个人简介
李盈利
教授,博士生导师。湖南大学力学专业本-硕-博毕业(2003-2013),加拿大多伦多大学联合培养(2011-2013),新加坡南洋理工大学博士后(2015-2016);现主要从事轨道交通装备减振降噪、声学/力学超材料结构、机器人动力学研究。入选湖湘青年英才科技创新类(荷尖)人才、中南大学升华猎英计划人才项目,获湖南省自然科学一等奖、铁道科学特等奖、湖南省优秀硕士论文指导教师。主持国家自然科学基金2 项、国家重点研发计划子课题2 项,省部级项目4项,及企业项目等14项。发表学术论文90余篇,在国际主流期刊上发表学术论文70 余篇(一作/通讯63篇),被引用1000 余次,h-Index为16;授权国家专利14项;参与撰写著作3本。任Frontiers in Mechanical Engineering、《动力学与控制》期刊青年编委、全国超材料学会理事等。
办公室:中南大学铁道校区高速列车研究中心114室
邮箱:liyingli@csu.edu.cn
通讯地址:湖南省长沙市天心区韶山南路22号中南大学铁道校区高速列车研究中心,邮编410075
招 收:每年硕士研究生2-3名和博士研究生1-2名(交设、力学、机械、数学、土木等专业)
对学生寄语:https://mp.weixin.qq.com/s/Hj3E1BWYGZulA7i5iDWL3w
教育经历
2011/09-2013/04,加拿大,多伦多大学,机械与工业工程系,联合培养博士
2009/09-2013/04,湖南大学,机械与运载工程学院,非线性振动,博士
2007/09-2009/09,湖南大学,力学与航空航天学院,固体力学,硕士
2003/09-2007/06,湖南大学,力学与航空航天学院,工程力学,学士
工作经历
2023/09至今,中南大学,交通运输工程学院,高速列车研究中心,教授
2017/09-2023/09,中南大学,交通运输工程学院,高速列车研究中心,副教授
2016/03-2017/09,中南大学,交通运输工程学院,高速列车研究中心,讲师
2015/06-2016/03,新加坡,南洋理工大学,新加坡3D打印中心,博士后
2013/07-2016/01,湖南大学,机械与运载工程学院,助理研究员
科研方向:
1. 振动控制:使机械设备(如列车、汽车、船舶、飞机、各种机械设备等)的激励源(如轮轨振动)无法传递至乘客,保障乘客舒适。
(1) 力学超材料/结构:包含人工周期结构、负泊松比结构、压扭结构、打孔结构等,弹性波在一定频率无法传播,振动无法传递;通过拓扑优化、数据驱动按需设计指定带隙超结构。
(2) 零刚度隔振器:大静刚度承载,低动刚度具有超低频减振,完美屏蔽振动激励。
(3) 惯性放大刚杆折叠结构:不增加质量达到增大惯性,实现零刚度或超低频减振。
(4) 仿生减振结构:模拟动物肢节,如山羊腿、啄木鸟头、鸡脖子等,实现高效减振。
(5) 振动能量采集:通过压电、电磁、静电等效应,减振同时将振动能量储存为电能为微型监测传感器供电。
2. 噪声控制:列车壁面隔声与室内吸声,汽车NVH,船舶、飞机等室内降噪,机械设备隔声等。
(1) 声学超材料/结构:通过隔声结构设计,使声波无法穿透,如车外噪声无法传递至车内;完美吸声设计,如使客室内噪声降低。
(2) 声学黑洞结构:使能量聚集于黑洞尖端,不传递至主结构。
(3) 声学超表面:通过正向机理研究、数据驱动逆向设计结构表面,如声屏障、隧道壁面、列车壁面等,调控声波。
3. 智能机器人动力学:机器人动力学,稳定性、机器视觉,路径规划等,解放或完成工作人员无法实现的任务。
(1) 振动驱动机器人:利用环境振动,驱动机器人完成列车客室清洁等工作。
(2) 智能材料连续机器人:利用介电弹性体、形状记忆聚合物、硫酸纸等智能材料,驱动微/小型机器人完成探测、清洁工作。
(3) 列检与服务机器人:基于多足、轮式、履带式机器人,通过机器视觉、路径规划等识别污渍、损伤、环境等,完成清洗、列检、送餐等工作。
科研项目:
2023.10-2025.12 减振力学超材料技术研究及结构开发(SF/GY-徐字-2023-308),中车青岛四方机车车辆股份有限公司,主持
2023.9-2026.9 湖湘青年英才科技创新类(荷尖)(2023RC3036),湖南省“三尖”创新人才工程项目,主持
2023.1-2025.12 湖南省自然科学基金面上项目(2023JJ30644)“减振超结构数据驱动定制化设计与低频减振机理”,主持
2022.11-2023.6 高速列车下穿南昌机场地下车站空气动力学效应研究及气动噪声研究(SQ-ZX-011),江西省南昌昌北国际机场有限公司,参与
2022.11-2025.10 “十四五”国家重点研发计划“高端功能与智能材料”专项“吸能隔振超材料的构筑”项目“多场景宽频隔振超材料设计方法研究”课题“减振超材料柔性结构设计” 专题(2022YFB3806101-2),中华人民共和国科学技术部,主持
2022.4-2022.12 某演示验证试验场地使用和试验保障,北京特种机械研究所,主持
