李建军,教授,博导,德国洪堡学者,极端服役性能精准制造全国重点实验室骨干研究人员,中国力学学会自然科学一等奖获得者(2022,排名第2)、湖南省优秀青年科学基金获得者(2020),入选湖南省“湖湘青年科技创新人才”计划(2021)及中南大学机电工程学院首批“青年人才培育计划”(2020),并受邀担任《力学学报》及《中南大学学报(英文版)》青年编委。担任极端环境薄膜器件与涂层研究所负责人,有教授2人、博导3人、副教授3人、硕/博士生10余人。已在Int J Plasticity, Acta Mater, IJSS, Mech Mater, IJMS, Scr Mater, APL等领域内顶级与知名期刊发表高水平SCI论文62篇,包括1篇ESI高被引论文,SCI引用1000余次,并有多项授权国家发明专利。主持国家自然科学基金3项(青年1项、面上2项)及省部级等前沿研究项目10余项。毕业学生多继续深造(留组读博、出国读博如南洋理工大学、国内985高校读博)与知名高校(211副教授)及国/央企事业单位(如国家电网、中兴、中联重科)任职。课题组亦与国家龙头企业(如美的等)开展了薄膜传感器的相关应用基础研究。
研究方向:
1.高强韧耐磨耐腐蚀薄膜与涂层的设计及制造
2.极端环境薄膜器件与传感器的设计与制造
3.新型纳米金属及其复合材料的强韧化设计
发明专利:
1. 李建军、秦峰,一种高强韧纳米多层金属复合材料及其梯度界面设计方法,发明专利,2024-05-27,中国,ZL202410297062.7.
2. 李建军、张纯、秦峰,一种具有高硬度与高变形能力的层状纳米金属玻璃薄膜及其制备方法,发明专利,2023-08-29,中国,202311095164.2.
3. 李建军、秦峰,一种高硬度钛锆铌铪镍非晶高熵合金薄膜及其制备方法和应用,发明专利,2023-06-21,中国,202310739730.2.
4. 刘春辉、马培培、陈凯亮、李建军,一种铝合金构件室温循环施载高效形性一体化制造方法,发明专利,2021-03-11,中国, ZL202010427815.3.
5. 刘春辉、李国辉、马培培、冯壮壮、陈龙辉、李建军,一种提升铝合金构件综合性能和表面质量的热成形方法,发明专利,2021-03-05,中国,ZL202010494381.9.
一作/通讯代表论文:
1.Wang, Yaodong, Li, Jianjun*, Li, Jiejie, Chen, Shaohua* (2024): On the strain delocalization mechanism of Cu/Nb nanolayered composites with amorphous interfacial layers, International Journal of Plasticity, 172, 103856.
2.Li, J.J.*, Chen, S.*, Weng, G. J., and Lu, W.*, (2021): A micromechanical model for heterogeneous nanograined metals with shape effect of inclusions and geometrically necessary dislocation pileups at the domain boundary. International Journal of Plasticity, 144, 103024.
3.Jianjun Li, Wenjun Lu, Shaohua Chen, Chunhui Liu*. (2020): Revealing extra strengthening and strain hardening in heterogeneous two-phase nanostructures. International Journal of Plasticity. 126, 102626.
4. Liu, C.*, Yang J., Ma P., Ma Z., Zhan L. *, Chen K., Huang M., Li J.J.*, Li Z.* (2020): Large creep formability and strength–ductility synergy enabled by engineering dislocations in aluminum alloys, International Journal of Plasticity. 134, 102774.
5.Li, J.J.*, Weng, G.J., Chen, S.H., Wu, X.L. (2017): On strain hardening mechanism in gradient nanostructures. International Journal of Plasticity, 88, 89-107.
6.Li, J.J., Soh, A.K.* (2012): Modeling of the plastic deformation of nanostructured materials with grain size gradient. International Journal of Plasticity, 39: 88-102.
7.Li, J.J., Soh, A.K.* (2013): Synergy of grain boundary sliding and shear-coupled migration process in nanocrystalline materials. Acta Materialia, 61(14): 5449-5457.
8. Li, J.J., Soh, A.K.* (2012): On shear-coupled migration of grain boundaries in nanocrystalline materials. Applied Physics Letters, 101(24): 241915.
