苏修

特聘教授 博士生导师

入职时间:2024-03-05

所在单位:大数据研究院

职务:特聘教授

学历:研究生(博士)毕业

办公地点:中南大学校本部逸夫楼218

性别:男

联系方式:xiusu1994@csu.edu.cn

学位:博士学位

在职信息:在职

毕业院校:The University of Sydney

   

个人简介

苏修,男,中南大学特聘教授,博士生导师。先后入选 国家级高层次青年人才第十六批湖南省“百人计划”人才。博士毕业于悉尼大学,师从Chang Xu教授。在国际知名CCF/CAAI A类会议和期刊 TPAMI、CVPR、NeurIPS、ICML、ICCV、AAAI、KDD、ACMMM、ECCV、ICLR等发表论文20余篇,长期担任相关顶级会议和期刊的审稿人和程序委员会委员。个人研究内容主页:https://xiusu.github.io/


招生信息】博士、硕士、RA(过渡出国、读博)、本科。课题组氛围融洽,与澳大利亚和香港众多顶尖名校深度合作,且国外顶尖名校长期有名额,每年多个入学季,欢迎有兴趣的同学加入(xiusu1994@csu.edu.cn)。


组内优势】 1. 硬件资源丰富。有充足的显卡等计算资源以及机器人(机械臂、灵巧手)资源,目前组内有 宇树、松灵、UR、因时 的 人形机器人、轮式机器人,包含 机械臂和机器手。

                     2. 尊重学生的个人选择。无论是学术界或企业界发展,包括:出国留学、大学任教或企业工作,都会提供充足的指导和资源支持。

                     3. 组内有众多 海外/国内 名校学生。学术氛围浓厚,能及时跟踪相关领域前沿技术和发展趋势。

                     4. 与众多海外名校和国内知名AI企业保持长期深度科研合作关系。定期输送优秀人才去海外QS 前50学校读博/研 和 国内知名AI企业。 

                     5. 课题组经费充足,能保证科研所需的实验条件,并提供细致的科研指导和充足的助研津贴。


【代表性论文】(详见 https://xiusu.github.io/


[1] VideoEspresso: A Large-Scale Chain-of-Thought Dataset for Fine-Grained Video Reasoning via Core Frame Selection. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR, CCF A, Oral), 2025

[2] Harmonizing for defect visibility with Fine-Grained Hierarchical Interaction Learning.
International Conference on Acoustics, Speech and Signal Processing (ICASSP, CCF B), 2025

[3] HieClip: Hierarchical CLIP with Explicit Alignment for Zero-Shot Anomaly Detection.
International Conference on Acoustics, Speech and Signal Processing (ICASSP, CCF B), 2025

[4] Perturbating, Tuning, and Collaborating: Harnessing Vision Foundation Models for Single Domain Generalization on Medical Imaging. AAAI Conference on Artificial Intelligence (AAAI, CCF A), 2025

[5] Seeing Beyond Noise: Joint Graph Structure Evaluation and Denoising for Multimodal Recommendation. AAAI Conference on Artificial Intelligence (AAAI, CCF A), 2025

[6] Universal Frequency Domain Perturbation for Single-Source Domain Generalization. ACM Multimedia (ACM MM, CCF A), 2024

[7] Detecting Any Instruction-to-Answer Interaction Relationship:Universal Instruction-to-Answer Navigator for Med-VQA. International Conference on Machine Learning (ICML, CCF A), 2024

[8] Detecting Any Human-Object Interaction Relationship: Universal HOI Detector with Spatial Prompt Learning on Foundation Models. Advances in Neural Information Processing Systems (NeurIPS, CCF A), 2024

[9] BEYOND THE LIMIT OF WEIGHT-SHARING: PIONEERING SPACE-EVOLVING NAS WITH LARGE LANGUAGE MODELS. International Conference on Acoustics, Speech, and Signal Processing (ICASSP, CCF B), 2024

[10] TCNAS: TRANSFORMER ARCHITECTURE EVOLVING IN CODE CLONE DETECTION. International Conference on Acoustics, Speech, and Signal Processing (ICASSP, CCF B), 2024

[11] PROMPTING LABEL EFFICIENCY IN FEDERATED GRAPH LEARNING VIA PERSONALIZED SEMI-SUPERVISION. International Conference on Acoustics, Speech, and Signal Processing (ICASSP, CCF B), 2024

[12] BCNetV2: Searching for Network Width With Bilaterally Coupled Network. IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI, CCF A)

[13] DiffNAS: Bootstrapping Diffusion Models by Prompting for Better Architectures. IEEE International Conference on Data Mining (ICDM, CCF B), 2023

[14] Re-mine, Learn and Reason: Exploring the Cross-modal Semantic Correlations for Language-guided HOI detection. International Conference on Computer Vision (ICCV, CCF A), 2023

[15] Neural Architecture Search for Wide Spectrum Adversarial Robustness. AAAI Conference on Artificial Intelligence (AAAI, CCF A), 2023

[16] Searching for Better Spatio-temporal Alignment in Few-Shot Action Recognition. Conference and Workshop on Neural Information Processing Systems (NeurIPS, CCF A), 2022

[17] Sufficient Vision Transformer. ACM SIGKDD Conference on Knowledge Discovery and Data Mining (SIGKDD, CCF A), 2022

[18] Vision Transformer Architecture Search. European Conference on Computer Vision (ECCV, CAAI A), 2022

[19] ScaleNet: Searching for the Model to Scale. European Conference on Computer Vision (ECCV, CAAI A), 2022

[20] K-shot NAS: LearnableWeight-Sharing for NAS with K-shot Supernets. International Conference on Machine Learning (ICML, CCF A), 2021

[21] BCNet: Searching for Network Width with Bilaterally Coupled Network. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR, CCF A), 2021

[22] Prioritized Architecture Sampling with Monto-Carlo Tree Search. The IEEE Conference on Computer Vision and Pattern Recognition (CVPR, CCF A), 2021

[23] Locally Free Weight Sharing for Network Width Search. International Conference on Learning Representations (ICLR, CCF A, Spotlight), 2021

[24] Data Agnostic Filter Gating for Efficient Deep Networks. IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP, CCF B), 2022

[25] Automatic bridge crack detection using a convolutional neural network. Applied Sciences, 2019

[26] An efficient hole-filling method based on depth map in 3D view generation. 2017 International Conference on Optical Instruments and Technology: Optoelectronic Imaging/Spectroscopy and Signal Processing Technology

[27] An improved three-dimension reconstruction method based on guided filter and Delaunay. 2017 International Conference on Optical Instruments and Technology: Optoelectronic Imaging/Spectroscopy and Signal Processing Technology



教育经历

[1]   2020.7-2023.9

悉尼大学  |  人工智能  |  博士学位  |  博士研究生毕业

[2]   2016.9-2019.6

天津大学  |  理学  |  硕士学位  |  硕士研究生

[3]   2012.9-2016.6

天津大学  |  理学  |  学士学位  |  本科(学士)

其他联系方式

  • [5]  移动电话:

  • [6]  邮箱: