潘克家

教授 博士生导师

入职时间:2009-07-01

所在单位:数学与统计学院

职务:副院长

学历:博士研究生毕业

办公地点:中南大学新校区 数学楼443

性别:男

联系方式:kejiapan@csu.edu.cn

学位:博士学位

在职信息:在职

主要任职:湖南省计算数学应用软件学会理事长;中国地球物理学会地球电磁专业委员会委员;湖南省数学学会常务理事

毕业院校:复旦大学

学科:数学

曾获荣誉:

2024-12-12  当选:  中南大学比亚迪奖学金优秀教师奖

2020-04-01  当选:  湖南省芙蓉青年学者

2017-10-01  当选:  湖南省杰出青年基金

2016-10-01  当选:  湖南省普通高校青年骨干教师

2016-09-10  当选:  中南大学蔡田媗珠奖励金优秀教师奖

2020-09-10  当选:  中南大学茅以升科研奖励金

2010-10-01  当选:  上海市优秀博士学位论文

当前位置: 中文主页 >> 论文成果

Linearized ADI schemes for two-dimensional space-fractional nonlinear Ginzburg–Landau equation

发布时间:2020-09-01

点击次数:

影响因子:3.37

DOI码:10.1016/j.camwa.2020.05.027

发表刊物:Computers and Mathematics with Applications

关键字:Space-fractional Ginzburg–Landau equation; BDF2 method; Compact finite difference scheme; ADI

摘要:Space and time approximations for two-dimensional space fractional complex Ginzburg–Landau equation are examined. The schemes under consideration are discreted by the second-order backward differential formula (BDF2) in time and two classes of the fractional centered finite difference methods in space. A linearized technique is employed by the extrapolation. We prove the unique solvability and stability for both numerical methods. The convergence of both numerical methods is analyzed at length utilizing the energy argument, and the convergence orders under the optimal step size ratio are O(τ 2 + h2) and O(τ 2 + h4) in the sense of the discrete L2-norm, where τ is the time step size, h = max{hx, hy}, and hx, hy are spatial grid sizes in the x-direction and y-direction, respectively. In addition, we construct a multistep alternating direction implicit (ADI) scheme and a multistep compact ADI scheme based on BDF2 for the efficiently numerical implementation. Finally, numerical examples are carried out to verify our theoretical results.

合写作者:Xiaoman Lin, Kejia Pan, Yunzhu Ren

第一作者:Qifeng Zhang

论文类型:期刊论文

通讯作者:Qifeng Zhang

文献类型:J

卷号:80

期号:5

页面范围:1201–1220

是否译文:

发表时间:2020-09-01

收录刊物:SCI

附件:

  • 20200623 CMA_ZLPR.pdf

  • 上一条: A fourth-order difference scheme for the fractional nonlinear Schr?dinger equation with wave operator

    下一条: Numerical approximations of a hydro-dynamically coupled phase-field model for binary mixture of passive/active nematic liquid crystals and viscous fluids