9.Qin, F., Dai K., Hou J., Lu W., Chen S., Li J.J.* (2024): Medium entropy alloy-induced strong size dependence in the strengthening and shear instability of nanolayered metallic composites, Mechanics of Materials, 197 ,105107.
10.Tianyu Chen, Jianjun Li*, Shaohua Chen, Chun Li (2020): Shear band multiplication induced strong strain delocalization and high tensile ductility in amorphous thin films by metallic substrates, International Journal of Solids and Structures, 195, 1-12.
11.Chen T, Lu W, Li J.J.*, Chen S, Li C, Weng G J (2019): Tailoring tensile ductility of thin film by grain size graded substrates. International Journal of Solids and Structures. 166:124-134.
12.Li,J.J.*, Qin, F., Yan, D., Lu, W.*, and Yao, J.*, 2022. Shear instability in heterogeneous nanolayered Cu/Zr composites. Journal of Materials Science & Technology 105, 81-91.
13. Lu, W.*, and Li, J.*, 2022. Synergetic deformation mechanism in hierarchical twinned high-entropy alloys. Journal of Materials Science & Technology 102, 80-88.
14.Li, J. J., Lu, W.*, Gibson, J., Zhang, S., Korte-Kerzel, S., and Raabe, D.* (2020): Compatible deformation and extra strengthening by heterogeneous nanolayer composites. Scripta Materialia. 179, 30-35.
15.Li, J.J.*, Chen, S.H., Weng, G.J. (2018): Significantly enhanced crack blunting by nanograin rotation in nanocrystalline materials. Scripta Materialia, 151, 19-23.
16. Liu C, Ma P, Zhan L, Huang M, Li J.J.* (2018): Solute Sn-induced formation of composite β′/β″ precipitates in Al-Mg-Si alloy. Scripta Materialia 155:68-72.
17.Li, J.J.*, Chen, S. H., Wu, X.L., Soh, A.K. (2014): Strong crack blunting by shear-coupled migration of grain boundaries in nanocrystalline materials. Scripta Materialia, 84-85:51-54.
18. Li, J.J.*, Soh, A.K., Wu, X.L. (2014): On nano-grain rotation by dislocation climb in nanocrystalline materials. Scripta Materialia, 78-79:5-8.
19.Li, J.J., Soh, A.K.* (2013): Toughening of nanocrystalline materials through shear-coupled migration of grain boundaries. Scripta Materialia, 69(4): 283-286.
20.Qin, F., Chen F., Hou J., Lu W., Chen S., Li J.J.* (2024): Strong resistance to shear instability in multilayered metallic composites by nanoscale amorphous-BCC crystalline interfaces, Materials Science and Engineering: A, 891, 145919.
21.Qin, F., Lu, W. J., Li, J. J.* (2022): Enhanced resistance to shear instability by gradient nanolayered structures in sputtered Cu/Zr composites. Materials Science and Engineering: A, 846:143253.
22. Liu, C., Lu, W., Weng, G.J., Li, J.J.* (2019): A cooperative nano-grain rotation and grain-boundary migration mechanism for enhanced dislocation emission and tensile ductility in nanocrystalline materials. Materials Science and Engineering: A. 756:284-290.
23. Li, J.J.*, Chen, S.H., Wu, X.L., Soh, A.K. (2015): A physical model revealing strong strain hardening in nano-grained metals induced by grain size gradient structure. Materials Science and Engineering: A, 620:16-21.
24. Li, J.J.*, Soh, A.K., Wu, X.L. (2014): Enhancing dislocation emission in nanocrystalline materials through shear-coupled migration of grain boundaries. Materials Science and Engineering: A, 601:153-158.
25. Li, J.J., Chen, S.H.*, Wu, X.L., Soh, A.K., Lu, J. (2010): The main factor influencing the tensile properties of surface nano-crystallized graded materials. Materials Sciences and Engineering: A, 527(26): 7040-7044.
全部论文:
Google Scholar: https://scholar.google.com.hk/citations?user=WXtZCycAAAAJ&hl=zh-CN
Research Gate: https://www.researchgate.net/profile/Jianjun-Li-35
Research ID: https://www.webofscience.com/wos/author/record/K-1250-2014
ORCID: https://orcid.org/0000-0002-4027-8918
暂无内容