
Flow-Aware Adaptive Pacing to Mitigate TCP
Incast in Data Center Networks

Shaojun Zou§, Jiawei Huang§, Yutao Zhou§, Jianxin Wang§, Tian He‡

§School of Information Science and Engineering, Central South University, ChangSha, China 410083
‡Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA 55455

Email: zoushj@csu.edu.cn, jiaweihuang@csu.edu.cn, zhouyutao999@gmail.com, jxwang@csu.edu.cn, tianhe@umn.edu

Abstract—In data center networks, many network-intensive
applications leverage large fan-in and many-to-one communica-
tion to achieve high performance. However, the special traffic
patterns, such as micro-burst and high concurrency, easily cause
TCP Incast problem and seriously degrade the application
performance. To address the TCP Incast problem, we first reveal
theoretically and empirically that alleviating packet burstiness
is much more effective in reducing the Incast probability than
controlling the congestion window. Inspired by the findings and
insights from our experimental observations, we further propose
a general supporting scheme Adaptive Pacing (AP), which dy-
namically adjusts burstiness according to the flow concurrency
without any change on switch. Another feature of AP is its broad
applicability. We integrate AP transparently into different TCP
protocols (i.e., DCTCP, L2DCT and D2TCP). Through a series
of large-scale NS2 simulations, we show that AP significantly
reduces the Incast probability across different TCP protocols
and the network goodput can be increased consistently by on
average 7x under severe congestion.

Index Terms—Data center; Pacing; TCP; Incast; Congestion
control

I. INTRODUCTION

As a prosperous industry, data centers have become the

critical infrastructure to host a large amount of applications

and provide diverse user services, such as recommendation

systems, web search and MapReduce [1]. In modern data

center networks (DCNs), however, the micro-burst is a com-

mon traffic pattern, which has adverse impact on the network

performance, especially in highly concurrent applications [2].

The micro-burst generally indicates that bursty traffic is gener-

ated by the multiple servers in a small time-scale, potentially

making some flows unstable and decreasing the link utilization

[3], [4]. The main reasons for micro-burst can be attributed to

the following special traffic characteristics of DCNs.

First, the many-to-one and high fan-in communication pat-

terns widely exist in data center network. The high fan-in

traffic patterns have been reported by lots of measurements

on productive data centers [5]. In the data centers of Google

and Microsoft, the web search application generally involves

10-1000 servers [6]. For instance, a single HTTP request in

Facebook often incurs 130 internal requests on average [7].

When all servers inject their packets into the network in

a micro-burst, these in-flight packets will constitute a large

burst. Once the bursty traffic reaches the switch with shallow

buffer, it causes rapid fluctuations in queue length, potentially

resulting in packet loss and even TCP timeout.

Second, since server request unit (SRU) in DCNs is usually

less than 100KB, a TCP flow generally finishes its data

transmission in the slow-start phase [8], [9]. During slow-

start, the sender transmits at least two back-to-back packets

in response to each ACK. Moreover, if the receiver adopts

cumulative ACKs to indicate successful receipt of multiple

packets, the sender will transmit more packets in a micro-burst

[10].

Data center networks have several special features, such as

shallow-buffer switches and high-bandwidth links [11]. More

especially, the link capacity in today’s data centers is quite

large, typically on the order of dozens of Gbps (e.g., 10Gbps

and 40Gbps). Although the round trip time is only a few

hundreds of microseconds [12], the high link capacity results

in a large bandwidth-delay product (BDP). For example, the

commodity switches generally have about 100KB buffer per

port [13], while the value of BDP is 250KB in 10Gbps network

with 200us RTT. Therefore, it is reasonable to use the links

with large bandwidth to help the switch accommodate more

packets.

Admittedly the concept of TCP pacing has been proposed in

wide area networks, under which the sender evenly transmits

a whole window of packets over a round-trip time [14].

Since pacing can make full use of high-bandwidth links in

data centers to accommodate packets, it is natural choice to

leverage pacing to eliminate the traffic burst, especially in high

fan-in applications. However, this simple approach does not

work well in all data center environments, because it failed

to consider the rich diversity of applications. The network

applications involving small number of concurrent flows are

still common in data centers. For instance, a few hundreds KB

file is cut into several data blocks, which are stored on a small

amount of servers in the distributed file storage application.