2022.1-2025.12 轻质刚柔耦合超结构减振机理与低频宽带调控研究 (12172383),国家自然科学基金面上项目,主持
2021.12-2023.5 高速列车气动噪声高效高精度计算(2101ANCL20210302),气动噪声控制重点实验室,主持
2021.5-2023.5 轨道车辆空调系统噪声性能提升技术研究(SF/JS-华字-2021-277),中车青岛四方机车车辆股份有限公司,主持
2020.6-2022.12 气动噪声仿真分析技术研究,长春中车轨道车辆科技开发有限公司,主持
2021.6-2022.7 新建长沙至赣州铁路黄花机场段先期实施工程地下站高速通过风压及噪声专题研究项目,湖南机场股份有限公司长沙黄花国际机场分公司,参与
2020.4-2022.4 高性能复杂制造国家重点实验室自主研究课题“高速列车振动环境下超结构减振机理研究”(ZZYJKT2020-04),主持
2019.1-2021.12 湖南省自然科学基金青年项目“全局-直接传递关系振动噪声传递路径与能量传播规律研究”(2019JJ50752) ,主持
2017.7-2020.12 国家“十三五”重点研发计划“面向全生命周期成本的轨道交通设计、节能与环境友好”项目“轨道交通列车环境友好技术”课题,子任务“轨道交通系统噪声识别、传播及控制”(2017YFB1201103-04),中华人民共和国科学技术部,主持
2017.3-2017.12 广州十八、二十二号线越行车站噪声模拟计算分析,广州地铁设计研究院有限公司,主持
2016.7-2020.6 国家“十三五”重点研发计划“时速400公里及以上高速客运装备关键技术”项目“基于噪声主动控制的综合舒适度控制技术研究”课题,子任务“气动噪声机理及仿真分析技术研究” ( 2016YFB1200503-03),中华人民共和国科学技术部,参与
2016.7-2020.12 国家“十三五”重点研发计划“高速磁浮交通系统关键技术”课题,子任务“时速600公里高速磁浮系统空气动力学关键技术研究” ( 2016YFB1200602-11),中华人民共和国科学技术部,参与
2016.7-2020.6 国家“十三五”重点研发计划“轨道交通车站环境友好技术”课题,子任务“轨道交通车站内列车气动冲击效应及噪声分析” ( 2016YFB1200503-03),中华人民共和国科学技术部,参与
2016.7-2018.6 国家“十二五”科技支撑计划“下一代地铁列车低流阻低噪声外形优化研究” ( 2015BAG12B01‐24),中华人民共和国科学技术部,参与
2016.5-2020.12 高速列车振动噪声控制研究,中南大学升华猎英计划,主持
2015.1-2017.12 高维准零刚度浮筏系统的混沌化频谱重构”(11402082),国家自然科学青年基金项目,主持
讲授课程
本科生课程:
《Vehicle structure strength and dynamics》
《Structural mechanics》
《车辆结构强度与动力学》
《结构力学》
《轨道交通概论》
《计算机工程图学》(二)
《机械振动》
研究生课程:
《声学基础》
《Railway vehicle dynamics》
教改项目:
2023.5-2024.5 中南大学研究生教育教学改革研究项目,来华交通类留学生文化融合与高素质创新型人才培养模式(2023JGB147),主持
2022.5-2024.5 中南大学课程思政建设研究项目,“计算机工程图学”课程思政教学探索(2022KCSZ025),主持
2022.1-2023.12 中南大学研究生课程思政建设项目(综合研究类),工科研究生的工匠精神培养 (2022YJSKS024),主持
2021.1-2022.12 中南大学研究生教学案例库建设项目,轨道交通振动与声学教学案例库(2020ALK65),主持
2020.7-2022.3 中南大学本科生教育教学改革研究项目,《轨道交通概论》课程“浸入式”教学 (2020jy057-2),主持
2019.7-2021.6 中南大学研究生教育教学改革研究项目,面向交通领域环境《声学基础》混合式教学研究与实践 (2019JG072),主持
2020.7-2021.6 中南大学本科生教育教学改革研究项目,新工科项目背景下工科专业本科毕业设计教学改革与实践——以载运工具运用工程专业为例 (2020jy058),本科生新工科项目,参与
2020.1-2021.12 湖南省研究生优质课程建设,《冲击动力学》,参与
2020.7-2022.6 中南大学研究生教育教学改革研究项目,载运工具运用工程《振动理论与应用》混合式教学模式研究,参与
教改论文:
[1] 新时代工科研究生多维度全过程培养探讨. 高教学刊. 2025.4
[2] 交通运输工程学科“计算机工程图学”课程思政教学探索. 科教文汇.2024.10
[3] 《轨道交通概论》课程“浸入式”教学探索. 教育现代化. 2022,9(25):47-50
[4] 新工科本科毕业设计(论文)教学改革的调查与思考.教育研究,2022,4.
