p 
2 −1

E

[ ∫ u 

0

∫ s

�s�N 
1r≤τN |f (Y�r�N ) − a(r)|p dr ds

])] 1 
p 

×
∥∥∥∥ exp

(∫ τN 

0

[ 〈Xs−Ys,f (Xs)−f (Ys)〉+ (1+ε)(p−1) 
2 ‖g(Xs)−g(Ys)‖2

|Xs−Ys|2
]+

ds

)∥∥∥∥
Lq(Ω;R)

. (3.12)
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ORDER-ONE STRONG APPROXIMATIONS OF SDEs WITHOUT MONOTONE COEFFICIENTS 9

2. In addition to the same settings as 1, if g is Lipschitz, then it holds∥∥∥∥ sup 
t∈[0,u] 

|Xt∧τN − Yt∧τN |
∥∥∥∥

Lv(Ω;R) 
≤

[
‖ξ0‖2 

Lp(Ω;Rd) + C
(

h2 +
∫ u 

0

∥∥∥1s≤τN ‖g(Ys) − b(s)‖
∥∥∥2 

Lp(Ω;R) 
ds 

+ h 
1 
2

∫ u 

0

(∫ s

�s�N

∥∥∥1r≤τN ‖g(Yr) − b(r)‖
∥∥∥2 

Lp(Ω;R) 
dr

) 1 
2 

ds 

+
∫ u 

0

∥∥∥1s≤τN

∣∣f (Y�s�N ) − a(s)
∣∣∥∥∥2 

Lp(Ω;R) 
ds + h 

1 
2

∫ u 

0

∫ s

�s�N

∥∥∥1r≤τN |f (Y�r�N ) − a(r)|
∥∥∥

Lp(Ω;R) 
dr ds

)] 1 
2 

×
∥∥∥∥ exp

(∫ τN 

0

[ 〈Xs−Ys,f (Xs)−f (Ys)〉+ 1+ε 
2 ‖g( Xs)−g(Ys)‖2

|Xs−Ys|2
]+

ds

)∥∥∥∥
Lq(Ω;R)

. (3.13)

Proof. In the following exposition, we write ηs to represent ηz,s for short. For any u ∈ [0, T], by the 
Hölder inequality one infers that

sup 
t∈[0,u]

∥∥|Xt∧τN − Yt∧τN
|∥∥Lv(Ω;R) 

≤ sup 
t∈[0,u]

∥∥∥∥ |Xt∧τN −Yt∧τN | 
exp(

∫ t∧τN 
0 

1 
p ηr dr)

∥∥∥∥
Lp(Ω;R) 

·
∥∥∥∥exp

( ∫ τN 

0 

1 
pηr dr

)∥∥∥∥
Lq(Ω;R)

(3.14)

and ∥∥∥ sup 
t∈[0,u] 

|Xt∧τN − Yt∧τN
|
∥∥∥

Lv(Ω;R) 

≤
∥∥∥∥ sup 

t∈[0,u] 

|Xt∧τN −Yt∧τN | 
exp(

∫ t∧τN 
0 

1 
2 ηr dr)

∥∥∥∥
Lp(Ω;R) 

·
∥∥∥∥exp

( ∫ τN 

0 

1 
2ηr dr

)∥∥∥∥
Lq(Ω;R)

. (3.15)

Therefore, it suffices to estimate terms S1,S2,S3 in (3.5) and T1, T2, T3 in (3.6). Observe that the term 
S1 vanishes, due to the condition (c) in Theorem 3.2 and the growth of g.  For  S3, by Young’s inequality, 

S3 ≤ E

[ ∫ t 

0 
Cp,ε1s≤τN 

|Xs−Ys|p 

exp(
∫ s 

0 ηr dr) + Cp1s≤τN
‖g(Ys) − b(s)‖p ds

]
≤ C

∫ t 

0 
E

[
|Xs∧τN −Ys∧τN |p 

exp(
∫ s∧τN 

0 ηr dr)

]
ds + CE

[ ∫ t 

0 
1s≤ τN

‖g(Ys) − b(s)‖p ds

]
. (3.16) 

Concerning S2, one can expand f (Ys) − f (Y�s�N ) by Itô’s formula and then use the Young inequality and
condition (c) in Theorem 3.2 to infer 

S2 = E
[ ∫ t∧τN 

0 

p|Xs−Ys|p−2
〈
Xs−Ys,

∫ s
�s�N

〈f ′(Yr),a(r)〉+ 1 
2 trace(b(r)∗ Hessx(f (Yr))b(r)) dr

〉
exp(

∫ s 
0 ηr dr) ds

]

+ E

[ ∫ t∧τN 

0 

p|Xs−Ys|p−2
〈
Xs−Ys,

∫ s
�s�N

〈f ′(Yr),b(r) dWr〉
〉

exp(
∫ s

0 ηr dr)
ds

]

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/draf034/8159131 by C
entral South U

niversity user on 10 June 2025



10 L. DAI AND X. WANG

+ E
[ ∫ t∧τN 

0 

p|Xs−Ys|p−2〈Xs−Ys,f (Y�s�N )−a(s)〉
exp(

∫ s 
0 ηr dr) ds

]

≤ E

[ ∫ t∧τN 

0 

p|Xs−Ys|p−1
∣∣ ∫ s

�s�N
〈f ′(Yr),a(r)〉+ 1 

2 trace(b(r)∗ Hessx(f (Yr))b(r)) dr
∣∣

exp(
∫ s 

0 ηr dr) ds

]

+ E
[ ∫ t∧τN 

0 

p|Xs−Ys|p−2
〈
Xs−Ys,

∫ s
�s�N

〈f ′(Yr),b(r) dWr〉
〉

exp(
∫ s 

0 ηr dr) ds

]
+ E

[ ∫ t∧τN 

0 

p|Xs−Ys|p−1|f (Y�s�N )−a(s)| 
exp(

∫ s 
0 ηr dr) ds

]
≤ C

∫ t 

0 
E

[
|Xs∧τN −Ys∧τN |p 

exp(
∫ s∧τN 

0 ηr dr)

]
ds + CE

[ ∫ t 

0 
1s≤τN

|f (Y�s�N ) − a(s)|p ds

]
+ E

[ ∫ t∧τN 

0 

p|Xs−Ys|p−2〈Xs −Ys,
∫ s
�s�N

〈f ′(Yr),b(r) dWr〉〉
exp(

∫ s 
0 ηr dr) ds

]
+ Ch p. (3.17)

To estimate the last but one term for p ≥ 4, we expand the left item of the inner product by Itô’s
formula and Itô’s product rule to obtain

p|Xs−Ys|p−2(Xs−Ys) 
exp(

∫ s 
0 ηr dr) 

= p|X�s�N −Y�s�N |p−2(X�s�N −Y�s�N ) 

exp(
∫ �s�N 

0 ηr dr)
+

∫ s

�s�N 

p|Xr−Yr|p−2(f (Xr)−a(r)) 
exp(

∫ r 
0 ηι dι) dr 

+
∫ s

�s�N 

−p|Xr−Yr|p−2(Xr−Yr)ηr 
exp(

∫ r 
0 ηι dι) dr +

∫ s

�s�N 

p|Xr−Yr|p−2(g(Xr)−b(r)) 
exp(

∫ r 
0 ηι dι) dWr 

+
∫ s

�s�N 

p(p−2)(Xr−Yr) 
exp(

∫ r 
0 ηι dι) |Xr − Yr|p−4〈Xr − Yr, f (Xr) − a(r)〉 dr 

+
∫ s

�s�N 

p(p−2)(Xr−Yr) 
exp(

∫ r 
0 ηι dι) |Xr − Yr|p−4 〈

Xr − Yr,
(
g(Xr) − b(r)

)
dWr

〉
+

∫ s

�s�N 

p(p−2)(p−4)(Xr−Yr) 
2 exp(

∫ r 
0 ηι dι) |Xr − Yr|p−6

∣∣(Xr − Yr)
(
g(Xr) − b(r)

)∣∣2 dr 

+
∫ s

�s�N 

p(p−2)(Xr−Yr) 
2 exp(

∫ r 
0 ηι dι) |Xr − Yr|p−4

∥∥g(Xr) − b(r)
∥∥2 d r

+
∫ s

�s�N

p(p−2)|Xr−Yr|p−4

exp(
∫ r

0 ηι dι)

(
g(Xr) − b(r)

)(
g(Xr) − b(r)

)∗
(Xr − Yr) dr. (3.18)

Collecting some terms in (3.18) one can deduce

E

[ ∫ t∧τN 

0

〈
p|Xs−Ys|p−2(Xs−Ys) 

exp(
∫ s 

0 ηr dr) ,
∫ s

�s�N

〈f ′(Yr), b(r) dWr〉
〉

ds

]

≤ E
[ ∫ t∧τN 

0

〈
p|X�s�N −Y�s�N |p−2(X�s�N −Y�s�N ) 

exp(
∫ �s�N 

0 ηr dr) 
,
∫ s

�s�N

〈f ′(Yr), b(r) dWr〉
〉

ds

]
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ORDER-ONE STRONG APPROXIMATIONS OF SDEs WITHOUT MONOTONE COEFFICIENTS 11

+ E
[ ∫ t∧τN 

0

∫ s

�s�N 

p(p−1)|Xr−Yr|p−2|f (Xr)−a(r)| 
exp(

∫ r 
0 ηι dι) dr

∣∣∣ ∫ s

�s�N

〈f ′(Yr), b(r) dWr〉
∣∣∣ ds

]

+ E
[ ∫ t∧τN 

0

〈 ∫ s

�s�N 

−p|Xr−Yr|p−2(Xr−Yr)ηr 
exp(

∫ r 
0 ηι dι) dr,

∫ s

�s�N

〈f ′(Yr), b(r) dWr〉
〉

ds

]

+ E
[ ∫ t∧τN 

0

〈 ∫ s

�s�N 

p|Xr−Yr|p−2(g(Xr)−b(r)) 
exp(

∫ r 
0 ηι dι) dWr,

∫ s

�s�N

〈f ′(Yr), b(r) dWr〉
〉

ds

]

+ E
[ ∫ t∧τN 

0

〈 ∫ s

�s�N 

(Xr−Yr)|Xr−Yr|p−4 
1 

p(p−2) exp(
∫ r 

0 ηι dι)

〈
Xr − Yr,

(
g(Xr) − b(r)

)
dWr

〉
,
∫ s

�s�N

〈f ′(Yr), b(r) dWr〉
〉

ds

]

+ E
[ ∫ t∧τN 

0

∫ s

�s�N 

p(p−1)(p−2)|Xr−Yr|p−3 

2 exp(
∫ r 

0 ηι dι)

∥∥g(Xr) − b(r)
∥∥2 dr

∣∣∣∣ ∫ s

�s�N

〈f ′(Yr), b(r) dWr〉
∣∣∣∣ ds

]
=: B1 + B2 + B3 + B4 + B5 + B 6. (3.19)

Next we estimate Bi, i = 1, 2, ..., 6 term by term. First, it is trivial to see B1 = 0 by the condition (a) and
(c) in Theorem 3.2.  For  B2, using the fact f ∈ C1 

P (Rd, Rd), Hölder’s inequality, Young’s inequality and
condition (c) in Theorem 3.2,  we  h  ave

B2 ≤ C
∫ t 

0

∫ s

�s�N 
E

[
1s≤τN 

|Xr−Yr|p−1(1+|Xr|+|Yr|)cf 

exp(
∫ r 

0 ηι dι)

∣∣∣∣ ∫ s

�s�N

〈
f ′(Yι), b(ι) dWι

〉∣∣∣∣] dr ds 

+ C
∫ t 

0

∫ s

�s�N 
E

[
1s≤τN 

|Xr−Yr|p−2|f (Yr)−f (Y�r�N )| 
exp(

∫ r 
0 ηι dι)

∣∣∣∣ ∫ s

�s�N

〈
f ′(Yι), b(ι) dWι

〉∣∣∣∣] dr ds 

+ C
∫ t 

0

∫ s

�s�N 
E

[
1s≤τN 

|Xr−Yr|p−2|f (Y�r�N )−a(r)| 
exp(

∫ r 
0 ηι dι)

∣∣∣∣ ∫ s

�s�N

〈
f ′(Yι), b(ι) dWι

〉∣∣∣∣] dr ds 

≤ C
∫ t 

0 
sup 

r∈[�s�N ,s] 
E

[
1s≤τN 

|Xr−Yr|p 

exp(
∫ r 

0 ηι dι)

]
ds 

+ C
∫ t 

0

(∫ s

�s�N

∥∥∥∥1s≤τN

(
1 + |Xr| + |Yr|

)cf

∣∣∣∣ ∫ s

�s�N

〈
f ′(Yι), b(ι) dWι

〉∣∣∣∣∥∥∥∥
Lp(Ω;R) 

dr

)p 
ds 

+ C
∫ t 

0

(∫ s

�s�N

∥∥∥∥1s≤τN

∣∣f (Yr) − f (Y�r�N )
∣∣ ·

∣∣∣∣ ∫ s

�s�N

〈
f ′(Yι), b(ι) dWι

〉∣∣∣∣∥∥∥∥
Lp/2(Ω;R) 

dr

)p/2 
ds 

+ C
∫ t 

0

(∫ s

�s�N

∥∥∥∥1s≤τN

∣∣f (Y�r�N ) − a(r)
∣∣ ·

∣∣∣∣ ∫ s

�s�N

〈
f ′(Yι), b(ι) dWι

〉∣∣∣∣∥∥∥∥
Lp/2(Ω;R) 

dr

)p/2 
ds 

≤ C
∫ t 

0 
sup 

r∈[0,s] 
E

[
|Xr∧τN −Yr∧τN |p
exp(

∫ r∧τN
0 ηι dι)

]
ds + Ch

p
2 −1

E

[ ∫ t

0

∫ s

�s�N

1r≤τN
|f (Y�r�N

) − a(r)|p dr ds

]
+ Chp.

