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Abstract—In data center networks, many network-intensive
applications typically suffer TCP incast throughput collapse when
bursty concurrent TCP flows share a single bottleneck link. To
address the TCP incast problem, we first reveal theoretically
and empirically that controlling the number of concurrent flows
is much more effective in reducing the incast probability than
controlling the congestion window. We further propose a novel
cross-layer design called Adaptive Request Schedule (ARS), which
dynamically adjusts the number of concurrent TCP flows by
batching application requests according to the congestion state
acquired from transport layer. ARS is deployed only at the
aggregator-side, while making no modification on hundreds or
thousands of workers. Broad applicability is another advantage
of ARS. We integrated ARS transparently (i.e., without modifica-
tion) with DCTCP and TCP NewReno on NS2 simulation and a
physical testbed, respectively. The experimental results show that
ARS significantly reduces the incast probability across different
TCP protocols and that the network goodput can be increased
consistently by on average 6x under severe congestion.
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I. INTRODUCTION

With the rise of cloud computing and storage, a significant
number of online service providers like Amazon, Google, and
Microsoft construct their data centers to handle core applica-
tions such as Web search and MapReduce. These applications
typically implement a data flow computation model, where
datasets pass through different processing stages. A lot of
works have been proposed to manage computation and storage
resources on servers to improve application performance [1],
[2]. Recent research has shown that, however, the network is a
bottleneck in such applications [3], [4]. For example, Hadoop
traces from Facebook show that, on average, transferring data
between successive stages accounts for 33% of the running
times of jobs with reduce phases [5].

These applications concurrently transfer large amounts of
data across hundreds or thousands of machines in data cen-
ters. From the viewpoint of networking, the performance
of these network-intensive applications is degraded for the
following reasons. First, though the main features of mod-
ern data center networks (DCNs) are high-bandwidth links
(at least 1Gbps) and ultra-low round-trip propagation delay
(around 100µs), the Commercial Off-the-Shelf (COTS) Ether-
net switches with small-size buffers are widely used as the Top
of Rack (ToR) switches in large-scale data centers to save cost.

Second, data center networks generically use the commodity
TCP/IP and Ethernet networks because of their ease-of-use.
Furthermore, the data center applications usually adopt the
barrier-synchronized and many-to-one communication pattern
to achieve high performance and service reliability. All of these
features together bring about the TCP incast problem [6], [7].

In a typical barrier-synchronized scenario, the aggregator
server initiates requests to all workers in parallel to fetch
data. When highly concurrent workflows are sent back to the
aggregator, the large number of packets may exhaust the TOR
switch’s shallow buffer, resulting in packet losses or even
TCP Time-Out. Compared to the typical 400us and 1ms RTTs
in DCNs with respective 10Gbps and 1Gbps bandwidth, the
200ms idle time of Retransmission Time-Out (RTO) unavoid-
ably leads to gross under-utilization of link capacity. Moreover,
if some workflows are not able to execute timely and exceed
a specified Service Level Agreement (SLA), the aggregation
results may be unavailable or useless, which adversely wastes
both computing and network resource. Compared with the
increasingly faster access to memory or disk in novel appli-
cations (e.g., Memcached and pNFS) and the shorter packet
forwarding delay in switches, TCP incast problem significantly
impairs the transfer efficiency of data center networks and
makes those innovative hardware unable to maximize their
performance. Therefore, how to avoid Time-Out in highly
concurrent flows becomes a challenging issue for network
operators and researchers.

Existing proposals [6], [8], [9], [10] have developed miscel-
laneous schemes to tackle this problem. In the transport layer,
based on the congestion notification such as ECN and RTT,
several TCP variants [8], [10] shrink congestion window to
avoid too many packets synchronously injecting into the bot-
tleneck link. These transport-layer approaches could mitigate
the impact of TCP incast problem to a certain degree yet still
suffer from a common limitation. That is, though TCP flows
cut their congestion windows, the switch buffer is still easy
to overflow in the severe congestion scenarios with a large
number of concurrent flows,

In this work, we argue that existing TCP protocols designed
for data center only focus on the adjustment of congestion
windows, which is fundamentally unable to solve the TCP
incast problem caused by highly concurrent flows. We reveal
theoretically and empirically that controlling the number of
concurrent flows is much more effective in reducing the



incast probability than controlling the congestion windows.
The reason is that fewer flows allow more statistically fair
sharing of shallow buffers in switches, preventing Time-Out
due to a full window of packet losses in a single TCP flow.