[5] 轨道交通《声学基础》课程混合式实践教学. 教育现代化, 2020,7(89):155-158.
社会兼职:
Frontiers in Mechanical Engineering、《动力学与控制》期刊编委
国际权威期刊审稿专家
Journal of Materials Science;Modern Physics Letters B;European journal of mechanics;Applied Math. Modelling
International Journal of Heat and Mass Transfer;Journal of Vibration and Control;Journal of Low Frequency Noise, Vibration & Active Control;Shock and vibration;Thermal Science;Applicable Analysis;Journal of the Brazilian Society of Mechanical Sciences and Engineering;Science China Technological Sciences;Engineering Science and Technology, an International Journal
国内核心期刊审稿专家
噪声与振动控制;振动与冲击;铁道学报;交通运输工程学报;动力学与控制学报;振动工程学报;大功率变流技术
学术成果
https://www.researchgate.net/profile/Yingli_Li3/publications
期刊论文
[90] Forward-backstepping design of phononic crystals with anticipated band gap by data-driven method.Mechanical Systems and Signal Processing, 2024
[89] Realization of topological Bragg and locally resonant interface states in one-dimensional metamaterial beam-resonator-foundation system.Journal of Physics D: Applied Physics.2024
[88] 高速列车下穿机场地下车站时车站站台噪声测试与分析. 应用声学. 2024
[87] 内插管共振腔-多孔材料组合吸声板结构低频宽带设计. 动力学与控制. 2024
[86] Topological optimization design of multi-material phononic crystals with floating projection constraints to achieve ultra-wide band gap. Composite Structures. 2024,346:118387
[85] Piezoelectric-triboelectric energy harvester with elastic double-side stoppers. International Journal of Mechanical Sciences, 2024, 280:109561
[84] Bandgap tunability and programmability of four-leaf clover shaped elastic metastructures. Thin-Walled Structures, 2024, 200:111965
[83] Full-band vibration isolation of multi-step quasi-zero stiffness systems, International Journal of Mechanical Sciences, 2024, 274:109277
[82] Limb-inspired quasizero stiffness structure for ultralow-frequency vibration attenuation, International Journal of Mechanical Sciences, 2024,274:109251
[81] Acoustic metasurface embedded with thin-walled plate based on phase modulation for multi-angle broadband sound absorption, Thin-Walled Structures, 2024, 199:111839
[80] Systematic topology optimization of elastic metamaterials for broadband bandgaps and customized mechanical properties. Mechanical Systems and Signal Processing, 2024, 211: 111260 (Q1, Impact factor: 8.934)
[79] Tunable bandgap characteristic of various hexagon-type elastic metamaterials for broadband vibration attenuation. Aerospace Science and Technology, 2024, 145:108872 (Q1, Impact factor:5.457)
[78] Wave propagation and vibration attenuation in spiral ABH metamaterial beams. International Journal of Mechanical Sciences. 2024, 269:108976 (Q1, Impact factor: 6.772)
[77] Low-frequency broadband sound absorption of the metastructure with extended tube resonators and porous materials Applied Acoustics. 2024, 217:109827 (Q1, Impact factor:3.641)
[76] Transfer path analysis of a railway vehicle based on Global Transfer Direct Transfer (GTDT), International Journal of Heavy Vehicle Systems. 2024, 1(31):1-31 (Q4, Impact factor: 0.54)
[75] Quasi-full bandgap generating mechanism by coupling negative stiffness and inertial amplification. European Journal of Mechanics / A Solids,2024, 103, 105143 (Q1, Impact factor: 4.873)
[74] 旋转单元型打孔超结构设计及减振性能研究.振动与冲击. 2024.已录用(EI)
[73] 高速列车下穿机场地下车站时周边区域辐射噪声预测.应用声学. 2024.已录用(EI)
[72] 风电运维母船舱室噪声预报与吸声控制. 动力学与控制学报.2024.已录用(CSTPCD)
[71] 基于气动噪声数值分析的高速列车等效通过噪声预测. 铁道科学与工程学报.2024, 已录用 ( EI)
[70] 300 km/h高速列车过站时机场地下车站辐射噪声研究.噪声与振动控制, 2024,44(6), 已录用(CSSCD)