When the switch has enough buffer space to accommodate

the burst, pacing will waste bandwidth resource and degrade

the network throughput if the senders still transmit an entire

window of packets over a round-trip time.

In this paper, we propose an adaptive scheme named

Adaptive Pacing (AP) to mitigate TCP Incast problem. AP

dynamically adjusts the time interval according to the flow

concurrency. Therefore, AP not only effectively eliminates the

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.170

968

2017 IEEE 37th International Conference on Distributed Computing Systems

1063-6927/17 $31.00 © 2017 IEEE

DOI 10.1109/ICDCS.2017.170

2119



micro-burst, but also prevents the throughput loss. While the

adjustment strategy of congestion window has been extensive-

ly studied in previous congestion control research, our design

joints the control of congestion window and time interval,

solving the TCP Incast problem.

The rest of this paper is organized as follows. In Section

II, we discuss our design motivation in detail. In Section III,

the design of AP is presented. In section IV, we evaluate the

performance of AP through NS2 simulations. In section V, we

summarizes the related works. Finally, we conclude the paper

in section VI.

II. MOTIVATION

In this section, we first theoretically analyze the benefit

and limitation of pacing under different scenarios. Then,

we quantitatively show the benefit and drawback of pacing

through experiments. Finally, we summarize our observations,

which indicates the need for pacing adaptation.

A. The benefit of pacing under highly concurrent flows

In this part, we first theoretically analyze the influence of

micro-burst. For ease of description, let n, w and B denote

the number of synchronized flows, the congestion window and

the size of switch buffer, respectively. Since the link capacity

in data center network is typically not less than 1Gbps, the

transmission delay can be ignored. For example, it takes 1.2us

to transmit a 1500B packet in 10Gbps networks. Hence we

assume that the whole window of packets simultaneously

arrives at the switch. Since there are n synchronized flows

with congestion window size of w, the total number of in-

flight packets is n×w. When the number of in-flight packets

exceeds the switch buffer, the packet loss rate is 1−B/(n×w).
Some researchers have proved that a full window of packet

loss is a principal factor that causes timeout and TCP Incast

problem [15]. Thus we can calculate the probability of full

window loss as the probability of timeout:

p = (1− B

n× w
)w. (1)

Furthermore, it is easy to understand that no matter which

flow experiences timeout, it will cause TCP Incast for n
concurrent flows. Therefore, the TCP Incast probability P can

be calculated as

P = 1− (1− (1− B

n× w
)w)n. (2)

For pacing, if the time interval between two adjacent packets

is set to t and the link capacity is C (packets/sec), the switch

will forward C×t packets before the next packet of each flow

arrives at the switch. Obviously, if none of flows experience

packet loss, there are n×w−(w−1)×C×t packets in queue

as the whole window of packets reach the switch. Otherwise,

the packet loss rate is 1− (t× (w − 1)× C +B)/(n× w).
Under pacing, we obtain the probability of timeout p

′
and

the TCP Incast probability P
′

as

p
′
= (1− t× (w − 1)× C +B

n× w
)w, (3)

P
′
= 1− (1− (1− t× (w − 1)× C +B

n× w
)w)n. (4)

When TCP timeout happens, the sender has to wait for

excessive idle period of RTO (i.e., 200ms in most operating

systems), greatly enlarging the flow completion time (FCT).

Here, for ease of description, we define the window com-

pletion time as the time during that the sender receives all

ACKs for the whole window of packets. To analyze the

impact of TCP Incast probability, we first calculate the window

completion time Tw without pacing as

Tw = (1− P )×RTT + P ×RTOmin. (5)

Under pacing, it takes extra (w − 1) × t for the sender

to transmit an entire window of packets due to time interval

between adjacent packets. According to Equation (3) and (4),

we calculate the window completion time T
′
w with pacing as

T
′
w = (1− P

′
)×RTT + P

′ ×RTOmin + (w − 1)× t. (6)

Fig. 1: Window completion time with varying number of flows

According to Equation (5) and (6), we plot the window

completion time with different the number of flows in Fig.1,

where B, C and w are 100 packets, 10Gbps and 4, respective-

ly. From Fig.1, we observe that the window completion time

increases since the probability of full window loss becomes

large with the increasing of the number of flows. Compared

with the case without pacing, however, pacing significantly

reduces the probability of timeout and thus obtains lower

window completion time.

B. The limitation of pacing under lowly concurrent flows

For highly concurrent applications, pacing is a simple

yet effective solution to dispel the micro-burst. In order to

illustrate intuitively the bursty behavior of flows and verify

the effectiveness of pacing, we conduct a simple experiment

using NS2 simulator to record the moments when packets are

successfully received.

In this simulation, 45 senders and one receiver are connected

to the same switch with 10 Gbps links. The switch takes

the drop-tail queue management policy and its buffer can

accommodate 100 packets. The volume of data sent by each

9692120



sender is 30KB and the packet size is 1500B. The round trip of

time is set to 400us. The RTOmin is set to 200 milliseconds

[2], [8]. Considering that DCTCP has been integrated into

common operating systems and extensively applied in many

data centers, such as Google [16] and Morgan Stanley [17],

we utilize DCTCP as the TCP protocol, and the marking

threshold of switch buffer is set to 65. The experimental result

is illustrated in Fig.2 (a).

(a) n = 45 (b) n = 20

Fig. 2: The distribution of moments when packets are received.

From Fig.2 (a), we observe that if pacing is disabled, the

receiver intermittently receives the clustering of packets from

its senders, showing the burstiness of traffic. Unfortunately,

some unlucky flows experience timeout due to lack of suf-

ficient duplicate ACKs. As a result, it takes around 200ms

for DCTCP to finish the data transmission. Interestingly,

compared with DCTCP, pacing only take about 2.6ms to finish

data transmission. That is to say, pacing spends much less

time finishing data transmission than DCTCP, significantly

improving the network efficiency.

However, pacing is not appropriate for all network scenar-

ios. When the number of concurrent flows is not large, pacing

wastes bandwidth resource and causes the throughput loss. In

order to illustrate this problem, we change the the number of

senders to 20. Fig.2 (b) shows that for DCTCP, all flows have

finished data transmission at around 2ms. However, although

pacing eliminates the micro-burst, it takes about 2.6ms to

finish the data transmission. The main reason is that interval

time between adjacent packets is too large so that pacing can

not make full use of bandwidth resource. As a result, pacing

reduces about 30% of throughput compared with DCTCP.

C. The need for pacing adaptation

As stated above, we draw the conclusion that (i) pacing is

an effective way to dispel micro-burst and significant reduces

TCP Incast probability. In highly concurrent scenarios, pacing

avoids severe goodput degradation, and (ii) in low concurrent

scenarios, pacing causes a waste of bandwidth sources due to

excessive time interval, resulting in throughput loss.

These conclusions naturally motivate us to design an adap-

tive scheme called Adaptive Pacing (AP). According to the

number of concurrent flows, AP dynamically adjusts the

time interval to deal with TCP Incast problem and achieve

high bandwidth utilization. In the following sections, we will

present the design of adaptive scheme.

III. PROTOCOL DESIGN

In this section, we concentrate on the design of our proposed

scheme AP. We first build a model of TCP Incast problem.

Then we present how to obtain the optimal time interval by

the number of concurrent flows.

A. Model analysis

To obtain optimal time interval, we derives the relation

between the network goodput G and the time interval t. First,

we obtain the Incast probability by calculating the probability

of timeout. Then, we take the normalized method to express

the relation between G and t.

In data center networks, it is unrealistic that all flows start

transmissions at the same time. Therefore, we first set up a

more realistic model in which the starting times of all flows

are asynchronous. To simplify the presentation, we assume that

the starting time of n flows are uniformly distribution in [0,

t0]. We divide the t0 into time slots, and the length of a time

slot equals the transmission delay td of a packet. These flows

whose starting time lie in the same time slot are synchronous.

Then we obtain the average number of concurrent flows navg

in a time slot as

navg =
n× td
t0

. (7)

Furthermore, we use d (0≤ d ≤1) to denote the paced ratio,

which means that the entire window of packets is transmitted

during d×RTT if AP is enabled. Besides, d×RTT can be

divided into d×RTT/td time slots. Therefore, we obtain the

average number of packets mavg transmitted by each flow in

these time slots as

mavg =
w × td

d×RTT
=

td
t
. (8)