(3.20)
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12 L. DAI AND X. WANG

With the aid of Hölder’s inequality, Young’s inequality and condition (c) in Theorem 3.2, we estimate 
B3 as follows: 

B3 ≤
∫ t 

0

∫ s

�s�N 
E

[
1s≤τN 

p|Xr−Yr|p−1ηr 
exp(

∫ r 
0 ηι dι)

∣∣∣∣ ∫ s

�s�N

〈
f ′(Yι), b(ι) dWι

〉∣∣∣∣] dr ds 

≤ C
∫ t 

0 
sup 

r∈[�s�N ,s] 
E

[
1s≤τN 

|Xr−Yr|p 

exp(
∫ r 

0 ηι dι)

]
ds 

+ C
∫ t 

0

(∫ s

�s�N

∥∥∥∥1s≤τN ηr

∣∣∣∣ ∫ s

�s�N

〈
f ′(Yι), b(ι) dWι

〉∣∣∣∣∥∥∥∥
Lp(Ω;R) 

dr

)p 
ds 

≤ C
∫ t 

0 
sup 

r∈[0,s] 
E

[ |Xr∧τN −Yr∧ τN |p 

exp(
∫ r∧τN 

0 ηι dι)

]
ds + Ch3p /2. (3.21) 

Using the property of stochastic integral, Hölder’s inequality, Young’s inequality and condition (c) in
Theorem 3.2 shows the estimate of B4: 

B4 =
∫ t 

0

∫ s

�s�N 
E

[
1s≤τN

〈
p|Xr−Yr|p−2(g(Xr)−b(r)) 

exp(
∫ r 

0 ηι dι) , f ′(Yr)b(r)
〉
HS

]
dr ds 

≤
∫ t 

0

∫ s

�s�N 
E

[
1s≤τN 

p|Xr−Yr|p−2‖g(Xr)−g(Yr)‖
exp(

∫ r 
0 ηι dι)

∥∥f ′(Yr)b(r)
∥∥]

dr ds 

+
∫ t 

0

∫ s

�s�N 
E

[
1s≤τN 

p|Xr−Yr|p−2‖g(Yr)−b(r)‖
exp(

∫ r 
0 ηι dι)

∥∥f ′(Yr)b(r)
∥∥]

dr ds 

≤ C
∫ t 

0 
sup 

r∈[�s�N ,s] 
E

[
1s≤τN 

|Xr−Yr|p 

exp(
∫ r 

0 ηι dι)

]
ds 

+ C
∫ t 

0

(∫ s

�s�N

∥∥∥1s≤τN

(
1 + |Xr| + |Yr|

)cg
∥∥f ′(Yr)b(r)

∥∥∥∥∥
Lp(Ω;R) 

dr

)p 
ds 

+ C
∫ t 

0

(∫ s

�s�N

∥∥∥1s≤τN

∥∥g(Yr) − b(r)
∥∥∥∥f ′(Yr)b(r)

∥∥∥∥∥
Lp/2(Ω;R) 

dr

)p/2 
ds 

≤ C
∫ t 

0 
sup 

r∈[0,s] 
E

[ |Xr∧τN −Yr∧τN |p 

exp(
∫ r∧τN 

0 ηι dι)

]
ds 

+ Ch 
p−2 

2

∫ t 

0

∫ s

�s�N

(
E

[
1r≤τN

∥∥g(Yr) − b(r)
∥∥p

])1/2 
dr d s + Chp. (3.22)

In a similar way, one can handle B5 as follows:

B5 ≤
∫ t 

0

∫ s

�s�N 
E

[
1s≤τN

∥∥ |Xr−Yr|p−2 

exp(
∫ r 

0 ηι dι)

(
g(Xr) − b(r)

)∥∥∥∥f ′(Yr)b(r)
∥∥]

dr ds 

≤ C
∫ t 

0 
sup 

r∈[0,s] 
E

[
|Xr∧τN −Yr∧τN |p 

exp(
∫ r∧τN 

0 ηι dι)

]
ds 

+ Chp/2−1
∫ t 

0

∫ s

�s�N

(
E

[
1r≤τN

∥∥g(Yr) − b(r)
∥∥p

])1/2

dr ds + Chp. (3.23)
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ORDER-ONE STRONG APPROXIMATIONS OF SDEs WITHOUT MONOTONE COEFFICIENTS 13

Thanks to the Hölder inequality, the Young inequality and condition (c) in Theorem 3.2, we treat B6 in 
the follo wing way:

B6 ≤ C
∫ t 

0

∫ s

�s�N 
E

[
1s≤τN 

|Xr−Yr|p−1 

exp(
∫ r 

0 ηι dι)

(
1 + |Xr| + |Yr|

)2cg

∣∣∣∣ ∫ s

�s�N

〈
f ′(Yι), b(ι) dWι

〉∣∣∣∣] dr ds 

+ C
∫ t 

0

∫ s

�s�N 
E

[
1s≤τN 

|Xr−Yr|p−3 

exp(
∫ r 

0 ηι dι)

∥∥g(Yr) − b(r)
∥∥2

∣∣∣∣ ∫ s

�s�N

〈
f ′(Yι), b(ι) dWι

〉∣∣∣∣] dr ds 

≤ C
∫ t 

0 
sup 

r∈[0,s] 
E

[
|Xr∧τN −Yr∧τN |p 

exp(
∫ r∧τN 

0 ηι dι)

]
ds + Ch 

p−2 
2

∫ t 

0

∫ s

�s�N

(
E

[
1r≤ τN

∥∥g(Yr) − b(r)
∥∥p

]) 2
3

dr ds + Chp.

(3.24)

Gathering (3.17), (3.20), (3.21), (3.22), (3.23) and (3.24) yields 

S2 ≤ C
∫ t 

0 
sup 

r∈[0,s] 
E

[
|Xr∧τN −Yr∧τN |p 

exp(
∫ r∧τN 

0 ηι dι)

]
ds + Ch 

p−2 
2 E

[ ∫ t 

0

∫ s

�s�N 
1s≤τN

∣∣∣f (Y�s�N ) − a(r)
∣∣∣p 

dr ds

]
+ Chp 

+ Ch 
p−2 

2

∫ t 

0

∫ s

�s�N

(
E

[
1r≤τN

∥∥g(Yr) − b(r)
∥∥p

]) 1 
2 

dr ds + CE

[ ∫ t 

0 
1 s≤τN

∣∣∣f (Y�s�N ) − a(s)
∣∣∣p 

ds

]
. 

(3.25) 

Then, combining (3.16) with (3.25) and by Gronwall’s inequality we arrive at the first assertion (3.12). 
Now it remains to validate (3.13). With regard to T1, by Lemma 2.1, the inner product inequality, the 
Hölder inequality and the elementary inequality, one deduces

T1 ≤ Cp

(∫ u 

0 

m∑
i=1

∥∥∥∥1s≤τN

〈Xs−Ys,g(i) (Xs)−b(i) (s)〉
exp(

∫ s 
0 ηr dr)

∥∥∥∥2 

Lp/2(Ω;R) 
ds

)1/2 

≤ Cp 

m∑
i=1

(∫ u 

0

∥∥∥∥1s≤τN 
|Xs−Ys| 

exp(
∫ s 

0 
1 
2 ηr dr)

∥∥∥∥2 

Lp(Ω;R) 
·
∥∥∥∥1s≤τN 

|g(i) (Xs)−b(i) (s)| 
exp(

∫ s 
0 

1 
2 ηr dr)

∥∥∥∥2 

Lp(Ω;R) 
ds

)1/2 

≤ sup 
t∈[0,u]

∥∥∥∥ |Xt∧τN −Yt∧τN | 
exp(

∫ t∧τN 
0 

1 
2 ηr dr)

∥∥∥∥
Lp(Ω;R) 

· Cp 

m∑
i=1

(∫ u 

0

∥∥∥∥1s≤τN 
|g(i) (Xs)−b(i) (s)| 
exp(

∫ s 
0 

1 
2 ηr dr)

∥∥∥∥2 

Lp(Ω;R) 
ds

)1/2 

≤ 1 
4 sup 

t∈[0,u]

∥∥∥∥ |Xt∧τN −Yt∧τN | 
exp(

∫ t∧τN 
0 

1 
2 ηr dr)

∥∥∥∥2 

Lp(Ω;R) 

+ Cp 

m∑
i=1

(∫ u 

0

∥∥∥∥1s≤τN

|g(i)(Xs)−g(i)(Ys)+g(i)(Ys)−b(i)(s)|
exp(

∫ s
0

1
2 ηr dr)

∥∥∥∥2

Lp(Ω;R)

ds

)
, (3.26)
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14 L. DAI AND X. WANG

where ∫ u 

0

∥∥∥∥1s≤τN 
|g(i) (Xs)−g(i) (Ys)+g(i) (Ys)−b(i) (s)| 

exp(
∫ s 

0 
1 
2 ηr dr)

∥∥∥∥2 

Lp(Ω;R) 
ds 

≤ 2C
∫ u 

0

∥∥∥∥ |Xs∧τN −Ys∧τN | 
exp(

∫ s∧τN 
0 

1 
2 ηr dr)

∥∥∥∥2 

Lp(Ω;R) 
ds + 2

∫ u 

0

∥∥∥∥1s≤τN 
|g(i) (Ys)−b(i) (s)| 
exp(

∫ s 
0 

1 
2 ηr dr)

∥∥∥∥2 

Lp(Ω;R )
ds. (3.27)

Combining (3.26) with (3.27) yields 

T1 ≤ 1 
4 sup 

t∈[0,u]

∥∥∥∥ |Xt∧τN −Yt∧τN | 
exp(

∫ t∧τN 
0 

1 
2 ηr dr)

∥∥∥∥2 

Lp(Ω;R) 

+ C
∫ u 

0 
sup 

s∈[0,t]

∥∥∥∥ |Xs∧τN −Ys∧τN | 
exp(

∫ s∧τN 
0 

1 
2 ηr dr)

∥∥∥∥2 

Lp(Ω;R) 
dt + C

∫ u 

0

∥∥∥1s≤τN

(
g (Ys) − b(s)

)∥∥∥2 

Lp(Ω;Rd×m) 
d s. ( 3.28)

When it comes to T3, one can easily show 

T3 ≤ C
∫ u 

0

∥∥∥1s≤τN

(
g(Ys) − b(s)

)∥∥∥2 

Lp(Ω;Rd×m ) 
ds . (3.29) 

Note that the term T2 needs to be treated carefully. First, using the same arguments as S2 shows 

T2 ≤
∥∥∥∥ sup 

t∈[0,u]

∫ t∧τN 

0

〈
2(Xs−Ys) 

exp(
∫ s 

0 ηr dr) ,
∫ s

�s�N

〈f ′(Yr), a(r)〉 +  1 
2 trace

(
b(r)∗ Hessx(f (Yr))b(r)

)
dr

〉
ds

∥∥∥∥
L 

p 
2 (Ω;R) 

+
∥∥∥∥ sup 

t∈[0,u]

∫ t∧τN 

0 
2
〈

Xs−Ys 
exp(

∫ s 
0 ηr dr) ,

∫ s

�s�N

〈f ′(Yr), b(r) dWr〉
〉

ds

∥∥∥∥
Lp/2(Ω;R) 

+
∥∥∥∥ sup 

t∈[0,u]

∫ t∧τN 

0 
2
〈

Xs−Ys 
exp(

∫ s 
0 ηr dr) , f (Y�s�N ) − a(s)

〉
ds

∥∥∥∥
Lp/2(Ω;R) 

≤ C
∫ u 

0 
sup 

s∈[0,t]

∥∥∥∥ |Xs∧τN −Ys∧τN | 
exp(

∫ s∧τN 
0 

1 
2 ηr dr)

∥∥∥∥2 

Lp(Ω;R) 
dt +

∫ u 

0

∥∥∥1s≤τN

∣∣f (Y�s�N ) − a(s)
∣∣∥∥∥2 

Lp(Ω;R) 
ds 

+
∥∥∥∥ sup 

t∈[0,u]

∫ t∧τN 

0 
2

〈
Xs−Y s 

exp(
∫ s 

0 ηr dr) ,
∫ s

�s�N

〈f ′(Yr), b(r) dWr〉
〉

ds

∥∥∥∥
Lp/2(Ω; R) 

+ Ch2 . (3.30)

To estimate the last but one term for p ≥ 4, we expand the left item in the inner product by Itô’s
formula and Itô’s product rule to acquire

Xs−Ys 
exp(

∫ s 
0 ηr dr) = X�s�N −Y�s�N 

exp(
∫ �s�N 

0 ηr dr) 
+

∫ s

�s�N 

f (Xr)−a(r) 
exp(

∫ r 
0 ηι dι) dr 

+
∫ s

�s�N 

g(Xr)−b(r) 
exp(

∫ r 
0 ηι dι) dWr +

∫ s

�s�N 

(Xr−Yr)(−ηr)

exp(
∫ r

0 ηι dι)
dr. (3.31)
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ORDER-ONE STRONG APPROXIMATIONS OF SDEs WITHOUT MONOTONE COEFFICIENTS 15

As a consequence,∥∥∥∥ sup 
t∈[0,u]

∫ t∧τN 

0 
2

〈
Xs−Ys 

exp(
∫ s 

0 ηr dr) ,
∫ s

�s�N

〈
f ′(Yr), b(r) dWr

〉〉
ds

∥∥∥∥
Lp/2(Ω;R) 

≤
∥∥∥∥ sup 

t∈[0,u]

∫ t∧τN 

0 
2

〈
X�s�N −Y�s�N 

exp(
∫ �s�N 

0 ηr dr) 
,
∫ s

�s�N

〈
f ′(Yr), b(r) dWr

〉〉
ds

∥∥∥∥
Lp/2(Ω;R) 

+
∥∥∥∥ sup 

t∈[0,u]

∫ t∧τN 

0 
2

〈 ∫ s

�s�N 

f (Xr)−a(r) 
exp(

∫ r 
0 ηι dι) dr,

∫ s

�s�N

〈
f ′(Yr), b(r) dWr

〉〉
ds

∥∥∥∥
Lp/2(Ω;R) 