[69] Multi-objective optimization of elastic metaplates for lightweight and ultrawide bandgaps. International Journal of Mechanical Sciences, 2023, 108603 (Q1, Impact factor: 6.772, ISSN: 0020-7403, 2023.7)
[68] Bandgap mechanisms and wave characteristics analysis of a three-dimensional elastic metastructure. International Journal of Structural Integrity. 2023, 14(4):564-582. (Q2, ISSN: 1757-9864, Impact factor: 1.34, 2023.2)
[67] Elastic wave propagation and vibration characteristics of diamond-shaped metastructures. Archive of Applied Mechanics. 2023. https://doi.org/10.1007/s00419-023-02468-3(Q2, ISSN: 0939-1533, Impact factor: 2.467 , 2023.7)[66] 复合负泊松比蜂窝超结构板低频减振特性研究.动力学与控制学报.2023,21(7):12-19 (CSTPCD)
[65] Elastic wave propagation and bandgaps mechanism of two-dimensional windmill-like elastic metamaterials. Applied Acoustics. 2023.208:109364. (Q1, Impact factor:3.641, ISSN: 0003-682X, 2023.4)
[64] Low-frequency sound insulation of honeycomb membrane-type acoustic metamaterials with different interlayer characteristics. Journal of Vibration and Control. 2023,1-16(Q2, Impact factor:3.095, ISSN: 1077-5463, Citations:,2023.2)
[63] Nonlinear dynamics of 1D meta-structure with inertia amplification. Applied Mathematical Modelling. 2023.118:728-744.(Q1, Impact factor:5.336, ISSN:0307-904X, 2023.1)
[62] Ultra-broadband sound absorption of a multiple-cavity metastructure with gradient thickness. Aerospace Science and Technology, 2023. 133:108140 (Q1, Impact factor:5.457, WOS:000924049500001, ISSN:1270-963, 2023.1)
[61] Acoustic transmission characteristics based on coiled-up space metamaterials. Applied Acoustics. 2023, 203: 109199. (Q1, Impact factor:3.641, WOS:000921736300001, ISSN: 0003-682X, 2022.12)
[60] Theoretical analysis on topological interface states of 1D compression-torsion coupling metamaterial. Composite Structures. 2023, 305:116556 (Q1, Impact factor: 6.603, WOS:000906330600001,ISSN: 1879-1085, 17/326, 2022.12)
[59] Topological optimization of thin elastic metamaterial plates for ultrawide flexural vibration bandgaps. International Journal of Mechanical Sciences, 2023, 242:108014(Q1, Impact factor: 6.772, WOS:000895503300001, ISSN: 0020-7403, 2022.11)
[58] Broadband vibration attenuation characteristic of 2D phononic crystals with cross-like pores. Thin-Walled Structures.2023, 183:110418 (Q1, Impact factor: 5.881, WOS:000913231700007, ISSN: 0263-8231, 2022.11)
[57] Analytical dispersion curves and bandgap boundaries for quadrilateral lattices. European Journal of Mechanics / A Solids. 2023, 97:104835(Q1, Impact factor: 4.873, WOS:000882434400002, 2022.10)
[56] Double-beam metastructure with inertially amplified resonators for flexural wave attenuation, European Journal of Mechanics / A Solids. 2023, 97,104794(Q1, Impact factor: 4.873, WOS:000860627700001, ISSN: 0997-7538, 2022.09)
[55] 梁板型声子晶体带隙特性及列车减振应用. 中南大学学报,2023,54(7):2029-2940(EI)
[54] 微穿孔板—二次余数扩散体复合结构的吸声特性仿真分析.噪声与振动控制,2023, 43(1):68-74(CSSCD)
[53] 轨道车辆空调送风系统噪声振动传递分析.铁道科学与工程学报,2023, 20(5) :1833-1845. (EI)
[52] Bandgap mechanism and vibration attenuation of a quasi-zero stiffness metastructure. International Journal of Structural Integrity. 2022, 13(6): 1041-1059. (Q2, ISSN: 1757-9864, WOS:000883097300001, Impact factor: 1.34, 2022.11)
[51] Bandgaps and topological interfaces of metabeams with periodic acoustic black holes. Mechanics of Advanced Materials and Structures. 2022:1-18 (Q2, WOS:000898257600001,Impact factor: 3.338, ISSN: 1537-6532, 2022.11)
