已经得到个称赞     给我点赞
  • 教授
  • 所在单位:数学与统计学院
  • 学历:博士研究生毕业
  • 办公地点:463
  • 性别:
  • 学位:博士学位
  • 在职信息:在职
研究方向
当前位置: lizhouxin主页 >>研究方向
研究方向及论著

研究方向:非线性分析,椭圆型PDEs

专著

沈尧天, 王友军, 李周欣, 拟线性椭圆型方程的现代变分方法, 高等教育出版社, 2017-06

教材

周英告, 李周欣, 非线性分析基础, 商务印书馆, 2024-05

论文

20Zhouxin Li, Ruishu Liu*, Existence of solutions to modified nonlinear Schrödinger equations on non-compact Riemannian manifolds, Journal of Mathematical Analysis and Applications, 2024, 535(2): 128122.

19)周英告李周欣*, 环绕定理在退化的椭圆型方程上的应用, 数学物理学报, 2023, 43A(6): 1759–1773.

18Yong Huang, Zhouxin Li*, Xiang YuanSolutions to degenerative generalized quasilineaer Schrodinger equations involving vanishing potentials and critical exponent, Topological Methods in Nonlinear Analysis, 2023, 62(1): 25–52.

17Zhouxin Li*, Xiang Yuan, Qi Zhang, Existence of critical points for noncoercive functionals with critical Sobolev exponent, Applicable Analysis, 2022, 101(15): 5358–5375.

16Zhouxin Li, Yimin Zhang*, Ground states for a class of quasilinear Schrödinger equations with vanishing potentials, Communications on Pure and Applied Analysis, 202120(2): 933–954.

15Zhouxin Li, Ruishu Liu*, Existence and concentration behavior of solutions to 1-Laplace equations on RN, J. Differential Equations, 2021, 272: 399-432.

14Zhouxin Li* Positive solutions for a class of singular quasilinear Schrödinger equations with critical Sobolev exponent, J. Differential Equations, 2019, 266: 7264-7290.

13Zhouxin Li*Youjun WangSolutions to singular quasilinear elliptic equations on bounded domainsElectronic J. Differential Equations, 2018, 2018: 1-12.

12Youjun Wang Zhouxin Li* Existence of solutions to quasilinear Schrödinger equations involving critical Sobolev exponentTaiwanese Journal of Mathematics201822(2): 401-420.

11Zhouxin Li Yimin Zhang*Solutions for a class of quasilinear Schrödinger equations with critical Sobolev exponentsJournal of Mathematical Physics201758(1): 021501.

10Zhouxin Li*Yaotian ShenNonsmooth critical point theorems and its applications to quasilinear schrodinger equationsActa Mathematica Scientia201636B(1): 73–86.

9Yaotian ShenZhouxin Li*Youjun WangSign-changing critical points for noncoercive functionalsTopological Methods in Nonlinear Analysis201443(2): 373–384.

8 李周欣*, 刘书茂, 贾瑞玲, 临界增长的 1-Laplace 方程的非负解, 中国科学: 数学, 2012, 42(8): 775-785.

7 Zhouxin Li*, Yaotian Shen, Existence of Nontrivial Solutions for p-Laplacian-Like Equations, Acta Mathematicae Applicatae Sinica, English Series, 2011, 27(3): 393–406.

6 Zhouxin Li*, Yaotian Shen, Three critical points theorem and its application to quasilinear elliptic equations, Journal of Mathematical Analysis and Applications, 2011, 375: 566-578.

5 Zhouxin Li*, Existence of nontrivial solutions for quasilinear elliptic equations at critical growth, Applied Mathematics and Computation, 2011, 218: 76–87.

4 Zhouxin Li*, Yaotian Shen, Yimin Zhang, An application of nonsmooth critical point theory, Topological Methods in Nonlinear Analysis201035(2): 203-219.

3 李周欣*, 沈尧天, 自然增长条件下含 Hardy 位势的椭圆型方程解的存在性, 数学物理学报, 2011, 31(A)(6): 1470-1478.

2 李周欣*, 沈尧天, 姚仰新, 自然增长条件下拟线性椭圆型方程解的存在性, 数学学报, 2009, 52(4): 785-798.

1 李周欣*, 沈尧天, 含临界指数的类 p-Laplacian 方程无穷多解的存在性, 数学学报, 2008, 51(4): 663-670.