We suppose that the starting time of flows in the ith time

slot is ti. Since the whole window of packets are transmitted

across d×RTT, packets from these flows with their starting

times in [ti − d×RTT, ti] will be transmitted in the ith time

slot. That is, there are d×RTT/td (denoted by s) time slots

and flows in these time slots will transmits mavg packet in

the ith time slot. Consequently, the total number of packets m
transmitted in a time slot can be calculated as

m = navg ×mavg × s =
n× td × w

t0
. (9)

We simply denote td × w/to as k, and then k × n packets

are injected into the network in a time slot. For the purposes

of discussion and analysis, we suppose that the packets are

uniformly distributed among n flows when the number of

packets in switch buffer reaches buffer size B. Therefore, the

congestion window w of each flow is B/n when the switch

buffer becomes full. Without loss of generality, each flow

increases itself congestion window with additive increasing

and the congestion window becomes w + 1 in the next

9702121



round of RTT. Similarly to Equation (4), we obtain the Incast

probability P
′

as

P
′
= 1− (1− (1− t× w × C +B

n× (w + 1)
)w+1)n×k. (10)

Inspired by literature [18], we leverage the normalization

network throughput T to study the impact of TCP Incast. We

assume that the maximum value of the throughput T is 1 when

there is no packet loss. Furthermore, T can be calculated as

1−P ′
when TCP Incast probability is P

′
. Then the normalized

throughput T can be expressed as

T =

⎧⎨
⎩

1− P
′

n× k + w × (n× k − C × t) > B

1 n× k + w × (n× k − C × t) ≤ B
(11)

Nevertheless, the time interval t between adjacent packets

has negative effects on network goodput. For micro-burst,

since the whole window of packets are injected into the

network back-to-back (i.e., time interval t is 0), it takes one

RTT to finish the transmission of this window. For Adaptive

Pacing, the completion time of this window is RTT+w × t
when the congestion window is w+1. Consequently, the ratio

of the completion time without and with Adaptive Pacing

is RTT/(RTT+w × t). In short, taking the overhead of time

interval into consideration, the normalized network goodput

G can be calculated as

G =

⎧⎪⎨
⎪⎩

(1−P
′
)×RTT

RTT+w×t n× k + w × (n× k − C × t) > B

RTT
RTT+w×t n× k + w × (n× k − C × t) ≤ B

(12)

Fig. 3: Goodput with varying time interval t and number of

flows n

According to Equation (12), we plot the normalized network

goodput with different time interval in Fig.3, where B, C, w
and k are 100 packets, 10Gbps, 3 and 1, respectively. From

Fig.3, we observe that, when the time interval t is small,

the network goodput G increases since the Incast probability

becomes small with the increasing of t. However, if the time

interval is too large, G is reduced due to the unnecessary waste

of bandwidth resource.

Therefore, an appropriate time interval should be adopted

to avoid the TCP Incast and achieve high goodput. At the

same time, the complicated calculation of solving the optimal

value of time interval at the sender should be avoided. In

the following, an approximation approach is presented for

calculating the optimal time interval.

B. Optimal time interval

According to Equation (12), when n + w × (n − C × k×
RTT/(w + 1)) ≤ B, the network goodput becomes smaller

with the increasing of t. However, it is analytically hard to

verify whether the derivative of goodput G has a monotonic

trend. In order to simplify derivation process, we utilize

symbol w̄ to denote the average congestion window of all

flows in Equation (12). Then the numerical approximation of

network goodput Ḡ can be calculated as

Ḡ =

⎧⎪⎨
⎪⎩

(1−P
′
)×RTT

RTT+w̄×t n× k + w̄ × (n× k − C × t) > B

RTT
RTT+w̄×t n× k + w̄ × (n× k − C × t) ≤ B

(13)

We get the derivative of Ḡ with respect to t as

dḠ

dt
=

w̄ × (1− pw̄+1
l )nk

RTT + w̄ × t
(
C ×RTT × pw̄l

1− pw̄+1
l

− RTT

RTT + w̄ × t
),

(14)

where pl = 1− (w̄× t×C+B)/(n×k× (w̄+1)). According

to Equation (14), we find that its value is larger than 0. In

other words, when n × k + w × (n × k − C × t) > B, the

network goodput becomes larger with the increase of t.
As analyzed above, we can obtain the approximation of

optimal time interval t by assigning it with a boundary value

as

t =
n× k × w −B

C × (w − 1)
. (15)