Specifically, to mitigate TCP incast problem in a low-
cost manner, we propose a novel cross-layer approach named
Adaptive Request Schedule (ARS). From the application layer,
ARS schedules the requests by batches to prevent too many
concurrent flows injecting into bottleneck link. While the
adjustment strategy of congestion window has been extensively
studied in previous congestion control research, our design
joints the control of congestion window and number of flows,
solving the TCP incast problem fundamentally. We briefly
summarize the contributions of this paper, as follows:
• We conduct the first extensive study to exploit control-

ling number of concurrent flows to solve TCP incast
problem. We demonstrate experimentally and theoret-
ically why controlling number of concurrent flows is
more effective in avoiding incast than cutting congestion
window under severe congestion.

• We propose a cross-layer design by carefully sending
the application requests by batches. Taking into account
real-time state of network congestion, our ARS design
rationally adjusts number of concurrent flows to resolve
incast congestion. The design only needs to be deployed
at the aggregator-side without any changes made to TCP
protocol design, thus ensuring the minor deployment
overhead and providing general support for various TCP
protocols.

• By using both NS2 simulations and small-scale Linux
testbed, we demonstrate that with the aid of ARS, TCP
protocols such as TCP NewReno and DCTCP perform
remarkably better than these without using ARS in TCP
incast scenarios. Especially, ARS greatly reduces the
number of Time-Out events and helps TCP NewReno
and DCTCP yield up to 6x goodput improvement.

The remainder of this paper is structured as follows. In
Section II, we describe our design motivation. The design
detail of ARS is presented in Section III. In Section IV and
V, we show the NS2 simulation and real testbed experimental
results, respectively. In Section VI, we demonstrate existing
approaches. Finally, we conclude the paper in section VII.

II. DESIGN MOTIVATION

To understand the challenges facing data center transport
protocols, in this section we first compare the application
latency and communication latency in data centers. Then we
describe the typical barrier-synchronized scenario that moti-
vates why the full window loss event is a critical factor to
the transport layer performance. Furthermore, we demonstrate
theoretically the fundamental problem of transport protocols
and show that the incast probability is effectively reduced by
controlling number of concurrent flows.

A. Application latency and communication latency
In the data center, end-to-end application latency is the sum

of communication latency and application latency. The first one

is the amount of time it takes a packet to traverse the network.
The latter one is the time required to process a message or
request, perform the application logic, and generate a response
on servers. In the past, when most network requests resulted
in disk I/Os, application latency is an issue for data center
operators. For example, to avoid unacceptable response time,
Facebook’s applications set the limit of 100-150 sequential
data accesses for each Web page returned to a browser.

Fortunately, the application latency on the endhosts is de-
creasing thanks to the increased cores per server, increased
DRAM capacity, and the availability of low-latency, flash-
based SSDs [4], [11]. We use Memcached as an example,
which is a popular, in-memory Key-Value (KV) store, deployed
at Zynga and Twitter. In Memcached, the application latency
has been reduced to as small as less than 10 microsecond,
though it includes the time to parse the client request, search
a key in the hash table, determine the location of data and
generate the corresponding response [12].

Compared with the application latency, however, the com-
munication latency is still an important issue, given the fact
that COTS switches are widely deployed in data center net-
works. For example, a Triumph switch has 48 1Gbps ports
and its 4MB buffer size is shared by all ports, which means
that each port only shares 85 KB buffer space in average,
namely - accommodating 56 packets with 1500 Bytes packet
size. During periods of congestion, this means that an incoming
packet has to wait for up to 68 microsecond before it can leave
the switch, taking up to 85% of end-to-end application latency
in the previously mentioned Memcached application. It should
be noted that this is only queuing delay, without consideration
of Time-Out under high concurrency. In this following part,
we give the deep analysis of the large communication latency
in the network-intensive applications.