[50] Influencing factors and mechanism of high-speed railway passenger overall comfort: Insights from source functional brain network and subjective report. Frontiers in Public Health, 2022, 10: 993172. (Q1, Impact factor: 6.461, WOS:000874005800001, 2022.09)
[49] Theoretical analysis of 2D meta-structure with inertia amplification. International Journal of Mechanical Sciences, 2022, 235, 107717(Q1, Impact factor: 6.772, WOS:000870470600001,ISSN: 0020-7403, 2022.09)
[48] Enhancing sound absorption for an acoustic metastructure with extended tubes at ultra-low frequency, Journal of Applied Physics. 2022,132, 115104(Q1, Impact factor: 2.877, WOS:000875231100012, ISSN: 0020-7403, 2022.08)
[47] Wave propagation in two-dimensional elastic metastructures with triangular configuration, Thin-Walled Structures. 2022,181, 110043 (Q1, Impact factor: 5.881, WOS:000858629800002, ISSN: 0263-8231, 2022.08)
[46] Multiscale porous with coiled-up channel for low-frequency broadband sound absorption, International Journal of Mechanical Sciences, 2022,232, 107622 (Q1, Impact factor: 6.772, WOS:000889047900002, ISSN: 0020-7403 2022.08)
[45] Propagation of elastic waves in metamaterial plates with various lattices for low-frequency vibration attenuation. Journal of Sound and Vibration, 2022, 536:117140. (202206,Q1, Impact factor: 3.655, WOS: 000825306500001, ISSN: 0022-460X, Citations: 2 2022.06)
[44] Exact wave propagation analysis of lattice structures based on the dynamic stiffness method and the Wittrick-Williams algorithm. Mechanical Systems and Signal Processing. 2022,174: 109044. (202203,Q1, Impact factor: 8.934, WOS: 000793295900004, ISSN: 0888-3270, Citations: 5 2022.06)
[43] Wave propagation of 2D elastic metamaterial with rotating squares and hinges. International Journal of Mechanical Sciences. 2022, 217,107037 (202112,Q1, Impact factor: 6.772, WOS: 000741539500004, ISSN: 0020-7403, Citations: 8 2021.12)
[42] Band gap mechanism and vibration attenuation characteristics of quasi-one-dimensional tetra-chiral metamaterials. European Journal of Mechanics / A Solids. 2022, (92)104478. (202111,Q1, Impact factor: 4.873, WOS: 000740224200005, ISSN: 0997-7538, Citations: 0 2021.11)
[41] Bandgap and wave propagation of spring-mass-truss elastic metamaterial with a scissor-like structure. Journal of Physics D: Applied Physics. 2022, 55:055303. (Q2, Impact factor: 3.409, WOS: 000712610900001, ISSN: 0022-3727, Citations: 4 2021.10)
[40] Bandgap and vibration transfer characteristics of scissor-like periodic metamaterials. Journal of Applied Physics. 2021, 130(2):025103. (202107,Q2, Impact factor: 2.877, WOS: 000681706000009, ISSN: 0021-8979, Citations: 7, 2021.07)
[39] Vibration characteristics of innovative reentrant-chiral elastic metamaterials. European Journal of Mechanics / A Solids. 2021, 90(289):104350. (Q1, Impact factor: 4.873, WOS: 000686047400003, ISSN: 0997-7538, Citations: 7, 2021.08)
[38] Hybrid multi-resonators elastic metamaterials for broad low-frequency bandgaps. International Journal of Mechanical Sciences. 2021, 202-203:106501. (Q1, Impact factor: 6.772, WOS: 000670371800005, ISSN: 0020-7403, Citations: 12, 2021.05)
[37] Fast prediction method of failure modes for steel box structures under internal blast loading. Engineering Failure Analysis. 2021, 120, 104919. (Q2, Impact factor: 3.643, WOS: 000604258500004, ISSN: 1350-6307, Citations: 5, 2020.09)