+
∥∥∥∥ sup 

t∈[0,u]

∫ t∧τN 

0 
2

〈 ∫ s

�s�N 

g(Xr)−b(r) 
exp(

∫ r 
0 ηι dι) dWr ,

∫ s

�s�N

〈
f ′(Yr), b(r) dWr

〉〉
ds

∥∥∥∥
Lp/2(Ω;R) 

+
∥∥∥∥ sup 

t∈[0,u]

∫ t∧τN 

0 
2

〈 ∫ s

�s�N 

(Xr−Yr)(−ηr) 
exp(

∫ r 
0 ηι dι) dr,

∫ s

�s�N

〈
f ′( Yr), b(r) dWr

〉〉
ds

∥∥∥∥
Lp/2(Ω;R) 

=: B̃1 + B̃2 + B̃3 + B̃4. (3.32)

Let us estimate these four items in (3.32) separately. We first split B̃1 into two parts:

B̃1 ≤
∥∥∥∥ sup 

t∈[0,u]

∣∣∣∣ nt−1∑
k=0

∫ tk+1 

tk 
21s≤τN

〈
X�s�N −Y�s�N 

exp(
∫ �s�N 

0 ηr dr) 
,
∫ s

�s�N

〈
f ′(Yr), b(r) dWr

〉〉
ds

∣∣∣∣∥∥∥∥
Lp/2(Ω;R) 

+
∥∥∥∥ sup 

t∈[0,u]

∫ t

�t�N 
21s≤τN

〈
X�s�N −Y�s�N 

exp(
∫ �s�N 

0 ηr dr) 
,
∫ s

�s�N

〈
f ′(Yr), b(r) dWr

〉〉
ds

∥∥∥∥
Lp/2 (Ω;R) 

=: B̃11 + B̃12, (3.33)

where we denote nt := �t�N/h. By the condition (c) in Theorem 3.2,  it  follows  that  

ζn := 
n−1∑
k=0

∫ tk+1 

tk 
21s≤τN

〈
X�s�N −Y�s�N 

exp(
∫ �s�N 

0 ηr dr) 
,
∫ s

�s�N

〈
f ′(Yr), b(r) dWr

〉〉
ds 

is a discrete marting ale. The Doob discrete martingale inequality, Lemma 2.2, Hölder’s inequality and 
the condition (c) in Theorem 3.2 imply that

B̃11 ≤ Cp

∥∥∥∥ nu−1∑
k=0

∫ tk+1 

tk 
21s≤τN

〈
X�s�N −Y�s�N 

exp(
∫ �s�N 

0 ηr dr) 
,
∫ s

�s�N

〈
f ′(Yr), b(r) dWr

〉〉
ds

∥∥∥∥
Lp/2(Ω;R) 

≤ Cp 

⎛⎝nu−1∑
k=0

∥∥∥∥ ∫ tk+1 

tk 
21s≤τN

〈
X�s�N −Y�s�N 

exp(
∫ �s�N 

0 ηr dr) 
,
∫ s

�s�N

〈
f ′(Yr), b(r) dWr

〉〉
ds

∥∥∥∥2 

Lp/2(Ω;R) 

⎞⎠1/2 

≤ Cp

(
h
∫ �u�N 

0

∥∥∥∥ |X�s�N∧τN −Y�s�N∧τN | 
exp(

∫ �s�N∧τN 
0 

1 
2 ηr dr)

∥∥∥∥2 

Lp(Ω;R)

∥∥∥∥∣∣∣∣ ∫ s

�s�N

〈
f ′(Yr), b(r) dWr

〉∣∣∣∣∥∥∥∥2 

Lp(Ω;R) 
ds

)1/2 

≤ sup 
s∈[0,u]

∥∥∥∥ |Xs∧τN −Ys∧τN | 
exp(

∫ s∧τN 
0 

1 
2 ηr dr)

∥∥∥∥
Lp(Ω;R) 

Cp

(
h
∫ �u�N 

0

∥∥∥∥∣∣∣∣ ∫ s

�s�N

〈
f ′(Yr), b(r) dWr

〉∣∣∣∣∥∥∥∥2 

Lp(Ω;R) 
ds

)1/2 

≤ 1 
8 sup 

s∈[0,u]

∥∥∥∥ |Xs∧τN −Ys∧τN |
exp(

∫ s∧τN
0

1
2 ηr dr)

∥∥∥∥2

Lp(Ω;R)

+ Ch2. (3.34)
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16 L. DAI AND X. WANG

With the help of Hölder’s inequality, an elementary inequality and the condition (c) in Theorem 3.2,  for  
p ≥ 4 one can estimate B̃12 as

B̃12 ≤
(
E

[
sup 

t∈[0,u]

∣∣∣∣ ∫ t

�t�N 
21s≤τN

〈
X�s�N −Y�s�N 

exp(
∫ �s�N 

0 ηr dr) 
,
∫ s

�s�N

〈
f ′(Yr), b(r) dWr

〉〉
ds

∣∣∣∣p/2])2/p 

≤ Ch1−2/p
(
E

[ ∫ u 

0 
1s≤τN

∣∣∣∣〈 X�s�N −Y�s�N 
exp(

∫ �s�N 
0 ηr dr) 

,
∫ s

�s�N

〈
f ′(Yr), b(r) dWr

〉〉∣∣∣∣p/2 
ds

])2/p 

≤ Ch1−2/p
(∫ u 

0

∥∥∥∥ |X�s�N∧τN −Y�s�N∧τN | 
exp(

∫ �s�N∧τN 
0 

1 
2 ηr dr)

∥∥∥∥p/2 

Lp(Ω;R)

∥∥∥∥∣∣∣∣ ∫ s

�s�N

〈
f ′(Yr), b(r) dWr

〉∣∣∣∣∥∥∥∥p/2 

Lp(Ω;R) 
ds

)2/p 

≤ 1 
8 sup 

s∈[0,u]

∥∥∥∥ |Xs∧τN −Ys∧τN | 
exp(

∫ s∧τN 
0 

1 
2 ηr dr)

∥∥∥∥2 

Lp(Ω;R) 
+ Ch2−4/p

(∫ u 

0

∥∥∥∥∣∣∣∣ ∫ s

�s�N

〈
f ′(Yr), b(r) dWr

〉∣∣∣∣∥∥∥∥p/2 

Lp(Ω;R) 
ds

)4/p 

≤ 1 
8 sup 

s∈[0,u] 

∥∥∥∥ |Xs∧τN −Ys∧τN | 
exp(

∫ s∧τN 
0 

1 
2 ηr dr)

∥∥∥∥2 

Lp(Ω;R)

+ Ch2.

(3.35)

Hence, one concludes that

B̃1 ≤ 1 
4 sup 

s∈[0,u]

∥∥∥∥ |Xs∧τN −Ys∧τN | 
exp(

∫ s∧τN 
0 

1 
2 ηr dr)

∥∥∥∥2 

Lp(Ω;R) 
+ Ch2. (3.36)

Similar to the estimate of B2, one treat B̃2 as follows:

B̃2 ≤ C
∫ u 

0

∫ s

�s�N

∥∥∥∥1s≤τN 
|Xr−Yr|(1+|Xr|+|Yr|)cf 

exp(
∫ r 

0 ηι dι)

∣∣∣∣ ∫ s

�s�N

〈
f ′(Yι), b(ι) dWι

〉∣∣∣∣∥∥∥∥
Lp/2(Ω;R) 

dr ds 

+ C
∫ u 

0

∫ s

�s�N

∥∥∥∥1s≤τN 

|f (Yr)−f (Y�r�N )| 
exp(

∫ r 
0 ηι dι)

∣∣∣∣ ∫ s

�s�N

〈
f ′(Yι), b(ι) dWι

〉∣∣∣∣∥∥∥∥
Lp/2(Ω;R) 

dr ds 

+ C
∫ u 

0

∫ s

�s�N

∥∥∥∥1s≤τN 

|f (Y�r�N )−a(r)| 
exp(

∫ r 
0 ηι dι)

∣∣∣∣∫ s

�s�N

〈
f ′(Yι), b(ι) dWι

〉∣∣∣∣∥∥∥∥
Lp/2(Ω;R) 

dr ds 

≤ C
∫ u 

0 
sup 

r∈[0,s]

∥∥∥∥ |Xr∧τN −Yr∧τN | 
exp(

∫ r∧τN 
0 

1 
2 ηι dι)

∥∥∥∥2 

Lp(Ω;R) 
ds + Ch2 

+ Ch1/2
∫ u 

0

∫ s

�s�N

∥∥∥1s≤τN
|f (Y�r�N

) − a(r)|
∥∥∥

Lp(Ω;R)
dr ds. (3.37)
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ORDER-ONE STRONG APPROXIMATIONS OF SDEs WITHOUT MONOTONE COEFFICIENTS 17

With regard to B̃3, we employ Hölder’s inequality, Young’s inequality and Lemma 2.1 to derive

B̃3 ≤ C
∫ u 

0

∥∥∥∥ ∫ s

�s�N 
1s≤τN 

g(Xr)−g(Yr) 
exp(

∫ r 
0 ηι dι) dWr

∥∥∥∥
Lp(Ω;Rd)

∥∥∥∥ ∫ s

�s�N

〈
f ′(Yr), b(r) dWr

〉〉∥∥∥∥
Lp(Ω;Rd) 

ds 

+ C
∫ u 

0

∥∥∥∥ ∫ s

�s�N 
1s≤τN 

g(Yr)−b(r) 
exp(

∫ r 
0 ηι dι) dWr

∥∥∥∥
Lp(Ω;Rd)

∥∥∥∥ ∫ s

�s�N

〈
f ′(Yr), b(r) dWr

〉〉∥∥∥∥
Lp(Ω;Rd) 

ds 

≤ C
∫ u 

0

∥∥∥∥ ∫ s

�s�N 
1s≤τN 

g(Xr)−g(Yr) 
exp(

∫ r 
0 ηι dι) dWr

∥∥∥∥4/3 

Lp(Ω;Rd) 
ds + Ch2 

+ Ch1/2
∫ u 

0

∥∥∥∥ ∫ s

�s�N 
1s≤τN 

g(Yr)−b(r) 
exp(

∫ r 
0 ηι dι) dWr

∥∥∥∥
Lp(Ω;Rd) 

ds 

≤ C
∫ u 

0

(∫ s

�s�N

∥∥∥∥1s≤τN 
|Xr−Yr| 

exp(
∫ r 

0 ηι dι)

∥∥∥∥2 

Lp(Ω;R) 
dr

)2/3 
ds + Ch2 

+ Ch1/2
∫ u 

0

(∫ s

�s�N

∥∥∥∥1s≤τN

(
g(Yr) − b(r)

)∥∥∥∥2 

Lp(Ω;Rd×m) 
dr

)1/2 
ds 

≤ C
∫ u 

0 
sup 

r∈[0,s]

∥∥∥∥ |Xr∧τN −Yr∧τN | 
exp(

∫ r∧τN 
0 

1 
2 ηι d ι)

∥∥∥∥2 

Lp(Ω;R) 
ds + Ch2 

+ Ch1/2
∫ u 

0

(∫ s

�s�N

∥∥∥∥1s≤τN

(
g(Yr) − b(r)

)∥∥∥∥2 

Lp(Ω;Rd×m) 
dr

)1/2

ds. (3.38)

Similar to the estimate of B3, we bound B̃4 in the following way:

B̃4 ≤ C
∥∥∥∥ ∫ u 

0

∫ s

�s�N 
1s≤τN 

|Xr−Yr|ηr 
exp(

∫ r 
0 ηι dι)

∣∣∣∣ ∫ s

�s�N

〈
f ′(Yι), b(ι) dWι

〉∣∣∣∣ dr ds

∥∥∥∥
Lp/2(Ω;R) 

≤ C
∫ u 

0

∫ s

�s�N

∥∥∥∥1s≤τN 
|Xr−Yr| 

exp(
∫ r 

0 ηι dι)

∥∥∥∥
Lp(Ω;R)

∥∥∥∥ηr

∣∣∣∣ ∫ s

�s�N

〈
f ′(Yι), b(ι) dWι

〉∣∣∣∣∥∥∥∥
Lp(Ω;R) 

dr ds 

≤ C
∫ u 

0 
sup 

r∈[0,s]

∥∥∥∥ |Xs∧τN −Ys∧τN | 
exp(

∫ s∧τN 
0 

1
2 ηι dι)

∥∥∥∥2

Lp(Ω;R)

ds + Ch2. (3.39)

Putting (3.30), (3.36), (3.37), (3.38) and (3.39) together yields 

T2 ≤ C
∫ u 

0 
sup 

s∈[0,t]

∥∥∥∥ |Xs∧τN −Ys∧τN | 
exp(

∫ s∧τN 
0 

1 
2 ηr dr)

∥∥∥∥2 

Lp(Ω;R) 
dt +

∫ u 

0

∥∥∥∥1s≤τN

∣∣f (Y�s�N ) − a(s)
∣∣∥∥∥∥2 

Lp(Ω;R) 
ds 

+ 1 
4 sup 

s∈[0,u]

∥∥∥∥ |Xs∧τN −Ys∧τN | 
exp(

∫ s∧τN 
0 

1 
2 ηr dr)

∥∥∥∥2 

Lp(Ω;R) 
+ Ch1/2

∫ u 

0

∫ s

�s�N

∥∥∥∥1r≤τN |f (Y�r�N ) − a(r)|
∥∥∥∥

Lp(Ω;R) 
dr ds 

+ Ch1/2
∫ u 

0

(∫ s

�s�N

∥∥∥∥1r≤τN

(
g(Y r) − b(r)

)∥∥∥∥2 

Lp(Ω;Rd×m) 
dr

)1/2 
ds + Ch2. (3.40) 

Then the proof is thus completed by combining (3.28), (3.29), (3.40) and Gronwall’s inequality. �
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18 L. DAI AND X. WANG

In the rest of this article, we concentrate on applications of the previously obtained perturbation 
estimates to identify the order-one strong convergence of numerical methods for SDEs with non-globally
monotone coefficients.

4. Order-one pathwise uniformly strong convergence of the SITEM scheme

In order to numerically solve SDEs (3.1) on a uniform grid {tn = nh}0≤n≤N with stepsize h = T 
N , a class

of stopped increment-tamed EM (SITEM) method was proposed in Hutzenthaler et al. (2018): 

Yt = Ytn + 1|Ytn |<exp(|ln(h)|1/2)

[
f(Ytn)(t−tn)+g(Ytn)(Wt−Wtn) 

1+|f(Ytn)(t−tn)+g(Ytn)(Wt−Wtn)|δ
]

, Y0 = X0, δ ≥ 2, t ∈ [tn, tn+1 ], (4.1) 

which was shown to inherit exponential integrability properties of original SDEs. Combining the
perturbation theory obtained in Hutzenthaler & Jentzen (2020) with exponential integrability properties 
of both numerical solution and exact solution, the authors of Hutzenthaler & Jentzen (2020) successfully 
identified the order 1 

2 strong convergence of the SITEM method. An interesting question arises as to 
whether higher convergence rate than order 1

2 can be obtained when high-order (e.g., Milstein-type)
schemes are used. This is also expected by Hutzenthaler & Jentzen (2020) (see Remark 3.1 therein). 
Unfortunately, following (Hutzenthaler & Jentzen, 2020, Theorem 1.2), the convergence rates of any 
schemes would not exceed order 1 

2 , which is nothing but the order of the Hölder regularity of the 
approximation process. In the present section, we aim to fill this gap and reveal order-one strong 
convergence of the SITEM method for some particular SDEs with non-globally monotone coefficients, 
for which the Euler type method coincides with the Milstein method and thus the order-one convergence
is expected. To begin with, we define a stopping time τ e

N : Ω → {t0, t1, ..., tN} as

τ e 
N := inf

{
{T} ∪ {t ∈ t0, ..., tN : |Yt| ≥  exp(|ln(h)| 1/ 2)}

}
. (4.2)

Equipped with the stopping time, we can introduce the continuous version of (4.1)  as  

Yt = X0 +
∫ t 

0 
1s<τ e 

N 
a(s) ds +

∫ t 

0 
1s<τ e 

N 
b(s) dWs. (4.3) 

Here, for s ∈ [tk, tk+1), a(s) and b(s) are given by 

a(s) := ψ [1](Zs)f (Ytk ) + 1 
2 

m∑
j=1 

ψ [2](Zs)
(

g(Ytk )ej, g(Ytk )ej

)
, b(s) := ψ [1](Zs)g(Ytk ), ( 4.4) 

where e1 = (1, ..., 0)∗, ..., em = (0, ..., 1)∗ are the Euclidean orthonormal basis of Rm,

Zs := f (Ytk )(s − tk) + g(Ytk )(Ws − W tk) (4.5)

and for a fixed δ ≥ 2,

ψ(x) := x(1 + |x|δ )−1, x ∈ R
d. (4.6)
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ORDER-ONE STRONG APPROXIMATIONS OF SDEs WITHOUT MONOTONE COEFFICIENTS 19

By (Hutzenthaler et al., 2018, Theorem 2.9) and in the notation of (2.5), for any z, u ∈ Rd we have 

ψ [1](z)u =
{

u : z = 0, 
u 

1+|z|δ − δz|z|(δ−2)〈z,u〉
(1+|z|δ )2 : z �= 0, (4.7)

and 

ψ [2](z)(u, u) = 

⎧⎪⎪⎨⎪⎪⎩ 

0 :  z = 0, 
2δ2|z|2(δ−2)z|〈z,u〉|2 

(1+|z|δ)3 − δ|z|
(δ−2)

[
2u〈z,u〉+z|u|2]

(1+|z|δ)2 

− δ(δ−2)|z|(δ−4)z|〈z,u〉|2 

(1+| z|δ)2 : z �= 0. 
(4.8) 

Moreover, one can show the following properties of ψ [1], ψ [2], which are needed in the error analysis.

LEMMA 4.1. Let δ ≥ 2 and let ψ be defined by (4.6). Then for all x ∈ R
d,

‖ψ [1](x)‖L(Rd ,Rd) ≤ 1 + δ 4 , ‖ψ [1](x) − I‖L(Rd ,Rd) ≤
[
(1 + δ 4 ) ∧ (δ + 1)|x|δ] , 

sup 
u∈Rd ,|u|≤1 

|ψ [2](x)(u, u)| ≤
[
(3δ2 + δ) ∧ (3δ2 + δ)|x|δ−1

]
. (4.9)

Proof .  B  y (4.7) and (4.8), it is clear that

‖ψ [1](x)‖L(Rd ,Rd) ≤ 1 ∨
(

1 
1+|x|δ + δ|x|δ 

(1+|x|δ)2

)
≤ 1 + δ 4 ,

‖ψ [1](x) − I‖L(Rd ,Rd) ≤
( |x|δ 

1+|x|δ + δ|x|δ 
(1+|x|δ)2

)
≤ [

(1 + δ 4 ) ∧ (
δ + 1

)|x|δ] , (4.10) 

sup 
u∈Rd ,|u|≤1 

|ψ [2](x)(u, u)| ≤  2δ2|x|2δ−1 

(1+|x|δ)3 + (δ
2+δ)|x|δ−1 

(1+|x|δ )2 ≤
[
(3δ2 + δ) ∧ (3δ2 + δ)|x|δ−1

]
.

Now we are ready to state the main con vergence result of this section.

THEOREM 4.2. Let f : Rd → Rd, g : Rd → Rd×m be measurable functions and let f ∈ C2(Rd, Rd). 
Let f ∈ C1 

P (Rd, Rd) and let g ∈ C2(Rd, Rd×m) be Lipschitz satisfying, for all k1, k2 ∈ {1, ..., d}, j1, j2 ∈ 
{1, ..., m}, 

∂g(k2,j2) 

∂xk1 
g(k1,j1) = 0. (4.11) 

Let U 0 ∈ C3
D

(
R

d, [0, ∞)
)

and U1 ∈ C1
P

(
R

d, [0, ∞)
)
. Let a class of SITEM methods be defined by (4.3) 

with δ ≥ 3 and let c, v, T ∈ (0, ∞), q, q1, q2 ∈ (0, ∞], α ∈ [0, ∞), p ≥ 4. For all x, y ∈ R
d, assume

additionally that

(1) there exist constants L, κ ≥ 0 such that for any i = 1, ..., d, j = 1, ..., m,∥∥ Hessx(f
(i) (x))

∥∥ ∨ ∥∥ Hessx(g
(ij) (x))

∥∥ ≤ L(1 + |x|)κ ;
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20 L. DAI AND X. WANG

(2) |x|1/c ≤ c(1 + U0(x)) and E
[
eU0(X0 )

]
< ∞ ;

(3) (Af ,gU0)(x) + 1 
2 |g(x)∗(∇U0(x))|2 + U1(x) ≤ c + α U0(x); 

(4) 〈x − y, f (x) − f (y)〉 ≤
[
c + U0(x)+U0(y) 

2q1TeαT + U1(x)+U1(y) 
2q2eαT

]
|x − y|2 .

Then for 1 
q = 1 

q1 
+ 1 

q2 
, 1 

v = 1
p + 1

q the approximation (4.3)  used  to  solve (3.1) admits

∥∥∥ sup 
t∈[0,T] 

|Xt − Yt|
∥∥∥

Lv(Ω;R) 
≤ Ch , h → 0. (4.12)

If the condition (4) in Theorem 4.2 is replaced by the following one: 
(4’) for any η  >  0, there exists a constant Kη such that

〈x − y, f (x) − f (y)〉 ≤ [
Kη + η

(
U0(x) + U0(y) + U1(x) + U1(y)

)]|x − y|2, (4.13)

then for any v > 0 we have

∥∥∥ sup 
t∈[0,T] 

|Xt − Yt|
∥∥∥

Lv(Ω;R) 
≤ Ch , h → 0. (4.14)

Before we come to the proof, let us give some comments on functions U0, U1 and some parameters 
used in the above theorem. We first mention that, similar conditions have been used in Hutzenthaler & 
Jentzen (2020). Here the non-negative function U0 plays a role of Lyapunov function for (stochastic) 
differential equations (see conditions (2), (3)). From conditions (4) or (4’), one observes that U0 is 
also used to control the growth of the derivative of the drift f . For some models such as the Brownian 
dynamics, stochastic van der Pol oscillator and stochastic Duffing–van der Pol oscillator, U 0 alone is,
however, not able to control the growth and an additional non-negative function U1 is introduced in
conditions (3), (4). As shown later, different models require different choices of functions U0, U1 such
that conditions (2), (3), (4) or (4’) in Theorem 4.2 are all satisfied. In view of Lemma 4.1, we require the 
method parameter δ ≥ 3 to guarantee the convergence order 1 ∧ δ−1 

2 ≥ 1. In addition, the parameters 
q, q1, q2 and v , p, q are two sets of conjugate numbers for the use of Hölder’s inequality. Now we start
the proof.

Proof of Theorem 4.2. The proof relies on the use of Theorem 3.2 and in what follows we check all the 
conditions there. First, let τN = τ e 

N and it is obvious that for s ∈ [0, T]

{s ≤ τ e 
N} =  

⎧⎨⎩ {�s�N ≤ τ e 
N}, �s�N = s; 

{�s�N <  τ e
N}, �s�N < s,

(4.15)
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ORDER-ONE STRONG APPROXIMATIONS OF SDEs WITHOUT MONOTONE COEFFICIENTS 21

which implies {s ≤ τ e 
N}  ∈  F�s�N . By the virtue of the condition (4), Hölder’s inequality, Jensen’s

inequality (see (Cox et al., 2024, Lemma 2.22) and the fact that U0(x), U1(x) ≥ 0 one derives that

∥∥∥∥exp

(∫ τ e 
N 

0

[ 〈Xs−Ys,f (Xs)−f (Ys)〉+ 1+ε 
2 ‖g(Xs)−g(Ys)‖2 

|Xs−Ys|2
]+ 

ds

)∥∥∥∥
Lq(Ω;R) 

≤ Cε,α,c,q1,q2,T

∥∥∥∥ exp

(∫ τ e 
N 

0

[
U0(Xs)+U0(Ys) 

2q1TeαT + U1(Xs)+U1(Ys) 
2q2eαT

]
ds

)∥∥∥∥
Lq(Ω;R) 

≤ C
(
E

[
exp

(∫ τ e 
N 

0 
U0(Xs)+U0(Ys) 

2TeαT ds

)])1/q1 
·
(
E

[
exp

(∫ τ e 
N 

0 
U1(Xs)+U1(Ys) 

2eαT ds

)])1/q2 

≤ C sup 
s∈[0,T]

(
E

[
exp

(
U0(Xs) 

eαs

)]) 1 
2q1 · sup 

s∈[0,T]

(
E

[
exp

(
U0(Ys) 

eαs

)]) 1 
2q1 

· sup 
s∈[0,T]

(
E

[
exp

(∫ s∧τ e 
N 

0 
U1(Xu) 

eαu du

)]) 1 
2q2 · sup 

s∈[0,T]

(
E

[
exp

(∫ s∧τ e 
N 

0 
U1(Yu) 

eαu du

)]) 1 
2q2 

≤ C sup 
s∈[0,T]

(
E

[
exp

(
U0(Xs) 

eαs +
∫ s 

0 
U1(Xu) 

eαu du

)]) 1 
2q1 · sup 

s∈[0,T]

(
E

[
exp

(
U0(Ys) 

eαs +
∫ s∧τ e 

N 

0 
U1(Yu) 

eαu du

)]) 1 
2q1 

· sup 
s∈[0,T]

(
E

[
exp

(
U0(Xs) 

eαs +
∫ s 

0 
U1(Xu) 

eαu du

)]) 1 
2q2 · sup 

s∈[0,T]

(
E

[
exp

(
U0(Ys) 

eαs +
∫ s∧τ e 

N 

0 
U1(Yu) 

eαu du

)]) 1 
2q2 

≤ C sup 
s∈[0,T]

(
E

[
exp

(
U0(Xs) 

eαs +
∫ s 

0 
U1(Xu) 

eαu du

)]) 1 
2q · sup 

s∈[0,T]

(
E

[
exp

(
U0(Ys) 

eαs +
∫ s∧τ e 

N 

0 
U1(Y u)

eαu du

)]) 1
2q

< ∞.
(4.16)

Here the last inequality stands due to the exponential integrability property for both exact solution
{Xs}s∈[0,T] and numerical solution {Ys}s∈[0,T] (see (Cox et al., 2024, Corollary 2.4) and (Hutzenthaler 
et al., 2018, Corollary 2.10)). For any p ≥ 4, by (4.16) and noting U1 ∈ C1 

P
(
R

d, [0, ∞)
)

and |x|1/c ≤ 
c(1 + U0(x)), we get

sup 
s∈[0,T]

∥∥∥∥∥1s≤τ e 
N

[
〈Xs−Ys,f (Xs)−f (Ys)〉+ 1+ε 

2 ‖g(Xs)−g(Ys)‖2 

|Xs−Ys|2
]+∥∥∥∥∥

L3p(Ω;R) 

≤ sup 
s∈[0,T]

∥∥∥∥ [
C + U0(Xs)+U0(Ys) 

2q1TeαT + U1(Xs)+U1(Ys) 
2q2eαT

] ∥∥∥∥
L3p(Ω;R) 

≤ C + C
[

sup 
s∈[0,T]

‖U0(Xs)‖L3p(Ω;R) + sup 
s∈[0,T]

‖U1(Xs)‖L3p(Ω;R) 

+ sup 
s∈[0,T]

‖U0(Ys)‖L3p(Ω;R) + sup 
s∈[0,T]

‖U1(Ys)‖L3p(Ω;R)