B. Impact of full window loss
TCP detects a packet loss by two mechanisms: triple-

duplicate ACKs or Time-Out. The first mechanism is faster.
If a packet is lost during transmission, packets sent in the
same congestion window will trigger duplicate ACKs. When
a sender receives a few (usually three) duplicate ACKs, it
retransmits the missing packet that was signaled by duplicate
ACKs. The recovery time is about one RTT period (i.e., 10s
or 100s microseconds). The second mechanism is much more
time consuming. If all packets in the congestion window
are lost (i.e., full window loss), the sender has to rely on
the retransmission timer to retransmits the lost packets. The
retransmission timer should be set large enough to help the
network recover from severe congestion. For example, the
recommended minimum RTO is 200 or 300 millisecond,
about three orders of magnitude slower than recovery time
in mechanism of duplicate ACKs.

In the barrier-synchronized transfer, single packet loss and
full window packet loss have significantly different impacts
on the network efficiency. In the typical barrier-synchronized
scenarios, multiple servers (termed ‘workers’) connect to a
single aggregator via a ToR switch. The data blocks are striped
across a number of workers. Each worker has its own data
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Fig. 1: Cutting congestion window vs. number of flows

fragment denoted as Server Request Unit (SRU), which is
typically less than 100KB [8]. The aggregator initiates requests
to all workers in parallel to fetch all SRUs. When the workers
receive requests, they transmit data back to the aggregator. The
next round of requests cannot be initiated until all workers have
finished transferring data in the previous round.

Obviously, for a typical COTS TOR switch with 44 1Gbps
ports, if there is no full window loss in the whole transfer,
transmitting 44 100KB-SRUs from different workers via a
1Gbps link will only take around 40ms. However, if the
shallow buffer of TOR switch is overloaded under highly con-
current flows traversing the bottleneck link, TCP connections
may suffer full window loss, resulting into Time-Out. Once
Time-Out happens, the new round of transfer must wait for
the stalled TCP flows. The idle period of RTO (i.e., 200ms)
unavoidably causes a significant TCP throughput collapse.
Under this condition, the duration of transmitting 44 100KB-
SRUs will be elongated to at least 240 ms, meaning the almost
85% throughput reduction.

C. Fundamental problem of transport protocols

It is well-known that TCP protocols such as DCTCP and
TCP NewReno [13] control the sending rate by adjusting
congestion window size. These approaches perceive congestion
state by different indications, including packet losses, ECN and
RTT, and then adjust their congestion windows.

We firstly analyze the impact of congestion window and
flow concurrency on the incast probability P . Let B, C
and RTTmin denote the size of switch buffer, link capacity
and round-trip propagation delay (i.e., RTT without queueing
delay), respectively. When the number of in-flight packets of n
concurrent flows exceeds the total capacity of buffer size and
bottleneck link, packet losses and even Time-Out will occur.
We use Equation (1) to illustrate this condition:

nw ×MSS > C ×RTTmin +B, (1)

where MSS is the size of a TCP segment, w is the average
congestion window size of all n TCP flows. Since all n syn-
chronized flows share the bottleneck link fairly using statistical
multiplexing, the packet loss rate p is calculated as

p = 1− C ×RTTmin +B

nw ×MSS
. (2)

It is known that TCP Time-Out is mainly caused by a full
window of packet losses [14], we calculate the probability of
a full window of packet losses as the Time-Out probability
PTO:

PTO = pw = (1− C ×RTTmin +B

nw ×MSS
)w. (3)

Since TCP incast happens when at least one flow experi-
ences Time-Out in n flows, we obtain the incast probability P
as

P = 1− (1− PTO)
n

= 1− (1− (1− C ×RTTmin +B

n× w ×MSS
)w)n.