[36] Multipolar resonance and bandgap formation mechanism of star-shaped lattice structure. International Journal of Mechanical Sciences. 2020, 193,106163. (Q1, Impact factor: 6.772, WOS:000636787700016, ISSN: 0020-7403, Citations: 6, 2020.10)
[35] Configuration effect and bandgap mechanism of quasi-one-dimensional periodic lattice structure. International Journal of Mechanical Sciences. 2020, 190,106017. (Q1, Impact factor: 6.772, WOS:000605762500010, ISSN: 0020-7403, Citations: 7, 2020.08)
[34] Bandgap merging and widening of elastic metamaterial with heterogeneous resonator. Journal of Physics D: Applied Physics. 2020,53, 475302 (Q2, Impact factor:3.409, WOS:000568370500001, ISSN: 0022-3727, Citations: 10, 2020.08)
[33] Band gaps and vibration transfer characteristics of one dimensional triangular arrangement elastic metamaterials. Journal of Physics D: Applied Physics. 2020 , 53,345303. (Q2, Impact factor:3.409, WOS:000542543300001, ISSN: 0022-3727, Citations: 6, 2020.10)
[32] A lightweight multilayer honeycomb membrane-type acoustic metamaterial. Applied Acoustics. 2020, 168, 107427. (Q1, Impact factor:3.641, WOS:000552711200004, ISSN: 0003-682X, Citations: 23, 2020.05)[31] 车底设备激励下地铁车体结构响应分析.噪声与振动控制,2020,40(3):137-141(CSSCD)
[30] Investigating the Effect of Dimension Parameters on Sound Transmission Losses in Nomex Honeycomb Sandwich. Applied Sciences, 2020, 10, 3109 (Q2, Impact factor:2.838, WOS:000535541900122, ISSN: 2076-3417, Citations: 4, 2020.04)
[29] 车辆型材结构的隔声性能优化研究.噪声与振动控制,2019,39(5) :84-88(CSSCD)
[28] EMU6动车组气动声学性能分析[J].铁道科学与工程学报,2018,15(08):1911-1919. ( EI)
[27] Modelling temperature and residual stress fields in selective laser melting. International Journal of Mechanical Sciences, 2018,136:24-35. (Q1, Impact factor:5.329, WOS:000425197900003, ISSN: 0020-7403, Citations: 120)
[26] Force transmissibility of floating raft systems with quasi-zero-stiffness isolators. Journal of Vibration and Control, 2018, 24(16): 3608-3616. (Q2, Impact factor:3.095, WOS:000441283900007, ISSN: 1077-5463, Citations: 16(2))
[25] Vibration attenuation of high dimensional quasi-zero stiffness floating raft system. International Journal of Mechanical Sciences, 2017,126: 186-195. (Q1, Impact factor:5.329, WOS:000402353200017, ISSN: 0020-7403, Citations: 35(2))
[24] Heat transfer and phase transition in the selective laser melting process. International Journal of Heat and Mass Transfer, 2017,108: 2408-2416. (Q1, Impact factor:5.584, WOS:000399357700107, ISSN: 0017-9310, Citations: 42(1))
[23] Nonlinear dynamic responses of functionally graded tubes subjected to moving load based on a refined beam model. Nonlinear Dynamics, 2017, 88: 1441-1452. (Q1, Impact factor:5.022, WOS:000398943900045, ISSN: 0924-090X, Citations: 26)
[22] A six-DOF vibration isolation platform supported by a hexapod of quasi-zero-stiffness struts. Journal of Vibration and Acoustics, 2017, 139(3):034502.1-034502.5. (Q2, Impact factor:1.583, WOS:000400713200018 , ISSN: 1048-9002, Citations: 42(5))
[21] A novel quasi-zero-stiffness strut and its applications in six-degree-of-freedom vibration isolation platform. Journal of Sound & Vibration,2017, 394:59-74. (Q1, Impact factor:3.655, WOS:000388826400014, ISSN: 0022-460X, Citations: 103(2))
[20] Spectrum reconstruction of quasi-zero stiffness floating raft systems. Chaos, Solitons & Fractals, 2016, 93:123-129. (Q1, Impact factor:5.944, WOS:000355890200011, ISSN: 0960-0779, Citations: 3)
[19] Chaotification of quasi-zero-stiffness system with time delay control. Nonlinear Dynamics, 2016, 86:353-368. (Q1, Impact factor:5.022, WOS:000383024200027, ISSN: 0924-090X, Citations: 8)