]
< ∞, (4.17)
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22 L. DAI AND X. WANG

which confirms condition (b) in Theorem 3.2.  B  y (4.16) and condition (1) in Theorem 4.2, 

sup 
s∈[0,T]

‖Xs‖L6pcg∨3pcf ∨3p 
(Ω;Rd)

∨
sup 

s∈[0,T]
‖Ys‖L6pcg∨3pcf (Ω;Rd) < ∞ (4.18) 

and for any i = 1, ...d, sups∈[0,T] ‖ Hessx(f
(i) (Ys))‖L3p(Ω;Rd×d ) < ∞. By Lemma 4.1, 

sup 
s∈[0,T]

‖1s<τ e 
N 

a(s)‖L3p(Ω;Rd)

∨
sup 

s∈[0,T]
‖1s<τ e 

N 
b(s)‖L3p(Ω;Rd×m) < ∞ . (4.19) 

This verifies condition (c) in Theorem 3.2, which in turn implies

∥∥∥∥ sup 
t∈[0,T] 

|Xt∧τ e 
N 

− Yt∧τ e 
N
|
∥∥∥∥

Lv(Ω;R) 
≤ C

[
h2 + h 

1 
2

∫ T 

0

∫ s

�s�N

∥∥∥∥1r≤τ e 
N
|f (Y�r�N ) − 1r<τ e 

N 
a(r)|

∥∥∥∥
Lp(Ω;R) 

dr ds 

+
∫ T 

0

∥∥∥∥1s≤τ e 
N
‖g(Ys) − 1s<τ e 

N 
b(s)‖

∥∥∥∥2 

Lp(Ω;R) 
ds +

∫ T 

0

∥∥∥∥1s≤τ e 
N

∣∣f (Y�s�N ) − 1s<τ e 
N 

a(s)
∣∣∥∥∥∥2 

Lp(Ω;R) 
ds 

+ h 
1 
2

∫ T 

0

(∫ s

�s�N

∥∥∥∥1r≤τ e 
N
‖g (Yr) − 1r<τ e 

N 
b(r)‖

∥∥∥∥2 

Lp(Ω;R) 
dr

) 1 
2 

ds 
] 1

2

. (4.20)

By the property of Lebesgue integral and Lemma 4.1, one can show

∫ T 

0

∥∥∥1s≤τ e 
N

∣∣f (Y�s�N ) − 1s<τ e 
N 

a(s)
∣∣∥∥∥2 

Lp(Ω;R) 
ds 

=
∫ T 

0

∥∥∥1s<τ e 
N

∣∣f (Y�s�N ) − a(s)
∣∣∥∥∥2 

Lp(Ω;R) 
ds 

≤
∫ T 

0

∥∥∥∥∣∣f (Y�s�N ) − ψ [1](Zs)f (Y�s�N ) − 1 
2 

m∑
j=1 

ψ [2](Zs)
(

g(Y�s�N )ej, g(Y�s�N )ej

)∣∣∥∥∥∥2 

Lp(Ω;R) 
ds 

≤ Chδ−1. (4.21)

Moreover,

∫ T 

0

∥∥∥1s≤τ e 
N

∥∥∥g(Ys) − 1s<τ e 
N 

b(s)
∥∥∥∥∥∥2 

Lp(Ω;R) 
ds 

≤ C
∫ T 

0

∥∥∥1s<τ e 
N

∥∥∥g(Ys) − g(Y�s�N )

∥∥∥∥∥∥2 

Lp(Ω;R) 
+

∥∥∥1s<τ e 
N

∥∥∥g(Y�s�N ) − ψ [1](Zs)g(Y�s�N )

∥∥∥∥∥∥2 

Lp(Ω;R) 
ds 

≤ C
∫ T 

0

∥∥∥∥∥∥g(Ys) − g(Y�s�N
)

∥∥∥∥∥∥2

Lp(Ω;R)
ds + Ch3. (4.22)
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ORDER-ONE STRONG APPROXIMATIONS OF SDEs WITHOUT MONOTONE COEFFICIENTS 23

For i = 1, ..., d, j = 1, ..., m, by the Itô formula and recalling ∂g(k2,j2) 

∂xk1 
g(k1,j1) = 0, we arrive at

∫ T 

0

∥∥∥∥∥∥g(ij) (Ys) − g(ij) (Y�s�N )

∥∥∥∥∥∥2 

Lp(Ω;R) 
ds 

≤ C
∫ T 

0

∥∥∥∥∥∥∥∥ ∫ s

�s�N

〈
g(ij)′(Yr),1r<τ e 

N 
a(r)

〉 + 1 
2 trace

(
1r<τ e 

N 
b(r)∗ Hessx(g

(ij) (Yr))b(r)
)

dr

∥∥∥∥∥∥∥∥2 

Lp(Ω;R) 
ds 

+ C
∫ T 

0

∥∥∥∥∥∥∥∥ ∫ s

�s�N

〈
g(ij)′(Yr),1r<τ e 

N 
ψ [1](Zr)g(Y�r�N ) dWr

〉∥∥∥∥∥∥∥∥2 

Lp(Ω;R) 
ds 

≤ C
∫ T 

0

∥∥∥∥∥∥∥∥ ∫ s

�s�N

〈
g(ij)′(Yr) − g(ij)′(Y�r�N ),1r<τ e 

N 
ψ [1](Zr)g(Y�r�N ) dWr

〉∥∥∥∥∥∥∥∥2 

Lp(Ω;R) 
ds 

+ C
∫ T 

0

∥∥∥∥∥∥∥∥ ∫ s

�s�N

〈
g(ij)′(Y�r�N ),1r<τ e 

N 
ψ [1](Zr)g(Y�r�N ) dWr

〉∥∥∥∥∥∥∥∥2 

Lp(Ω;R) 
ds + Ch2 

≤ C
∫ T 

0

∥∥∥∥∥∥∥∥ ∫ s

�s�N

(
g(ij)′(Y�r�N )

∗1r<τ e 
N 
ψ [1](Zr)g(Y�r�N ) − g(ij)′(Y�r�N

)∗1r<τ e
N

g(Y�r�N
)
)

dWr

∥∥∥∥∥∥∥∥2

Lp(Ω;R)

ds

+ Ch2

≤ Ch2. (4.23)

Therefore, one obtains ∫ T 

0

∥∥∥1s≤τ e 
N

∥∥∥g(Ys) − 1s<τ e 
N 

b(s)
∥∥∥∥∥∥2 

Lp(Ω;R) 
d s ≤ Ch2. (4.24)

The same arguments used in (4.21) and (4.24) can be applied to estimate the second and f ifth terms on
the right-hand side of (4.20). Hence, we deduce that for any 1 

v = 1 
p + 1

q and δ ≥ 3

∥∥∥ sup 
t∈[0,T] 

|Xt∧τ e 
N 

− Yt∧τ e 
N
|
∥∥∥

Lv(Ω;R)
≤ Ch. (4.25)

Observe that∥∥∥∥ sup 
t∈[0,T] 

|Xt − Yt|
∥∥∥∥

Lv(Ω;R) 

≤
∥∥∥∥ sup 

t∈[0,T] 
1τ e 

N<t|Xt − Yt|
∥∥∥∥

Lv(Ω;R) 
+

∥∥∥∥ sup 
t∈[0,T] 

1τ e 
N≥t|Xt − Yt|

∥∥∥∥
Lv(Ω;R) 

≤
∥∥∥∥1τ e 

N<T

∥∥∥∥
L2v(Ω;R)

∥∥∥∥ sup 
t∈[0,T] 

|Xt − Yt|
∥∥∥∥

L2v(Ω;R) 
+

∥∥∥∥ sup 
t∈[0,T] 

|Xt∧τ e
N

− Yt∧τ e
N
|
∥∥∥∥

Lv(Ω;R)

. (4.26)
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24 L. DAI AND X. WANG

Using Lemma 2.1 ensures

∥∥∥∥ sup 
t∈[0,T] 

|Xt − Yt|
∥∥∥∥

L2v(Ω;R) 

≤
∥∥∥∥ sup 

t∈[0,T]

∣∣∣∣ ∫ t 

0

(
f (Xs) − 1s<τ e 

N 
a(s)

)
ds

∣∣∣∣ + sup 
t∈[0,T]

∣∣∣∣ ∫ t 

0

(
g(Xs) − 1s<τ e 

N 
b(s)

)
dWs

∣∣∣∣∥∥∥∥
L2v(Ω;R) 

≤ C, 

(4.27)

and by the condition (2) in Theorem 4.2, the Markov inequality and − 1 
4! x4 ≥ −ex, x ≥ 0 one infers 

P[τ e 
N < T] ≤ P

[|YT | ≥  exp(|ln(h)|1/2)
]

≤ P
[

1+U0(YT ) 
eαT ≥ 1 

ceαT exp( 1 
c |ln(h)|1/2)

]
≤ E

[
exp

( 1+U0(YT ) 
eαT

)]
exp

( − 1 
ceαT exp( 1 

c |ln(h)|1/2)
)

≤ C1 ex p
( − |ln(h)|2 

24c5eαT

)
. (4.28) 

For any C2 > 0 and h < 1 being small enough, one knows |ln(h)|2 ≥ −  1C2
(2v ln(h)) and hence one gets

for small h < 1,

exp
( − | ln(h)|2 

24c5eαT

) ≤ h 2v,

which validates (4.12). Finally, note that if (4.13) holds, then for any γ  > 0,

∥∥∥∥exp

(∫ τ e 
N 

0

[
〈Xs−Ys,f (Xs)−f (Ys)〉+ 1+ε 

2 ‖g(Xs)−g(Ys)‖2 

|Xs−Ys|2
]+ 

ds

)∥∥∥∥
Lγ (Ω; R)

< ∞. (4.29)

The assertion (4.14) can be acquired by repeating the above ar guments, which finishes the proof. �
In what follows we employ Theorem 4.2 to obtain the first-order strong convergence of the time-

stepping scheme (4.1) for SDE models without globally monotone coefficients, taken from Hutzenthaler 
et al. (2018); Hutzenthaler & Jentzen (2020). In the recent publication Hutzenthaler & Jentzen (2020), 
the authors derived only a convergence rate of order 1

2 of the same scheme (4.1), even for the following 
additive noise driven SDE models and multiplicative noise driven second-order SDE models. Since the
conditions of Theorem 4.2 are the same as those in (Hutzenthaler & Jentzen, 2020, Proposition 3.3), we 
just give the convergence results here and do not repeat the verification of the conditions. Indeed, one can
refer to (Hutzenthaler & Jentzen, 2020, 3.1.2, 3.1.6, 3.1.7, 3.1.3, 3.1.4) and (Cox et al., 2024, Chapter 4) 
for details on the verification of the conditions for the following different models. The initial value X0
of the following models is assumed to be deterministic for simplicity.
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ORDER-ONE STRONG APPROXIMATIONS OF SDEs WITHOUT MONOTONE COEFFICIENTS 25

Stochastic Lorenz equation with additive noise. Let d = m = 3 and α1, α2, α3 ∈ [0, ∞).  For  x = 
(x1, x2, x3)

∗ ∈ R3,  we  let  

f (x) = (α1(x2 − x1), α2x1 − x2 − x1x3, x1x2 − α3x3) (4.30) 

and let g(·) be a constant matrix. Moreover, we take U0(x) = |x|2 and U1(x) = 0. Then all conditions
in Theorem 4.2 are fulfilled. Therefore, using the SITEM method (4.3) with δ ≥ 3 to solve the above 
stochastic Lorenz equation with additive noise yields that for any r > 0, there exists a constant Cr > 0
such that ∥∥∥ sup 

t∈[0,T] 
|Xt − Yt|

∥∥∥
Lr(Ω;R) 

≤ C rh. (4.31)

Brownian dynamics. Let d = m ≥ 1, c, β ∈ (0, ∞) and θ ∈ [0, 2 
β ). Assume that V ∈ C3 

D
(
R

d, [0, ∞)
)∩ 

C3
(
R

d, [0, ∞)
)
, V ′, Hessx

(
V(i)

) ∈ C1 
P

(
R

d, Rd×d
)
, i = 1, ..., d and lim supr↘0 supz∈Rd 

|z|r 
1+V(z) < ∞.  For  

x ∈ Rd,  we  set  

f (x) = −(∇V)(x), g(x) = √
βI

Rd×Rd . (4.32) 

This equation is also termed as the overdamped Langevin dynamics in literature. In addition, we suppose 
that (ΔV)(x) ≤ c + cV(x) + θ‖(∇V )(x)‖2 and for any η > 0

sup 
x,y∈Rd ,x �=y

[ 〈x−y,(∇V)(y)−(∇V)(x)〉
|x−y|2 − η

(
V(x) + V(y) + |(∇V)(x)|2 + |(∇V)(y)|2)] < ∞.

Let v ∈ (0, 2
β

− θ), U0(x) = vV(x) and U1(x) = v(1 − β
2 (θ + v))|(∇V)(x)|2. Then all conditions in

Theorem 4.2 are fulfilled. Therefore, applying the SITEM method (4.3)  (δ ≥ 3) to the above Brownian 
dynamics yields that for any r > 0, there exists a constant Cr > 0 such that∥∥∥ sup 

t∈[0,T] 
|Xt − Yt|

∥∥∥
Lr(Ω;R) 

≤ C rh. (4.33)

Langevin dynamics. Let d = 2m ≥ 1, γ ∈ (0, ∞) and β ∈ (0, ∞). Assume that V ∈ C3 
D

(
R

m, [0, ∞)
)∩ 

C3
(
R

m, [0, ∞)
)
, V ′, Hessx

(
V(i)

) ∈ C1 
P

(
R

m, Rm×m
)
, i = 1, ..., m and lim sup r↘0 supz∈Rm 

|z|r 
1+V(z) < ∞. 

For x = (x1, x2)
∗ ∈ R 2m, u ∈ R

m, we let

f (x) = (x2, −(∇V)(x1) − γ x2), g(x)u = (0,
√

βu ). (4.34)

This equation is also termed as the underdamped Langevin dynamics in literature. In addition, we suppose
that for any η > 0

sup 
x,y∈Rm,x �=y

[ |(∇V)(x)−(∇V)(y)| 
|x−y| − η

(
V(x) + V(y) + |x|2 + |y|2)] < ∞.
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26 L. DAI AND X. WANG

Let v ∈ (0, ∞), and for x = (x1, x2)
∗ ∈ R2m, U0(x) = v 

2 (|x1|2 + |x2|2) + vV( x1), U1(x) = 0. Then
all conditions in Theorem 4.2 are fulfilled. Therefore, using the SITEM method (4.3)(δ ≥ 3) for the 
Langevin dynamics yields that for any r > 0, there exists a constant Cr > 0 such that

∥∥∥ sup 
t∈[0,T] 

|Xt − Yt|
∥∥∥

Lr(Ω;R) 
≤ C rh. (4.35)

In Cui et al. (2022), the authors proposed a splitting averaged vector field (A VF) scheme for
the Langevin dynamics (4.34). Equipped with the exponential integrability properties of the implicit 
approximations {Yn}0≤n≤N , the authors of Cui et al. (2022) spent a lot of efforts to analyze the pointwise 
strong error

(
sup0≤n≤N E

[‖Xtn − Ytn‖p
])1/p , p ≥ 2. As the first step, the pointwise strong convergence 

rate of order 1 
2 was obtained, which was later lifted to be order one by using technical arguments in the

Malliavin calculus. Instead, we analyze the pathwise uniformly strong error of an explicit time-stepping
scheme directly. By simply relying on the newly developed perturbation estimates in Section 3,  we  show  
a pathwise uniformly strong convergence rate of exact order one given by (4.35). It is worthwhile to 
mention that the authors of Cui et al. (2022) also proved the existence of the density function of the 
numerical solution produced by the splitting AVF scheme and provided the convergence rate of density
functions for the scheme. Despite the same convergence rate, the splitting AVF scheme proposed by
Cui et al. (2022), as an implicit one, is expected to be more numerically stable than the explicit SITEM
scheme, particularly for large step-sizes.
Stochastic van der Pol oscillator. Let d = 2, m ≥ 1, c, α ∈ (0, ∞) and γ , β ∈ [0, ∞).  For  x = 
(x1, x2)

∗ ∈ R2, u ∈ Rm,  we  let  

f (x) = (x2, (γ − αx2 
1)x2 − βx1)

∗, g(x)u = (0, φ(x1)u)∗, ( 4.36) 

where φ ∈ C2(R,R1×m) is a globally Lipschitz function. Let v ∈ (0, α
2c ), U0(x) = v

2 |x|2 and U1(x) =
v(α − 2cv)(x1x2)

2. Then all conditions in Theorem 4.2 are fulfilled. Therefore, applying the SITEM
method (4.3)  (δ ≥ 3) to the stochastic van der Pol oscillator yields that, for any r > 0, there exists a
constant Cr > 0 such that

∥∥∥ sup 
t∈[0,T] 

|Xt − Yt|
∥∥∥

Lr(Ω;R) 
≤ C rh. (4.37)

Stochastic Duffing–van der Pol oscillator.  Let  d = 2, m ≥ 1, α1, α2 ∈ R and α3, c ∈ (0, ∞).  For  
x = (x1, x2)

∗ ∈ R2, u ∈ Rm,  we  let  

f (x) = (x2, α2x2 − α1x1 − α3x2 
1x2 − x3 

1)
∗, g(x)u = (0, φ(x1)u)∗, ( 4.38) 

where φ ∈ C2(R; R1×m) is a globally Lipschitz function. Let v ∈ (0, α3 
c ) , U0(x) = v

2 (
x4

1
2 + x2

2) and
U1(x) = v(α3 − cv)(x1x2)

2. Then all conditions in Theorem 4.2 are fulfilled. Therefore, applying the 
SITEM method (4.3)  (δ ≥ 3) to the stochastic Duffing–van der Pol oscillator yields that, for any r > 0,
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ORDER-ONE STRONG APPROXIMATIONS OF SDEs WITHOUT MONOTONE COEFFICIENTS 27

FIG. 1. A comparison of strong conver gence rates for Langevin dynamics.

there exists a constant Cr > 0 such that

∥∥∥ sup 
t∈[0,T] 

|Xt − Yt|
∥∥∥

Lr(Ω;R) 
≤ C rh. (4.39)

Numerical experiments. Now let us present some numerical experiments to test, not only the strong 
convergence rate, but also the dynamic properties of the proposed method. We take the Langevin 
dynamics and the stochastic van der Pol oscillator as test examples. Let T = 1, N = 2k, k = 6, 7, ..., 11
and regard the fine approximations with hexact = 2−14 as the ‘true’ solution. Also, we take M = 5000
Monte Carlo sample paths to approximate the expectation.

For the Langevin dynamics (4.34), we assign 

m = 1, ∇V(x) = x3 − x, γ = 1, β = 2, X0 = (1, 1) ∗ 

and δ = 3 for the SITEM method. Such a type of potential V(x1) = 1 
4 x4

1 − 1
2 x2

1 is called double-
well potential. Fig. 1 displays the mean-square approximation errors of the SITEM method, the implicit
splitting AVF method in Cui et al. (2022) and the implicit Euler method in Talay (2002). Numerical 
results show that, the three methods all have a strong convergence rate of order one and the splitting
AVF method is slightly better in terms of computational error.

Furthermore, it is known that (see, e.g., Mattingly et al. (2002)), the Langevin dynamics admits a 
unique invariant distribution

p(x1, x2) = Γp exp(−V(x1)) exp(− 1 
2 |x2|2), (4.40)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/advance-article/doi/10.1093/im
anum

/draf034/8159131 by C
entral South U

niversity user on 10 June 2025



28 L. DAI AND X. WANG

FIG. 2. Invariant density approximation: (a) h = 2−7;  (  b)  h = 2−4. 

where Γp is a normalization constant. Therefore, this equation is always used to sample from a target 
probability distribution π(x1) ∝ e−V(x1). Next we test the ability of the SITEM method to sample 
from the distribution. We take a large time endpoint T = 500 and test the SITEM in this paper, the
implicit splitting AVF method in Cui et al. (2022) and the implicit Euler method in Talay (2002). 
Numerical results are depicted in Fig. 2, using two different stepsizes with h = 2−7, 2−4. There one 
can observe that, these three methods all perform very well in the case of small stepsize h = 2−7.  As  
the stepsize increases to h = 2−4, the implicit Euler method produces better approximations than the 
other two methods. The SITEM method and the implicit splitting AVF method perform similarly and
give acceptable approximations. It should be noted that both the splitting AVF method and the implicit
Euler method are implicit time-stepping schemes and their computational costs are more expensive than
the SITEM method in the high-dimensional setting m > 1.

We next turn to the stochastic van der Pol oscillator (4.36) with coefficients 

m = 1, γ = α = 0.2, β = 1, X0 = (0.5, 1.5)∗, δ = 3 (4.41) 

in the case of the additive noise φ1(x) ≡ ϑ = √
0.1 and the multiplicative noise φ2(x) = 0.8 x. The mean-

square approximation errors are presented in Fig. 3, where one can observe order-one convergence rate 
for both additive and multiplicative cases.

Now let us focus on the case of additive noise φ(x) ≡ ϑ = √
0.1. According to (To, 2000, page 137), 

one knows that, in our setting, the stochastic van der Pol oscillator model (4.36) admits a stationary joint 
probability density

p(x1, x2) = Γp exp
(

− α 
8ϑ2

(
(x2 

1 + x2 
2)

2 − 8(x2 
1 + x2

2)
))

, (4.42)
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ORDER-ONE STRONG APPROXIMATIONS OF SDEs WITHOUT MONOTONE COEFFICIENTS 29

FIG. 3. Strong convergence rate for stochastic van der Pol oscillator .

where Γp is a normalization constant. Let p1 and p2 be marginal distribution of p in (4.42), defined by 

p1(x1) :=
∫
R 

p(x1, x2) dx2, p2(x2) :=
∫
R 

p(x1, x2) dx1 . 

It is obvious to observe that p(x1, x2) is symmetric with respect to variables x1, x2. As a consequence, 
p1 ≡ p2 and for polynomial functions Φ : R → R, 

E[Φ(ξ1)] = E[Φ(ξ2)], ξ1 ∼ p1(x1), ξ2 ∼ p2(x2) . 

Moreover, for a fixed variable, p is an even function with respect to the other. Therefore, by particularly 
taking Φ = I (identity map) we obtain 

E[ξ1] = E[ξ2] = 0, ξ1 ∼ p1(x1), ξ2 ∼ p2(x2) . 

This implies that, in the phase plane, (E [X1t],E[X2t]) will gradually tend to the trivial steady state (0, 0),
as t → ∞. Unlike the deterministic case, the average oscillation period and limit cycle do not exist for
the stochastic van der Pol oscillator, due to the presence of the noise.

In what follows we test the dynamics of numerical approximations produced by the SITEM method.
Over the time interval [0, 600], Figures 4, 5 show the sample average trajectory and phase plane of 
the SITEM method for the stochastic van der Pol oscillator using two stepsizes h = 2−7, 2−4.  From  
these figures, one can clearly see that, numerical approximations of (E[X1t],E[X2t]) produced by the 
SITEM method, e ven for a relatively large stepsize h = 2−4, tend to the trivial steady state (0, 0), as
t → ∞, reproducing the dynamics of the original model. Moreover, Figures 6, 7 demonstrate numerical 
approximations of E[|X1t|2] and E[|X2t|2] with two stepsizes h = 2−7, 2−4, where one can observe that 
they all tend to some non-zero steady states, as t → ∞. The above numerical experiments indicate that,
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30 L. DAI AND X. WANG

FIG. 4. Sample average trajectory and phase plane with h = 2 −7.

FIG. 5. Sample average trajectory and phase plane with h = 2 −4.

using stepsizes of moderate size, the SITEM method is able to reproduce the dynamic property of the
stochastic van der Pol oscillator.

It is very interesting to mention that, for the deterministic van der Pol oscillator, i.e., φ(x) = 0, the 
exact solution is periodic and has a limit cycle. We use the SITEM method to numerically discretize 
it with various stepsizes. Our numerical results indicate that, both the period and limit cycle of the
deterministic model are well reproduced by the SITEM method, even using a large stepsize h = 2−2.

5. A positive preserving Milstein type scheme for the stochastic LV competition model with order-
one pathwise uniformly strong convergence

In this section, we look at strong approximations of the following d-dimensional stochastic Lotka–
Volterra (LV) competition model for interacting multi-species in ecology Bahar & Mao (2004);
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ORDER-ONE STRONG APPROXIMATIONS OF SDEs WITHOUT MONOTONE COEFFICIENTS 31

FIG. 6. Numerical approximations of E[|X1t|2]  and  E[|X2t|2 ] with h = 2 −7.

FIG. 7. Numerical approximations of E[|X1t|2]  and  E[|X2t|2 ] with h = 2 −4.

Mao (2007); Li & Mao (2009):

{
dXt = diag(Xt)(b − AXt) dt + diag(Xt)σ dWt, t ∈ [0, T], 
X0 = x 0 ∈ (Rd)+,

(5.1)

where T ∈ (0, ∞), b := (b(i) )i=1,...,d ∈ Rd, A := (a(ij) )i,j=1,...,d ∈ Rd×d, σ := (σ (ij) )i=1,...,d,j=1,...,m ∈ 
R

d×m and (Rd)+ :=  {x ∈ R
d : x(1) > 0, ..., x(d) > 0}. Here the model is driven by multi-

dimensional noise and {Wt}t∈[0,T] stands for a m-dimensional standard Brownian motion defined on
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32 L. DAI AND X. WANG

(Ω ,F , {Ft}t≥0, P). For any vector x ∈ Rd, we use diag(x) to denote a d × d diagonal matrix whose 
principal diagonal is x. In order to show the well-posedness of the underlying model in (Rd)+, some
assumptions are put on the elements of the matrix A.

ASSUMPTION 5.1. Every element of A is non-negative and min1≤i≤ d{a(ii)} > 0.

Under the above assumption, the model (5.1) has a unique global strong solution in (Rd)+.

LEMMA 5.2. Under Assumption 5.1, there exists a unique strong solution {Xt}t≥0 for the equation (5.1) 
staying in (Rd )+.