Since the window of packets should be sent out by the

sender within one RTT, the time interval is not larger than

RTT/w. Besides, no matter whether the network congestion

occurs or not, the time interval is not less than 0. In short, we

obtain the time interval as

t = max{0,min{RTT

w
,
n× k × w −B

C × (w − 1)
}}. (16)

To prevent the synchronization of window, it is necessary for

Adaptive Pacing to add or subtract a random interval based on

the optimal time interval. In our design, the randomizing time

interval is set to t × (1 + x), where x follows the uniform

distribution on [-1,1]. This approach can effectively break

synchronization among flows. Meanwhile, it ensures that the

whole window of packets are injected into the network in

one RTT. Besides, some researchers have proposed several

approaches, such as Bitmap Algorithms [19] and Packet La-

belling [20], to effectively estimate the number of flows on

the routers or switches. Like the previous scenarios(i.e., [18],

[21]), we obtain the number of flows by counting the number

of the TCP SYN/FIN packets.

9712122



IV. SIMULATION EVALUATION

In this section, we use network simulator NS2 to verify

Adaptive Pacing’s broad applicability and effectiveness. Con-

sidering that TCP NewReno has been integrated into common

operating systems, while DCTCP, D2TCP and L2DCT are

tailored for data center networks, we evaluate the performance

of these protocols with Adaptive Pacing enabled or disabled.

For convenience, we use symbols NewRenoAP, DCTCPAP,

D2TCPAP and L2DCTAP to denote TCP NewReno, DCTCP,

D2TCP and L2DCT with AP enabled, respectively.

In the simulation test, multiple servers are connected to a

single ToR switch via 10Gbps link. One of them plays part

of a receiver and the others act as senders. The switch buffer

can accommodate 100 packets and its marking threshold is

set to 20 for ECN-based transports (i.e., DCTCP, D2TCP and

L2DCT). The RTT is 300μs. The default RTOmin timer value

is set to 200ms. The packet size is fixed at 1.5KB and the size

of SRU is 45KB. For D2TCP, the deadline imminence factor

d is between 0.5 and 2.0. For L2DCT, every flows change its

weight from 2.5 to final 0.125 along with data transmission.

A. Basic performance

In this scenario, a receiver sends requests to 60 servers (i.e.,

senders) to fetch their own data. Then, all senders transmit

their SRUs to the receiver. Fig.4 shows the distribution of

moments that each SRU are received successfully.

(a) DCTCP w/o AP (b) DCTCP w/ AP

Fig. 4: The distribution of moments when server request unit

is completely transmitted

From Fig.4 (a) and (b), we observe that Adaptive Pacing

expedites the whole completion time for DCTCP since none

of flows experiences timeout. Without Adaptive Pacing, some

flows still suffer from timeout, causing goodput collapse. As

a result, DCTCPAP’s whole transfer time has 7x reduction

compared with DCTCP.

B. Performance measures in fat-tree topology

In this scenario, we evaluate the overall performance of AP

in different scale fat-tree networks. Here, we select Average

Flow Completion Time (AFCT) as our evaluation metrics [22].

To comprehensively understanding the performance of AP,

we gradually expand the scale of the network by increasing

the pod amount from 4 to 12 at the increasing intervals of

2. This implies that the amount of servers increases from 16

to 432. The link bandwidths between servers and switches

is set to 10Gbps. Core switches, aggregation switches and

edge switches can accommodate 400, 200 and 100 packets,

respectively. The marking threshold of all switches is set to 65.

In this experiment, servers in the same pod randomly select

a server as their receiver. Note that each server establishes

10 connections with its receiver and a 64KB data block is

transmitted by each server to the receiver. The experimental

result is illustrated in Fig.5.

Fig. 5: AFCT with varying number of pods

From Fig.5, we observe that AFCTs of three protocols

with AP are basically the same with their original protocols

when the number of pods is less than 8. However, the

network congestion becomes heavier with the increase of pod

amount. As a result, original protocols get large AFCTs due

to lots of timeouts. Fortunately, with the aid of AP, the three

protocols’ AFCTs are remarkably enhanced. This is because

AP eliminates the traffic burst so that timeout does not happen

frequently.

C. Maximum number of supported flows

In this part, we explore the maximum number of supported

flows by varying the number of simultaneous senders. In our

experiment, each sender transmits 10 packets and we measure

the maximum the number of flows in 10G and 40G network

with 100us and 300us RTT . As illustrated in Fig.6, with the

help of AP, the maximum number of supported flows can be

increased by more than 2x on average.

(a) RTT=100us and C=10Gbps (b) RTT=100us and C=40Gbps

(c) RTT=300us and C=10Gbps (d) RTT=300us and C=40Gbps

Fig. 6: Maximum number of supported flows

9722123



V. RELATED WORKS

To date, many researchers have proposed various solutions

to solve TCP Incast problem. However, while these solutions

can be effective, most of them do not consider the micro-burst

and fail to cope with highly concurrent applications. Then the

most relevant works are introduced as follows.

Adjusting System Parameters: The literature [12] modifies

the default value of RTOmin from 200ms to 200us, decreasing

the link idle time caused by timeouts. Although this solution

can significantly improve the goodput, it does not reduce the

number of timeout retransmission. Besides, some researcher

try to void TCP Incast problem by changing block size,

enlarging the size of switch buffer, and shrinking Maximum

Transmission Unit (MTU) [23].

Designing New Transmission Protocols: According to the

fraction of marked packets, DCTCP [8] adjusts the congestion

window size and achieves excellent performance, such as

low queueing delay and high throughput. D2TCP [6] and

L2DCT [24] are based on DCTCP, but they can not deal with

highly concurrent applications. ICTCP [9] dynamically adjusts

the receive window according to the available bandwidth.

Similarly, PAC [13] regulates the sending rate of the senders

by controlling the ACKs at the receiver. Both ICTCP and PAC

are implemented on the receiver side, but they cannot avoid

the micro-burst.

Solving TCP Incast at Other Layers: PLATO [10] adopts

a packet labeling scheme to prevent labelled packets being

dropped. However, it requires modification on the switch. Fur-

thermore, some researchers employ coding-based approaches

to prevent TCP Incast [25], [26]. However, these approaches

inevitably transmit lots of redundant packets, which reduces

bandwidth utilization.

Compared with the enhanced TCP protocols focusing on the

congestion window adjustment, Adaptive Pacing deals with

the TCP Incast problem by adaptively adjusting time interval

according to the flow concurrency. Adaptive Pacing can be

directly integrated into the state-of-the-art TCP protocols de-

signed for data centers. Moreover, since Adaptive Pacing only

modifies TCP stack at the sender-side, it is easily deployed.

VI. CONCLUSION

In this paper, a general supporting scheme, called Adaptive

Pacing, is proposed for data center networks to mitigates

TCP Incast problem. According to the number of concurrent

flows, Adaptive Pacing dynamically adjusts the time interval

to prevents packet loss in micro-burst. Our design just needs

to modify the TCP stack of the sender while it can keep

compatibility on existing transport layer protocols without

any modifications on switch. Furthermore, the key feature of

Adaptive Pacing is its its broad applicability. In other words,

AP can be directly integrated into existing transport protocols

and obtains great performance improvement.

ACKNOWLEDGMENT

This work is supported by the National Natural Sci-

ence Foundation of China (61572530, 61502539, 61402541,

61462007 and 61420106009) and the Next Generation Internet

Innovation Foundation (Grant No. NGII201601130).

REFERENCES

[1] B. Palanisamy, A. Singh, and L. Liu, Cost-effective resource provi-
sioning for mapreduce in a cloud, IEEE Transactions on Parallel and
Distributed Systems, vol. 26, no. 5, pp. 1265-1279, 2015.

[2] W. Bai, L. Chen, K. Chen, and H. Wu, Enabling ECN in Multi-Service
Multi-Queue Data Centers, in Proc. USENIX NSDI, 2016.

[3] D. Shan, W. Jiang, and F. Ren, Absorbing Micro-burst Traffic by
Enhancing Dynamic Threshold Policy of Data Center Switches, in Proc.
IEEE INFOCOM, 2015.

[4] F. Liu, J. Guo, and X. Huang, eBA: Efficient Bandwidth Guarantee
Under Traffic Variability in Datacenters, IEEE/ACM Transactions on
Networking, vol. pp, no. 99, pp. 1-14, 2016.

[5] T. Benson, A. Akella, D. A. Maltz, Network Traffic Characteristics of
Data Centers in the Wild, ACM IMC, 2003.

[6] B. Vamanan, J. Hasan, and T. Vijaykumar, Deadline-Aware Datacenter
TCP (D2 TCP), in Proc. ACM SIGCOMM, 2012.

[7] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny,
Workload Analysis of a Large-Scale Key-Value Store, in Proc. ACM
SIGMETRICS, 2012.

[8] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B.
Prabhakar, S. Sengupta, and M. Sridharan, Data Center TCP (DCTCP),
in Proc. ACM SIGCOMM, 2010.

[9] H. Wu, Z. Feng, C. Guo, and Y. Zhang, ICTCP: Incast Congestion
Control for TCP in Data-Center Networks, IEEE/ACM Transactions on
Networking, vol. 21, no. 2, pp. 345-358, 2013.

[10] S. Shukla, S. Chan, A. S. W. Tam, A. Gupta, Y. Xu, and H. J. Chao,
TCP PLATO: Packet Labelling to Alleviate Time-out, IEEE Journal on
Selected Areas in Communications, vol. 32, no.1, pp. 65-76, 2014.

[11] Y. Yu, and C. Qian, Space shuffle: A scalable, flexible, and high-
bandwidth data center network, in Proc. IEEE ICNP, 2014.

[12] V. Vasudevan, A. Phanishayee, H. Shah, E. Krevat, D. G. Andersen, G.
R. Ganger, G. A. Gibson, and B. Mueller, Safe and Effective Finegrained
TCP Retransmissions for Datacenter Communication, in Proc. ACM
SIGCOMM, 2009.

[13] W. Bai, K. Chen, H. Wu, W. Lan, and Y. Zhao, PAC: Taming Tcp Incast
Congestion Using Proactive ACK Control, in Proc. IEEE ICNP, 2014.

[14] L. Zhang, S. Shenker, and D. Clark, Observations on The Dynamics of
a Congestion Control Algorithm: The Effects of Two-Way Traffic, in
Proc. ACM SIGCOMM, 1991.

[15] W. Chen, F. Ren, and J. Xie, Comprehensive Understanding of TCP
Incast Problem, in Proc. IEEE INFOCOM, 2015.

[16] A. Singh, J. Ong, and A. Agarwal, Jupiter Rising: A Decade of Clos
Topologies and Centralized Control in Google’s Datacenter Networkin,
in Proc. Special Interest Group on Data Communication, 2015.

[17] Judd G. Attaining the Promise and Avoiding the Pitfalls of TCP in the
Datacenter, in Proc. USENIX NSDI, 2015.

[18] J. Huang, Y. Huang, J. Wang, and T. He, Packet Slicing for Highly
Concurrent TCPs in Data Center Networks with COTS Switches, in
Proc. IEEE ICNP, 2015.

[19] C. Estan, G. Varghese, and M. Fisk, Bitmap Algorithms for Counting
Active Flows on High Speed Links, in Proc. ACM IMC, 2003.

[20] J. Zhang, F. Ren, R. Shu, P. Cheng. TFC: token flow control in data
center networks, in Proc. ACM EuroSys, 2016.

[21] C. Wilson, H. Ballani, T. Karagiannis, A. Rowstron. Better never
than late: Meeting deadlines in datacenter networks, in Proc. ACM
SIGCOMM, 2011.

[22] T. Zhang, F. Ren, R. Shu, Backlog-Aware SRPT Flow Scheduling in
Data Center Networks, in Proc. IEEE ICDCS, 2016.

[23] P. Zhang, H. Wang, and S. Cheng. Shrinking MTU to Mitigate TCP
Incast Throughput Collapse in Data Center Networks. In Third Interna-
tional Conference on Communication and Mobile Computing, 2011

[24] A. Munir, I. Qazi, Z. Uzmi, A. Mushtaq, S. Ismail, M. Iqbal, B.
Khan. Minimizing flow completion times in data centers, in Proc. IEEE
INFOCOM, 2013.

[25] C. Jiang, D. Li, and M. Xu, LTTP: an LT-code Based Transport Protocol
for Many-to-One Communication in Data Centers, IEEE Journal on
Selected Areas in Communications, vol. 32, no. 1, pp. 52-64, 2014.

[26] J. Sun, Y. Zhang, D. Tang, S. Zhang, Z. Xu, J. Ge. Improving TCP
performance in data center networks with Adaptive Complementary
Coding, in Proc. IEEE LCN, 2015.

9732124