[18] Analysis of nonlinear dynamic responses for functionally graded beams resting on tensionless elastic foundation under thermal shock. Composite Structures, 2016, 142: 272–277. (Q1, Impact factor:5.407, WOS:000372691300025, ISSN: 0263-8223, Citations: 18(4))
[17] Nonlinear bending and vibration of functionally graded tubes resting on elastic foundations in thermal environment based on a refined beam model.Applied Mathematical Modelling, 2016, 1–14. (Q1, Impact factor:5.129, WOS:000355890200011,ISSN: 0307-904X, Citations: 58(2))
[16] A thermo-elasto-plastic model for a fiber-metal laminated beam with interfacial damage. Applied Mathematical Modelling, 2015,39(12):3317-3310. (Q1, Impact factor:5.129, WOS:000355890200011,ISSN:0307-904X, Citations: 5)
[15] Reliability analysis for the stability of piezoelectric delaminated axisymmetric laminated cylindrical shells. Mechanics of Advanced Materials and Structures, 2014, 21 (4), 284-292. (Q1, Impact factor:4.03, WOS:000328471900005, ISSN:1537-6494, Citations: 2)
[14] Nonlinear analysis of thermally and electrically actuated functionally graded material microbeam. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2014, 470(2162): 20130473.(Q2, Impact factor:2.704, WOS:000332393700003, ISSN:1364–5021, Citations: 22)
[13] Dynamic effects of delayed feedback control on nonlinear vibration isolation floating raft systems. Journal of Sound and Vibration, 2014, 333: 2665-2676.(Q1, Impact factor:3.655, WOS:000335274100001, ISSN:22-460X, Citations: 4)
[12] Unified nonlinear quasistatic and dynamic analysis of RF-MEMS switches. Acta Mechanica, 2013, 224 (8): 1741-1755.(Q2, Impact factor:2.698, WOS:000322154900012, ISSN:0001-5970, Citations: 22)
[11] Chaotification of a nonlinear vibration isolation system by dual time delayed feedback control. International Journal of Bifurcation and Chaos, 2013, 23(6)1350096. (Q2, Impact factor:2.836, WOS:000321583400006, ISSN: 0218-1274, Citations: 3)
[10] Chaotification and optimization design of a nonlinear vibration isolation system. Journal of Vibration and Control, 2012, 18(14):2129-2139.(Q2, Impact factor:3.095, WOS:000310877700004, ISSN:1077-5463, Citations: 10)
[9] Nonlinear dynamic analysis of 2-DOF nonlinear vibration isolation floating raft systems with feedback control. Chaos, Solitons & Fractals, 2012, 45: 1092-1099.(Q1, Impact factor:5.944, WOS:000309315800003, ISSN:0960-0779, Citations: 9(4))
[8] Postbuckling and delamination growth for delaminated piezoelectric elasto-plastic laminated beams under hygrothermal conditions. Journal of Mechanic of Materials and Structures, 2012, 7(1): 85-102(Q4, Impact factor:1.21, WOS:000302878500004, ISSN:1559-3959, Citations: 1)
[7] Chaotification of Vibration Isolation Floating Raft System via Time-delay Feedback Control. Chaos, Solitons & Fractals, 2012, 45: 1255-1265.(Q1, Impact factor:5.944, WOS:000309315800020, ISSN:0960-0779, Citations: 13(5))
[6] Analysis of delamination fatigue growth for delaminated piezoelectric elasto-plastic laminated beams under hygrothermal conditions. Composite Structures, 2011, 93(2): 889-901(Q1, Impact factor:5.407, WOS:000284861600063, ISSN:0263-8223, Citations: 8(3))
[5] Stability and chaotification of vibration isolation floating raft systems with time-delayed feedback control. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2011, 21, 033115 (Q1, Impact factor:3.642, WOS:000295619000015, ISSN:1054-1500, Citations: 14(6))
[4] Nonlinear dynamic response for functionally graded shallow spherical shell under low velocity impact in thermal environment. Applied Mathematical Modelling, 2011, 35:2887–2900. (Q1, Impact factor:5.129, WOS:000288829200023, ISSN:0307-904X, Citations: 31(3))
[3] 基于最优时延反馈控制的主-被动非线性隔振方法研究. 振动工程学报, 2011, 24(6): 639-645. (Jiaxi Zhou, Daolin Xu, Yingli Li. An active-passive nonlinear vibration isolation method based on optimal time-delay feedback control. Journal of Vibration Engineering, 2011, 24(6):639-645.)
[2] Chaotifing Duffing-type System with Large Parameter Range Based on Optimal Time-Delay Feedback Control. Proceedings of 2010 International Workshop on Chaos-Fractal Theories and Applications. Kunming, Yunnan, China, 2010.
[1] 湿热条件下具脱层压电层合梁的后屈曲及脱层扩展分析. 固体力学学报. 2009, 30(3): 309-317
专利
[20] 一种多级承载的一体化准零刚度隔振器. 118564581 A. 2024.8.30(发明专利)
[19] 一种载荷自适应的连续多级准零刚度隔振器. CN 118462745 A. 2024.8.9(发明专利)
[18] 一种吸声多孔复合材料智能逆向设计方法. CN 117831683 A. 2024.4.5(发明专利)
[17] 一种基于联合仿真的弹性超材料多目标设计方法. CN 117436270 A. 2024.01.23 (发明专利)
[15] 一种打孔弹性超结构设计方法及系统. CN117216932A.2023.12.12(发明专利)
[15] 一种双层夹芯拓扑超材料板及其应用. CN117189812A. 2023.12.8(发明专利)
[14] 一种基于惯性放大原理的弹性超结构设计方法及装置.CN117150644A.2023.12.1(发明专利)
[13] 一种弹性超材料非梯度多目标拓扑优化方法及系统.CN117133385A.2023.11.28(发明专利)
[12] 一种弹性超材料薄板非梯度拓扑优化方法及优化系统.CN117116392A.2023.11.24(发明专利)
[11] 一种基于智能编码的声子晶体带隙设计方法及设计系统. CN 116776752 A .2023.10.31(发明专利)
[10] 基于多模态生理数据的乘员舒适性评价系统及方法. CN 116965830 A. 2023.10.31(发明专利)
[9] 一种负刚度超结构梁的全带隙调控方法及负刚度超结构梁. CN117077377A.2023.11.17. (发明专利)
[8] 一种点阵材料等效弹性静力学参数高精度测试方法. CN 113029802 A, 2022.9.11. (发明专利)
[7] 一种点阵材料等效弯曲刚度测试装置. CN 214622112 U,2021.11.05 (实用新型)
[6] 一种隔振设备及应用该设备的轨道车辆. CN 111457042 A , 2021.08.27. (发明专利)
[5] 一种点阵材料等效面内静力学参数测试装置. CN 213239771 U, 2021.05.18. (实用新型)
[4] 一种低频吸声超材料结构. CN 212147764 U, 2020.12.15(实用新型)
[3] 一种复合吸声结构,CN 212010356 U, 2020.11.24. (实用新型)
[2] 一种微结构产品多组件拓扑优化设计、加工方法及系统. CN111027150A, 2020.4.17. (发明专利)
[1] 一种轨道吸音板,ZL201620761968.0, 2016.11.05. (实用新型)
所获奖励
2024年,湖南省自然科学一等奖,准零刚度低频减振理论与方法,第4完成人
2023年,湖湘青年英才科技创新类(荷尖)人才
2023年,湖南省优秀硕士论文指导教师
2022年,中南大学2021-2022学年优秀班导师
2022年,中南大学2021-2022学年研究生课堂教学质量优秀奖
2022年,中南大学工会积极分子
2016年,铁道科技奖,列车碰撞试验系统及安全评估技术,第22完成人,特等奖,2016040328-K0-002-R22. (22/40)
2018年,中南大学交通运输工程学院“教学三十佳”竞赛,讲课二等奖
2016年,入选中南大学第十一批升华猎英计划
2014年,湖南大学优秀博士学位论文
2011年,国家公派留学奖学金
2010年,2010届湖南大学优秀毕业生
指导研究生:
指导研究生30名,毕业12名(4名留学生硕士研究生,8名中国硕士研究生),在读18名(博士9名,硕士9名,含留学生1名)。
2024级博士:
祁菲:从事小型跳跃机器人优化设计研究
2024级硕士:
梁云斌:从事柔性准零刚度减振结构研究
刘学海:从事气动柔性机器人动力学研究
2023级博士:
高亦阳:从事被动振动驱动机器人优化设计研究
2023级硕士:
方丽:从事智能材料柔性机器人动力学研究
杨帆:从事线驱动连续机器人动力学研究
丁佳甲:从事气动变刚度机器人动力学研究
2022级博士:
殷国辉:从事超材料机器学习优化设计研究
张桂青:2022级本博,从事碰撞非线性振动能量采集结构研究
2022级硕士:
裴晓晖:从事超结构振动能量采集研究
吴志颖:从事载荷自适应零刚度减振结构研究
2021级博士:
闫庚旺: 从事超材料拓扑优化研究,已发表SCI论文4篇
颜佳慧:2021级本博,从事吸隔声声学超材料研究,已完成SCI论文2篇
2021级硕士:
林毅民:从事低频宽带吸声声学超材料研究,已发表CSCD论文1篇、SCI论文1篇
颜煜:从事低频吸声超结构研究,已完成SCI论文1篇
黄晴:从事声学黑洞周期结构研究,已发表SCI论文1篇
2020级博士:
周文希:从事惯性放大-准零刚度超结构研究,已完成SCI论文2篇,已发表SCI论文1篇
张汉青:2020级本博,从事压扭超结构研究,已发表SCI论文2篇
2020级硕士:
李浩:从事惯性放大减振超材料研究,已发表SCI论文3篇,获2018-2019年校级特等奖学金、2022年国家奖学金
闫仕光:从事多边形旋转超结构研究,已发表SCI论文2篇,获顺丰奖学金
邬晨巍:从事三维周期超结构研究,已完成SCI论文1篇
Tijjani Muhammad Zahradeen 慕寒:从事负刚度减振超结构研究,已完成SCI论文1篇
2019级博士:
赵楠:从事非线性惯性放大超材料研究,已发表SCI论文2篇
邓赞:从事零泊松比超材料研究,已发表SCI论文1篇
2019级硕士:
王雪宁:从事二维格栅力学超材料研究,发表SCI论文2篇,已毕业合肥工作
王勇:从事负泊松比超材料研究,获中南大学校长奖学金,发表SCI论文1篇,已毕业上海华为工作
董晓红:从事多振子超材料研究,发表SCI论文1篇,已毕业株洲时代新材工作
Gebremariam Yonas Mehari格瑞:从事负刚度周期结构研究,已毕业回国工作
2018级硕士:
闫庚旺:从事低频减振超材料研究,硕士毕业发表SCI论文2篇,已毕业留校读博
张咏琳:从事轻质隔声超材料研究,硕士毕业发表SCI论文2篇,已毕业三一工作
Juliana wada朱莉:从事振动传递路径研究,已毕业回巴西工作
Nava Raj Bhatt华瑞:从事型板结构隔声研究,已毕业,于西南交通大学读博
其他联系方式
[1] 邮编:
[3] 通讯/办公地址:
[6] 邮箱: