2020年论文发表
发布时间:2020-04-25
点击次数:
Our paper "Retrieving the optical transmission matrix of a multimode fiber using the extended Kalman filter" by Guoqiang Huang, Daixuan Wu, Jiawei Luo, Yin Huang*, and Yuecheng Shen*, is accepted in Optics express. Our paper is also highlighted as "Today's Top Downloads" paper.
Abstract:Characterizing the transmission matrix (TM) of a multimode fiber (MMF) benefits many fiber-based applications and allows in-depth studies on the physical properties. For example, by modulating the incident field, the knowledge of the TM allows one to synthesize any optical field at the distill end of the MMF. However, the extraction of optical fields usually requires holographic measurements with interferometry, which complicates system design and introduces additional noise. In this work, we developed an efficient method to retrieve the TM of the MMF in a referenceless optical system. With pure intensity measurements, this method uses the extended Kalman filter (EKF) to recursively search for the optimum solution. To facilitate the computational process, a modified speckle-correlation scatter matrix (MSSM) is constructed as a low-fidelity initial estimation. This method, termed EKF-MSSM, only requires 4N intensity measurements to precisely solve for N unknown complex variables in the TM. Experimentally, we successfully retrieved the TM of the MMF with high precision, which allows optical focusing with the enhancement close to (>70%) the theoretical value. We anticipate that this method will serve as a useful tool for studying physical properties of the MMFs and potentially open new possibilities in a variety of applications in fiber optics.