Proof. The well-posedness of the model in (Rd)+ has been established in Bahar & Mao (2004); Mao 
(2007) for the scalar noise case. For the present model driven by multi-dimensional noise, one can
similarly prove it without any difficulty. �

Despite the existence and uniqueness of the positive solution to the stochastic LV model, the closed-
form solution is not explicitly known and efficient numerical approximations become an important tool 
in applications. Recently , several researchers proposed and analyzed positivity-preserving numerical
schemes for such a typical multi-dimensional SDE model with highly nonlinear and positive solution
(see, e.g., Li & Cao (2023); Mao et al. (2021); Hong et al. (2022); Cai et al. (2023)). It is worthwhile 
to point out that, under certain assumptions specified later, the highly nonlinear drift coefficient f (x) := 
diag(x)(b − Ax) and the linear diffusion coefficient g(x) := diag(x)σ obey the Razumikhin-type growth 
condition

〈x, f (x)〉 + c‖g(x)‖2 ≤ K(1 + |x|2 ),

but violate the global monotonicity condition

〈x − y, f (x) − f (y)〉 +  c‖g(x) − g(y)‖2 ≤ K|x − y|2, (5.2) 

where x, y ∈ (Rd)+. As already mentioned in the introduction part, the lack of the global monotonicity
condition causes an essential difficulty in obtaining convergence rates of numerical approximations.
Usually, one needs to resort to exponential integrability of both the analytical and numerical solutions.
Very recently, the authors of Li & Cao (2023) constructed a Lamperti transformed EM method for (5.1) 
and used exponential integrability of both the analytical and numerical solutions to obtain pointwise 
strong con vergence rate of order 1

2 under some restrictive conditions.
In this work, we aim to propose a novel positivity preserving explicit Milstein-type method for the 

stochastic LV competition model and recover exactly order-one pathwise uniformly strong convergence 
of the new method under much relaxed conditions on the coefficients and stepsize, by relying on the
use of previous perturbation estimates in Section 3 (see Theorem 5.6). To introduce the novel scheme, 
we regard the system (5.1) as an interacting particle system of d particles evolving on the line. For any 
i ∈ {1, ..., d}, we consider a single particle of (5.1)  as  follo  ws:

dX(i) 
t =

(
X(i) 

t b(i) − X(i) 
t 

d∑
j=1 

a(ij)X(j) 
t

)
dt + X(i) 

t 

m∑
j=1

σ (ij) dW(j)
t . (5.3)
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ORDER-ONE STRONG APPROXIMATIONS OF SDEs WITHOUT MONOTONE COEFFICIENTS 33

In order to numerically approximate (5.3) on a uniform grid {tn = nh}0≤n≤N with stepsize h = T 
N ,  we  

propose the following linear-implicit (explicit) Milstein method starting from Y0 = X0: 

Y(i) 
tn+1 = Y(i) 

tn + Y(i) 
tn+1

(
b(i) − 

d∑
j=1 

a(ij)Y(j) 
tn

)
h + Y(i) 

tn 

m∑
j=1 

σ (ij) ΔW(j) 
tn 

+ 1 
2 Y(i) 

tn 

m∑
j1=1 

m∑
j2=1 

σ (ij1) σ (ij2) ΔW(j1) 
tn ΔW(j2) 

tn − 1 
2 Y(i) 

tn+1 

m∑
j=1 

(σ (ij) )2h, (5.4) 

where for n = 0, ..., N − 1, j = 1, ..., m , ΔW(j)
tn := ΔW(j)

tn+1
− ΔW(j)

tn . Further, some elementary
rearrangements turn (5.4)  into

(
1 − b(i)h + h 

d∑
j=1 

a(ij)Y(j) 
tn + 1 

2 

m∑
j=1 

(σ (ij) )2h
)

Y(i) 
tn+1 

= Y(i) 
tn

(
1 + 

m∑
j=1 

σ (ij) ΔW(j) 
tn + 1 

2 

m∑
j1=1 

m∑
j2=1 

σ (ij1 )σ (ij2)ΔW(j1)
tn ΔW(j2)

tn

)
. (5.5)

Under mild assumptions on the stepsize h > 0, one can readily check that the proposed scheme is
well-posed and positivity preserving.

PROPOSITION 5.3 (Positivity preserving). Let Assumption 5.1 be satisfied and let X0 = x0 ∈ (Rd)+.  For  

some γ  >  1 and 0 < h ≤ min1≤i≤d

{
1 

γ  (bi− 1 
2

∑m 
j =1 (σ (ij))2)∨0

∧ T

}
( 1

0 := ∞), the proposed scheme (5.4) 

is well-defined and has a unique positive solution in (Rd)+.

Proof. Given Ytn ∈ (Rd)+, by Assumption 5.1 and the range of h ,  it  is  cle  ar to see

0 <
(

1 − b(i)h + h 
d∑

j=1 
a(ij)Y(j) 

tn + 1 
2 

m∑
j=1 

(σ (ij) ) 2h
)−1 ≤ γ

γ−1 ,

which implies equation (5.4) is well-defined and for any 1 ≤ i ≤ d, 

Y(i) 
tn+1 = Y(i) 

tn

(
1 
2

(
1 + 

m∑
j=1 

σ (ij) ΔW(j) 
tn

)2 + 1 
2

)(
1 − b(i)h + h 

d∑
j=1 

a(ij)Y(j) 
tn + 1 

2 

m∑
j=1 

(σ (ij) )2h
)− 1 

> 0. 

(5.6)

Since Y0 ∈ (Rd)+, one infers that Ytn ∈ (Rd)+ for any n = 0, ..., N − 1, which ensures that the linear-
implicit Milstein scheme is positivity-preserving and the proof is thus completed. �

Before coming to the convergence analysis of the scheme, we would like to mention an interesting 
observation for the particular stochastic LV model. Although the global monotonicity condition (5.2)
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34 L. DAI AND X. WANG

does not hold, the drift coefficients of the model obe y a special form of locally monotonicity condition
(5.7), where the control terms on the right-hand side (cf. U0(x), U1(x)) depend only on x and does not 
depend on y. This interesting finding helps us to derive the convergence rate more easily, without requir-
ing the exponential integrability properties of the numerical approximations. As a direct consequence of
Theorem 3.2, we formulate the following proposition for approximations of SDEs fulf illing the special
case of locally monotonicity condition (5.7). 

PROPOSITION 5.4. Let f : Rd → Rd, g : Rd → Rd×m be measurable functions and f ∈ C2(Rd, Rd). 
Further, let f ∈ C1 

P (Rd, Rd) with constants Kf , cf and g be Lipschitz. For a set DX ⊂ R
d, we assume that

X : Ω × [0, T] → DX and Y : Ω × [0, T] → DX be defined by (3.1) and (3.2) with continuous sample 
paths, respectively, satisfying ξY = ξX = X0.  Let  U0 ∈ C2

(
R

d, [0, ∞)
)
, U1 ∈ C

(
R

d, [0, ∞)
)
, and let 

c, v, q, T ∈ (0, ∞), α ∈ [0, ∞), p ≥ 4. Besides, suppose that for all x , y ∈ R
d,

(1) there exist constants L, κ ≥ 0 such that for any i = 1, ..., d,

|U0(x)|
∨∥∥ Hessx(f

(i) (x))
∥∥ ≤ L(1 + |x|) κ ;

(2) |x|1/c ≤ c(1 + U0(x)) and E
[
eU0(X0 )

]
< ∞;

(3) (Af ,gU0)(x) + 1 
2 |g(x)∗(∇U0(x))|2 + U1(x) ≤ c + α U0(x);

(4) for any η  >  0, there exists a constant Kη such that

〈x − y, f (x) − f (y)〉 ≤ [
Kη + η(U0(x) + U1(x))

]|x − y|2, x, y ∈ DX; (5.7)

(5) for any θ ≥ 1, 

sup 
s∈[0,T]

‖a(s)‖Lθ (Ω;Rd)

∨
sup 

s∈[0,T]
‖b(s)‖Lθ (Ω;Rd×m) < Kθ , (5.8) 

where Kθ > 0 is independent of h.

Then for 1
v = 1

p + 1
q , the approximation (3.2)  o  f (3.1) admits

∥∥∥∥ sup 
t∈[0,T] 

|Xt − Yt|
∥∥∥∥

Lv(Ω;R) 
≤ C

[
h2 +

∫ T 

0

∥∥∥∥1s≤τN
‖g(Ys) − b(s)‖

∥∥∥∥2 

Lp(Ω;R) 
ds 

+ h 
1 
2

∫ T 

0

∫ s

�s�N

∥∥∥∥1r≤τN
|f (Y�r�N ) − a(r)|

∥∥∥∥
Lp(Ω;R) 

dr ds +
∫ T 

0

∥∥∥∥1s≤τN

∣∣f (Y�s�N ) − a(s)
∣∣∥∥∥∥2 

Lp(Ω;R) 
ds 

+ h 
1 
2

∫ T 

0

(∫ s

�s�N

∥∥∥∥1r≤τN
‖g(Yr) − b (r)‖

∥∥∥∥2 

Lp(Ω;R) 
dr

) 1 
2 

ds

] 1
2

,

(5.9)

where C is independent of h.
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ORDER-ONE STRONG APPROXIMATIONS OF SDEs WITHOUT MONOTONE COEFFICIENTS 35

Proof. Proposition 5.4 can be directly obtained by using Theorem 3.2. To see this, setting τ N = T in
Theorem 3.2 and utilizing the same arguments as used in (4.16) one deduces that

∥∥∥∥exp

(∫ T 

0

[
〈Xs−Ys,f (Xs)−f (Ys)〉+ 1+ε 

2 ‖g(Xs)−g(Ys)‖2 

|Xs−Ys|2
]+ 

ds

)∥∥∥∥
Lq(Ω;R) 

< ∞. (5.10)

In view of (5.10) and conditions (1), (2), (4) in Proposition 5.4,  we  arrive  a  t

sup 
s∈[0,T]

∥∥∥∥∥1s≤τN

[
〈Xs−Ys,f (Xs)−f (Ys)〉+ 1+ε 

2 ‖g(Xs)−g(Ys)‖2 

|Xs−Ys|2
]+∥∥∥∥∥

L3p(Ω;R) 
< ∞ (5.11)

and

sup 
s∈[0,T]

‖Xs‖L6pcg∨3pcf ∨3p 
(Ω;Rd) < ∞ . (5.12)

Combining Theorem 3.2 with conditions (1), (5) in Proposition 5.4 then completes the proof. �

It is worth noting that the restrictions on U0 and U1 in Proposition 5.4 are more relaxed than those in
Theorem 4.2 due to the particular condition (4) (see (Cox et al., 2024, Corollary 2.4)). In what follo ws,
we utilize Proposition 5.4 to prove the strong convergence rate of the newly developed Milstein type 
method. For simplicity of presentation, we denote

a := min1≤i≤d{a(ii)}, b̄ := max1≤i≤d{|b(i)|}; σ̄ := max1≤i≤d,1≤j ≤m{|σ (ij)|}

and

Q(i) 
tn := 1 − b(i)h + h 

d∑
j=1 

a(ij)Y(j) 
tn + 1 

2 

m∑
j=1 

(σ (ij) )2h, i ∈ {1, ..., d}. (5.13)

Under conditions in Proposition 5.3, one kno ws

0 <  (Q(i) 
tn )

−1 ≤ min
{

γ 
γ−1 , 1 + γ 

γ−1

∣∣bi − 1 
2 

m∑
j=1

(σ (ij))2
∣∣h}

. (5.14)
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36 L. DAI AND X. WANG

In the notation of Q(i) 
tn , one can rewrite the scheme (5.5)  as  

Y(i) 
tn+1 = Y(i) 

tn

(
1 + 

m∑
j=1 

σ (ij) ΔW(j) 
tn + 1 

2 

m∑
j1=1 

m∑
j2=1 

σ (ij1) σ (ij2) ΔW(j1) 
tn ΔW(j2) 

tn

)
(Q(i) 

tn )
−1 

= Y(i) 
tn + Y(i) 

tn

(
(Q(i) 

tn )
−1 − 1

)
+ Y(i) 

tn

( m∑
j=1 

σ (ij) ΔW(j) 
tn + 1 

2 

m∑
j1=1 

m∑
j2=1 

σ (ij1) σ (ij2) ΔW(j1) 
tn ΔW(j2) 

tn

)
(Q(i) 

tn )
−1 

= Y(i) 
tn + Y(i) 

tn (Q
(i) 
tn )

−1
(

b(i)h − h 
d∑

j=1 
a(ij)Y(j) 

tn

)

+ Y(i) 
tn

( m∑
j=1 

σ (ij) ΔW(j) 
tn + 1 

2 

m∑
j1=1 

m∑
j2=1 

σ (ij1) σ (ij2) ΔW(j1) 
tn ΔW(j2) 

tn − 1 
2 

m∑
j=1 

(σ (ij) )2h
)
(Q(i) 

tn )
−1 

= Y(i) 
tn +

∫ tn+1 

tn 

b(i)− 
d∑

j=1 
a(ij)Y(j) 

tn 

Q(i ) 
tn 

Y(i) 
tn ds + 

m∑
j1=1

∫ tn+1 

tn

(σ (ij1)+σ (ij1) 
m∑

j2=1 
σ (ij2)

(
W (j2) 

s −W (j2)

�s�N

)
Q(i) 

tn 
Y (i) tn

)
dW(j1) 

s .

(5.15)

For any t ∈ [0, T], one can thus define a continuous version of (5.15)  as  follo  ws:

Y(i) 
t = Y(i) 

0 +
∫ t 

0 

b(i)− 
d∑

j=1 
a(ij)Y(j)

�s�N 

Q(i)
�s�N 

Y(i)
�s�N 

ds + 
m∑

j1=1

∫ t 

0

(σ (ij1)+σ (ij1) 
m∑

j2=1 
σ (ij2)

(
W (j2) 

s −W (j2)

�s�N

)
Q(i)

�s�N

Y(i)
�s�N

)
dW(j1)

s .

(5.16)

To prove the strong convergence rate of the scheme, the following lemma is also indispensable.

LEMMA 5.5 (Bounded moments). Let all conditions in Proposition 5.3 hold. Then for any p ≥ 1, there 
exists a positive constant Cp independent of h, such that the numerical approximations produced by
(5.15) obey 

sup 
1≤n≤N 

E[|Ytn |p] ≤ Cp. (5.17)
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ORDER-ONE STRONG APPROXIMATIONS OF SDEs WITHOUT MONOTONE COEFFICIENTS 37

Proof. For any p ∈ Z
+, by (5.15) and binomial expansion we have that for i = 1, ..., d, j, j1, j2 = 1, ..., m, 

E[|Y(i) 
tn+1

|p] 

= E
[|Y(i) 

tn |p|(Q(i) 
tn )

−1|p] × E
[(

1 + 
m∑

j=1 
σ (ij) ΔW(j) 

tn + 1 
2 

m∑
j1=1 

m∑
j2=1 

σ (ij1) σ (ij2) ΔW(j1) 
tn ΔW(j2) 

tn

)p]

≤ (1 + Ch)p
E[|Y(i) 

tn |p] 
p∑

k=0

(
p 
k

)
E

[( m∑
j=1 

σ (ij) ΔW(j) 
tn + 1 

2 

m∑
j1=1 

m∑
j2=1 

σ (ij1) σ (ij2) ΔW(j1) 
tn ΔW(j2) 

tn

)k]
≤ (1 + Ch)p

E[|Y(i) 
tn |p] 

×
(

1 + Cp 

p∑
k=1 

E

[( m∑
j=1 

σ (ij) ΔW(j) 
tn + 1 

2 

m∑
j1=1 

m∑
j2=1 

σ (ij1) σ (ij2) ΔW(j1) 
tn ΔW(j 2) 

tn

)k])
, ( 5.18)

where
(

pk := p! 
k!(p−k)!

)
are the coefficients of binomial expansion. By iteration one concludes that for 

any n = 0, 1, ..., N − 1,

E[|Y(i) 
tn+1

|p] ≤ (1 + Ch)p+1
E[|Y(i) 

tn |p] ≤ (1 + Ch)(p+1)(n+1) 
E[|Y(i) 

0 |p] ≤ e2(p+1 )CT |x(i)
0 |p, (5.19)

which finishes the proof for positive integer p. Thanks to the Hölder inequality, the inequality (5.17)  also  
holds true for any non-integer p ≥ 1. �

Now we are well-prepared to show the order-one pathwise uniformly strong convergence of the
proposed scheme.

THEOREM 5.6 (Order-one pathwise uniformly strong convergence). Let Assumption 5.1 be satisfied and 
assume 0 < h ≤ min1≤i≤d

{ 1 
γ  (bi− 1 

2

∑m 
j=1 (σ

(ij))2)∨0 
∧ T

}
with γ  >  1. Let Xs and Ys be the exact solution

and numerical solution defined by (5.3) and (5.16), respectively. Then for any r > 0,

E

[
sup 

t∈[0,T] 
|Xt − Yt|r

]
≤ Ch r. (5.20)

Proof. Define 

U0(x) := v(1 + |x|2)1/2, U1(x) := v(1 + |x|2)− 1 
2
(
ad− 1 

2 − vmσ̄ 2 

2

)|x|3 + v(1 + |x|2)1/2. 

Here v > 0 is chosen to be some small constant such that
(
ad− 1 

2 − vmσ̄ 2 

2

)
> 0, which in turn ensures 

U1(x) is positive and there exists an ε > 0 satisfying ε|x|2 ≤ U1(x). It is easy to check that conditions
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38 L. DAI AND X. WANG

(1) and (2) in Proposition 5.4 are fulfilled. To validate condition (3), we derive 

U′
0(x)f (x) + 1 

2 trace
(

g(x)g(x)∗ Hessx(U0(x))
)

+ 1 
2

∣∣g(x)∗(∇U0)(x)
∣∣ 2 + U1(x) − αU0(x) 

= 
d∑

i=1 
v(1 + |x|2)− 1 

2 (x(i) )2(b(i) − 
d∑

j=1 
a(ij)x(j) ) + 1 

2 

d∑
i=1 

m∑
k=1 

v(|1 + |x|2)− 1 
2 (x(i) )2(σ (ik) )2 

− 1 
2 

d∑
i=1 

d∑
j=1 

m∑
k=1 

v(|1 + |x|2)− 3 
2 (x(i) )2(x(j) )2σ (ik) σ (jk) + U1(x) 

+ 1 
2 

m∑
k=1

( d∑
i=1 

v(1 + |x|2)− 1 
2 (x(i) )2σ (ik)

)2 
− αv(1 + |x|2) 1 

2 

≤ 
d∑

i=1 
v(1 + |x|2)− 1 

2 (x(i) )2b̄ + 1 
2 

d∑
i=1 

m∑
k=1 

v(1 + |x|2)− 1 
2 (x(i) )2σ̄ 2 

+ 1 
2 

d∑
i=1 

d∑
j=1 

m∑
k=1 

v(1 + |x|2)− 3 
2 (x(i) )2(x(j) )2σ̄ 2 − αv(1 + |x|2) 1 

2 

+ m 
2 v

2σ̄ 2|x|4(1 + |x|2)−1−v(1 + |x|2)− 1 
2 a 

d∑
i=1 

(x(i) )3 + U1(x) 

≤ vb̄(1 + |x|2) 1 
2 + mvσ̄ 2(1 + |x|2) 1 

2 − αv(1 + |x|2) 1 
2 + v(1 + |x|2)− 1 

2
(mv 

2 σ̄
2 − ad− 1 

2
)|x|3 + U1(x) 

= (b̄ + mσ̄ 2 − α + 1)v(1 + |x|2) 1 
2 ≤ 0, (5.21)

where α  >  0 is chosen to be large enough so that ¯ b + mσ̄ 2 − α + 1 ≤ 0 and the condition (3) in
Proposition 5.4 is hence validated. Furthermore, for any x, y ∈ (Rd)+, it holds that

〈x − y, f (x) − f (y)〉 = 〈x − y, diag(x)b − diag(x)Ax − diag(y)b + diag(y)Ay〉
= 〈x − y, diag(x − y)b〉 − 〈x − y, diag(x)A(x − y)〉 − 〈x − y, diag(x − y)Ay〉

≤ |b||x − y|2 + |x − y|2‖diag(x)A‖ −  
d∑

i=1 
(x(i) − y(i) )2 

d∑
j=1 

a(ij)y(j) 

≤ (|b| + ‖A‖|x|)|x − y|2. (5.22)

This implies condition (4) in Proposition 5.4 with Kη ≥ 1 
4ηε

. By observing that for i = 1, ..., d, j =
1, ..., m,

a(i) (s) = 
b(i)− 

d∑
j=1 

a(ij)Y(j)
�s�N 

Q(i)
�s�N 

Y(i)
�s�N 

, b(ij) (s) = 
σ (ij)+σ (ij) 

m∑
j1=1 

σ (ij1)
(

W (j1) 
s −W (j1)

�s�N

)
Q(i)

�s�N

Y(i)
�s�N

, (5.23)
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ORDER-ONE STRONG APPROXIMATIONS OF SDEs WITHOUT MONOTONE COEFFICIENTS 39

the condition (5) in Proposition 5.4 is therefore satisfied due to Lemma 5.5 and (5.14). Now all conditions 
of Proposition 5.4 have been confirmed. As a consequence, we arrive at the assertion (5.9). Following 
the notation of (5.23) and recalling f (x) := diag(x)(b − Ax), g(x) := diag(x)σ , we use Lemma 5.5 and 
the Hölder inequality to show that, for any p ≥ 4,

∥∥∥f (i) (Y�s�N ) − a(i) (s)
∥∥∥

Lp(Ω;R) 
=

∥∥∥(
1 − 1 

Q(i)
�s�N

)(
b(i) − 

d∑
j=1 

a(ij)Y(j)
�s�N

)
Y(i)

�s�N

∥∥∥
Lp(Ω;R) 

≤
∥∥∥(

1 − 1 
Q(i)

�s�N

)∥∥∥
L2p(Ω;R)

∥∥∥(
b(i) − 

d∑
j=1 

a(ij)Y(j)
�s�N

)
Y(i)

�s �N

∥∥∥
L2p(Ω;R) 

≤ Ch. (5.24)

Meanwhile, expanding Y(i) (s) at s = �s�N by Itô’s formula gives∥∥∥∥g(ij) (Ys) − b(ij) (s)

∥∥∥∥
Lp(Ω;R) 

=
∥∥∥∥Y(i)

�s�N 
σ (ij) + 

b(i)− 
d∑

k=1 
a(ik)Y(k)

�s�N 

Q(i)
�s�N 

Y(i)
�s�N 

(s − �s�N)σ (ij) + 
Y(i)

�s�N 
σ (ij) 

Q(i)
�s�N 

m∑
j1=1

(
σ (ij1) (W(j1) 

s − W(j1)
�s�N 

) 

+ 1 
2 

m∑
j2=1 

σ (ij1) σ (ij2) (W(j1) 
s − W(j1)

�s�N 
)(W(j2) 

s − W(j2)
�s�N 

) − 1 
2 (σ (ij1) )2(s − �s�N)

)

− 
Y(i)

�s�N 
Q(i)

�s�N 

σ (ij)
(

1 + 
m∑

j1=1 
σ (ij1) (W(j1) 

s − W(j1)
�s�N 

)
)∥∥∥∥

Lp(Ω;R) 

=
∥∥∥∥Y(i)

�s�N 
σ (ij) Q

(i)
�s�N

−1 

Q(i)
�s�N 

+ 
b(i)− 

d∑
k=1 

a(ik)Y(k)
�s�N 

Q(i)
�s�N 

Y(i)
�s�N 

(s − �s�N)σ (ij) 

+ 
Y(i)

�s�N 
σ (ij) 

2Q(i)
�s�N 

m∑
j1=1

( m∑
j2=1 

σ (ij1) σ (ij2) (W(j1) 
s − W(j1)

�s�N 
)(W(j2) 

s − W(j2)
�s�N 

) − (σ (ij1) )2(s − �s�N)
)∥∥∥∥

Lp(Ω;R) 

≤
∥∥∥∥Y(i)

�s�N 
σ (ij) Q

(i)
�s�N

−1 

Q(i)
�s�N

∥∥∥∥
Lp(Ω;R) 

+
∥∥∥∥ b(i)− 

d∑
k=1 

a(ik)Y(k)
�s�N 

Q(i)
�s�N 

Y(i)
�s�N 

(s − �s�N)σ (ij)
∥∥∥∥

Lp(Ω;R) 

+
∥∥∥∥Y(i)

�s�N 
σ (ij) 

2Q(i)
�s �N

m∑
j1=1

( m∑
j2=1

σ (ij1)σ (ij2)
(
W(j1)

s − W(j1)
�s�N

)(
W(j2)

s − W(j2)
�s�N

) − (σ (ij1))2 (
s − �s�N

) )∥∥∥∥
Lp(Ω;R)

≤ Ch. (5.25)

Combining (5.24)–(5.25) with (5.9) finally yields the desired assertion (5.20). �
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FIG. 8. A comparison of strong convergence rates for L V competition model.

Numerical experiments. Now we present some numerical experiments to confirm the theoretical 
results. Let d = m = 2 and consider the stochastic LV competition model with coefficients

b =
(

1 
0.5

)
, A =

(
1  0.5  
0  0.5

)
, σ =

(
1  0  
0  0.7  5

)
, Y(0) =

(
1
3

)
. (5.26)

Let T = 1, N = 2k, k = 6, 7, ..., 11 and regard the fine approximations with hexact = 2−14 as the 
‘true’ solution. We consider the mean-square approximation errors and take M = 5000 Monte Carlo
sample paths to approximate the expectation. A comparison of strong convergence rates for our method,
the Lamperti transformed EM method in Li & Cao (2023) and the truncated EM method in Mao et al. 
(2021) is presented in Fig. 8. One can clearly observe order-one convergence of our method and the 
Lamperti transformed EM method, and order 1

2 convergence of the truncated EM method.
In addition to the strong convergence rate, we would also like to investigate the dynamic preservation

of the proposed method. As shown by Bahar & Mao (2004); Mao (2007), under Assumption 5.1, the exact 
solution {Xt}t≥0 of (5.1) admits an ultimate boundedness property, i.e., there exist two positive constants 
C 1, C2 independent of X0 such that

lim sup 
t→∞ 

E[|Xt|] ≤ C1 and lim sup 
t→∞ 

1 
t

∫ t 

0 
E[|X s|2] ds ≤ C2. (5.27)

Fig. 9 displays moments over long-time interval [0, T], T = 500 of the linear-implicit Milstein method 
using small stepsize h = 2−7 and large stepsize h = 1. It is observed that, the numerical approximations 
produced by the linear-implicit Milstein method remain bounded after a long time, even for a large
stepsize h = 1. This recovers the property (5.27) of the exact solution, which can be theoretically 

explained as follows. For any p ≥ 1 and 0 < h < min1≤i≤d

{
1 

(bi − 1
2

∑m
j=1 (σ (ij))2)∨0

}
, recall (5.13) and
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FIG. 9. Evolution of numerical moments: (a) h = 2 −7;  (b)  h = 1.

( 5.15), it holds that

E
[|Y(i) 

tn+1
|p] = E

[∣∣∣∣ Y(i) 
tn 

Q(i) 
tn

∣∣∣∣p]
E 

⎡⎢⎣ 

⎛⎜⎝ 1 
2 

⎛⎝1 + 
m∑

j=1 
σ (ij) ΔW(j) 

tn 

⎞⎠2 

+ 1 
2 

⎞⎟⎠ 

p ⎤⎥⎦ ≤ Cp,h(
1

ha(ii) )
p < +∞,

for any n ∈ N.
Another significant dynamic of the model (5.1) is permanence and extinction. Permanence means 

that the species will persist and extinction means that the species will eventually become extinct (see
(Li & Mao, 2009, Definition 3.6, Section 4) for precise definitions). According to (Li & Mao, 2009, 
Theorem 3.7), in our setting (5.26) the species will be permanent. In Fig. 10,  we  draw  M = 500 sample 
paths of the proposed linear implicit Milstein scheme over time interval [0, 500] with h = 2−3. Evidently, 
the numerical approximations reproduce the dynamic of the permanence of the original model. When
the noise intensity increases from σ to 2σ , in view of (Li & Mao, 2009, Corollary 2), the species will 
eventually become extinct. Fig. 11 presents M = 500 sample paths of the proposed approximation 
method over time interval [0, 500] with h = 2−3. There one can see that the numerical approximations 
tend to zero, reproducing the dynamic of the extinct of the original model. For both cases, all paths stay
in (R2)+, confirming the positivity preserving of the proposed method.

6. Conclusion 

In this paper, we successfully reveal order-one strong convergence of two kinds of numerical methods for 
several SDEs without globally monotone coefficients, which fills the gap left by Hutzenthaler & J entzen
(2020). This is accomplished by developing some new perturbation estimates and some more careful 
estimates. Numerical experiments are also provided to support the theoretical findings. As an ongoing
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FIG. 10. Permanent performance of linear-implicit Milstein method with h = 2 −3.

FIG. 11. Extinct performance of linear-implicit Milstein method with h = 2 −3.

project, we propose and analyze new higher order (strong order 1 and 1.5) time-stepping schemes for
general SDEs without globally monotone coefficients.
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