(4)

From Equation (4), we find that P is determined by both the
congestion window w and number of flows n. We intuitively
deduce that, the value of P is reduced with smaller w or n.

However, compared with decreasing the congestion window,
decreasing the number of flows allows the same buffer room
to accommodate more packets for each flow. Consequently,
under statistical multiplexing, each flow has a higher chance
to enqueue at least one packet. The chance of a full window
of packet losses is reduced. Here, we use an example to
demonstrate that decreasing the number of flows is remarkably
more efficient in reducing probability of full window losses
and incast event.

Fig.1 (a) shows that 40 concurrent flows share a bottleneck
link with a TOR switch. The total capacity of switch buffer
size and bottleneck link is only 60 packets. Let us assume the
congestion window size of each flow is 4 packets (i.e., totally
160 in-flight packets). Fig.1 (b) and (c) compare the effect
of cutting congestion window with that of cutting number of
flows. Fig.1(a) shows that 100 packets are dropped due to
overflow. Based on Equation (3) and (4), we derive that the
probability of full window losses (i.e., Time-Out probability
PTO) of each flow is ( 58 )

4 = 0.15, and the incast probability
P is 0.99. As shown Fig.1 (b), if all 40 flows halve their
congestion windows, PTO and P become ( 14 )

2 = 0.06 and
0.92, respectively. In contrast, Fig.1 (c) shows that the number
of flows is cut into half, and the congestion window size is
still 4. We find that, after cutting the number of flows, PTO is
( 14 )

4 = 0.004, and P becomes as small as 0.08 in comparison
with 0.92 in case of halving the window size.
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Fig. 2: Incast probability with decreasing w and n

Furthermore, we use Fig.2 to compare the incast proba-
bility when w or n is decreased. Here, K is the decreasing
ratio, describing how much w or n is reduced. When K is
increasing from 0 to 0.5, Fig.2 shows that, incast probability is
significantly reduced in cutting number of flows, while cutting
congestion window has negligible effect on incast probability.
This confirms that, in high flow concurrency (i.e., n = 40),
large number of in-flight packets still easily brings about Time-
Out, even when w is cut from 4 into the very small value of
2 (i.e., K = 0.5).

D. Summary

Our analysis of these transport protocols leads us to con-
clude that (i) TCP congestion control alone cannot solve the
TCP incast problem by adjusting congestion window, and (ii)
compared with controlling congestion window, adjusting the
flow concurrency is a much more efficient strategy to mitigates
the incast problem. These conclusions motivate us to tackle
TCP incast problem through a cross-layer design to overcome
the limitation of congestion control, which exploits congestion
information from transport layer to regulate the number of
concurrent TCP flows from the application level.

III. THE DESIGN OF ARS

In this section, we describe the design detail of ARS,
including how to obtain the optimal batch size and adjust the
batch size according to the congestion state.

A. Design insight

Data center’s applications (e.g., Hadoop, pNFS and We-
b search) usually adopt barrier-synchronized communication
pattern, in which the aggregator will not issue a new round
of requests until all requested data are received. This means
that the number of requests issued in a round determines the
number of concurrent TCP connections.

The main idea of ARS is to schedule a round of requests into
several batches. Specifically, after issuing a batch of requests,
the aggregator will not issue a new batch of requests until the
successful receipt of all the requested data in the current batch.
Moreover, the size (i.e., number of flows) of the next batch
depends on the congestion state acquired from transport layer.

By batching requests, ARS adjusts the number of concurrent
TCP connections to avoid the Time-Out event.

The design of ARS involves several key challenges. First, we
need to obtain the optimal batch size, taking incast probability
into consideration. Second, we need a low-cost adjustment
strategy of batch size to deal with rapid changes of network
dynamics. Last, it should be compatible with existing transport
layer protocols for practical deployment.

B. Optimal batch size
In our design, the first issue is to obtain the optimal batch

size. Let W denote the maximum number of outstanding
packets in a round of RTT. Suppose that there are n concurrent
flows in a batch, we obtain the maximum number of in-flight
packets Ya as

Ya = n×W. (5)

Let Yb denote the total number of packets that can be
accommodated in link pipeline and switch buffer as

Yb =
C ×RTTmin +B.

MSS
. (6)

To avoid the Time-Out event and in the meantime accom-
modate as more concurrent flows as possible, the optimal batch
size n∗ is set as the minimum value satisfying Ya > Yb.

Since n∗ should be an integer, we have

n∗ = bYb
W
c+ 1. (7)

The duration of Time-Out is the key to throughput per-
formance in the whole transfer process. In the following, we
calculate the Time-Out probability of concurrent N flows.

Note that here we only compare the Time-Out probability
in TCP’s slow-start stage with following two reasons. First,
TCP starts with the slow-start phase, namely exponentially
increasing congestion window, which is very aggressive and
the main reason causing Time-Out [6]. The other reason is that,
server request unit is typically very small (normally less than
100KB [8], [10]) and usually can be finished transmission in
the slow-start stage (e.g., the transfer of a 60KB server request
unit only needs 6 rounds of RTT).

We compare the Time-Out probability of concurrent N flows
with/without ARS in following two cases.
• When ARS is enable, the number of concurrent flows

(i.e., batch size) is set as n∗. For each flow, its congestion
window exponentially increases in every round of RTT
during slow-start process. The congestion window wk

for the k-th round of RTT is 2k−1. Since the size
of server request unit Ys (pkts) determines how many
rounds of RTT is needed in the transfer, we get the
maximum number of outstanding packets in a round of
RTT, W = 2blog2(Ys+1)c−1. Then the incast probability
P is calculated as

P = 1− (1− (1− Yb
n∗ ×W

)W )n
∗

= 1− (1− (1− Yb
n∗ × 2blog2(Ys+1)c−1 )

2blog2(Ys+1)c−1

)n
∗
.

(8)
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• When ARS is disabled, all N flows are concurrently
transferred. Assume the packets are evenly distributed
among each flow when the number of in-flight packets
reaches Yb, then the average congestion window w of
each flow is Yb/N . In the next round of transfer, all flows
use multiplicative-increase to enlarge their respective
congestion windows by 2, and thus 2Yb packets are
injected into the network system. Since the switch buffer
and link pipeline only accommodate Yb packets, a half
of packets are lost and the packet loss rate becomes 0.5.
In this case, we get the incast probability P ′ as

P ′ = 1− (1− (0.5)2Yb/N )N . (9)
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Fig. 3: Numeric comparison of incast probability
The numeric comparison of incast probability is shown in

Fig. 3. We change the number of TCP flows N and the number
of packets accommodated in the switch buffer and link pipeline
Yb. Each flow sends 64KB data with 1.5 KB packet size. Fig.
3 shows, when ARS is disabled, with the increasing number
of flow N , the incast probability becomes larger due to the
severer congestion. Furthermore, we find that it is much easier
to enter TCP incast with the smaller Yb. If Yb is 128, the incast
probability reaches 1 when n is 52, indicating that the network
system accommodates more than 50 concurrent TCP flows.
When Yb becomes 32 or 64, the corresponding maximum
numbers of flows, without introducing incast, decrease to as
small as 20 or 32, respectively. However if ARS is used, the
incast probability is always kept near 0, showing that the Time-
Out event is greatly eliminated.

C. Adjustment strategy of batch size
Based on above analysis, we obtain the optimal batch size

to avoid severe congestion. Under dynamic network traffic
scenarios, however, it is not reasonable to adopt a fixed
batch size. Thus, we design the adjustment strategy shown
in Algorithm 1, which consists of the following two modules.

1) Cross-layer Congestion Detector: ARS employs con-
gestion information from transport layer to determine the con-
gestion state. Specifically, whether the aggregator receives out-
of-order TCP packets or not is used as congestion indicator.
Upon receiving a packet, the congestion indicator CI is set to
1 if the sequence number of arriving packet is out-of-order.

2) Request scheduler: When ARS starts working, it sends
n∗ requests. However, when the newly arriving background

Algorithm 1: Request scheduling algorithm
Initialization:
n← n∗

CI ← 0

On receiving a packet from TCP flow i:
begin

if the packet is out-of-order then
CI ← 1

On finishing receiving all requested data in current batch:
begin

if CI == 1 then
n← bC×RTTmin.

W×MSS c+ 1.

else
if n < n∗ then

n← n+ 1

CI ← 0
send a batch of min(bnc, N) requests

flows inject packets into the bottleneck link, the buffer overflow
will happen easily because the network system is not able
to accommodate all in-flight packets. Thus, if the network
congestion is detected, n should be adjusted to avoid severe
congestion (i.e., Time-Out).

Here, if CI becomes 1, we set n as a smaller value in
conservative manner to prevent such packet loss and Time-Out
event. Since the bandwidth-delay product (i.e., C ×RTTmin)
of bottleneck link is typically smaller than switch buffer size
B due to very small RTTmin in data center, we only use
C × RTTmin to cap the batch size, leaving switch buffer
to accommodate the potential background traffic. Specifically,
when congestion is detected (i.e., CI is 1), the batch size (i.e.,
number of flows) n is set as

n = bC ×RTTmin

W ×MSS
c+ 1, (10)

where W is the maximum number of outstanding packets in
a round of RTT.

If CI is 0, the batch size n increases to n∗ in additive
manner (i.e., n = n+1) to probe available bandwidth. Before
the aggregator issues a new batch of min(bnc, N) requests,
the client sets CI to 0. Since ARS gently increases the batch
size by at most one per batch. Even the traffic from the added
single flow brings about buffer overflow and packet losses, all
concurrent flows will bear the packet losses. It is a very small
chance for a single flow to experience full window losses and
trigger Time-Out.

We should note that, all these implementation issues can be
addressed without modifying the transport protocols − we sim-
ply adjust the number of requests to control the concurrency
of the original transport protocols. By doing so, the transport
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protocols automatically avoid the incast problem when the con-
gestion happens, thereby achieving higher network goodput.

IV. SIMULATION EVALUATION

In this section, to test ARS’s broad applicability and effec-
tiveness, we use network simulator NS2 to evaluate the perfor-
mance of DCTCP and TCP NewReno with ARS enabled and
disabled. Note that, DCTCP is a well-known transport protocol
designed for data center networks, while TCP NewReno is the
most widely used TCP version. For simplicity, we use symbols
ARSNR and ARSDC to denote TCP NewReno and DCTCP both
with ARS enabled, respectively.

In the simulation test, multiple workers are connected to
an aggregator via a single ToR switch with 64KB shallow
buffer per output port. We set the marking threshold to 20 for
DCTCP according to [8]. Since the topology is homogeneous,
the bandwidth of all links is set to 1Gbps, and the round-
trip propagation delay is 100µs. RTOmin is set to 200ms as
default setting for most Linux kernels. The TCP packet size
is set to 1KB and the unit size of server request is 64KB. We
use goodput perceived in application layer as our performance
metric.

A. Basic performance
In this test, we investigate the performance of batch control

process in detail. The aggregator sends requests to 64 workers
to fetch their own data. Then, each worker will send its
response to the aggregator. Fig. 4 shows the distribution of
moments when the aggregator receives the responses.
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Fig. 4: The serial number of received response over time

In Fig. 4 (a) and (b), both TCP NewReno and DCTCP ex-
perience Time-Out. At about 0.22s, the timer is fired and other
server response units finish right after this moment, indicating
that some flows experience Time-Out events and the whole
transfer process is stalled by such flows for 200ms. However
with ARS enabled, the time distribution of receiving data is
ladder-like, which means a round of requests is scheduled into
several batches with different batch size, gradually adapting to
network congestion. There is no Time-Out and all 64 responses
are finished in much shorter time, about 0.04s.

Next, we change the simulation scenario from a single round
to multiple rounds of requests. Fig. 5 shows the time when each
flow finishes the transfer of its own data with ARS enabled
or disabled. The dot at (t, ID) represents that the IDth flow
completes the transfer at time t. As shown in Fig. 5 (a) and (b),
by batching requests, TCP NewReno’s whole transfer time has
6x reduction as 6 rounds of requests finishes in 0.22s while

only a single round of requests can be done without ARS.
From Fig. 5 (c) and (d), we find that ARS also significantly
quickens the whole transfer for DCTCP. Without ARS, the
goodput still experiences collapse if 64 workers simultaneous
transmit data to an aggregator. In Fig. 5 (d), we observe that
rungs of each ladder are taller than that in Fig. 5 (b). This is
because ECN-based DCTCP is more effective than loss-based
TCP protocols in controlling queue length, and thus the batch
sizes of DCTCP is typically larger than that of TCP NewReno.
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Fig. 5: The distribution of moments when server request unit
is completely transmitted.
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Fig. 6: Network goodput with different number of flows

To evaluate the overall network performance, we test the
total goodput with up to 90 workers. In Fig. 6, we find
that TCP NewReno experiences severe degradation when the
number of workers rises to 20. DCTCP utilizes ECN as more
accurate congestion signal, and therefore achieves very high
goodput until the number of workers increases to 50. Due to
the limitation of congestion control in TCP protocols, DCTCP
still experiences goodput collapse when flow concurrency
increases. By adaptively adjusting batch size, ARS with both
TCP NewReno and DCTCP achieves high goodput as the
number of workers increases.
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Fig. 7: Performance of different schemes under background workload

B. Impact of background traffic
According to the measurement results in [8], long TCP

flows are quite common in data center networks. The 75th
percentile and 95th percentile of concurrent large flows sharing
a ToR switch is 2 and 4, respectively. Hence, we examine
the performance of ARS with the long-lived background TCP
flows in this test.

We design the experiments that contain 2, 3 and 4 long-
lived TCP flows and each of them continuously sends data
throughout the test. In Fig. 7, the goodput of each scheme
experiences decline as the number of background TCP flows
increases. Furthermore, both DCTCP and TCP NewReno expe-
rience striking performance degradation earlier. We also find
that the goodput of DCTCP is initially higher than ARSDC.
This is because that ARS cuts the number of concurrent
flows to mitigate congestion, thus ARSDC shows relatively
less aggressive in competing for available bandwidth. However,
under highly concurrent flows, ARS still achieves much higher
goodput compared to approaches without ARS.

V. TESTBED EVALUATION

We use a real testbed to evaluate ARS performance in two
typical scenarios (Web search and MapReduce-like applica-
tion). We implement our code patches into the Linux kernel
according to the ARS algorithm, which contains only about
20 lines of additional code.

A. Parameters and topology
The testbed is made up of four servers, which are DELL

T1500 workstations with Intel 2.66 GHz dual-core CPU, 8
GB DDR3, and 500 GB hard disk. Specifically, one of the
four servers is with four 1Gbps NIC cards to act as the ToR
switch and other servers all connect to this server. We denote
this server as ‘switch’ in the following parts. The other servers
are equipped with a single 1Gbps NIC card and act as workers
and aggregator. One of the two workers is only responsible
for sending background flows. All servers are running CentOS
5.5 with Linux kernel 2.6.38 with our patches applied. The
RTT without queuing delay is approximately 100µs between
any two servers. Since we limit the link speed of switch
output port to 100Mbps, the oversubscribed link will be the

bottleneck. Therefore, we use a worker to emulate multiple
workers sending data to the aggregator via the bottleneck link,
which is similar to [15]. The buffer size of the bottleneck
link is 64KB. The packet size and RTOmin is set to 1KB and
200ms, respectively.

B. Web search application scenario
We choose the large Web search service as the first case

study. Here, we focus on the search response time (SRT), that
is, the delay between when the query is sent by the aggregator
and when the response data is completely rendered by all
workers. The response data size of each worker is 500KB/n,
where n is the total number of workers.

DCTCP

ARS+DCTCP

TCP NewReno

ARS+TCP NewReno

Q
ue

ry
 ti

m
e 

(m
s)

0

100

200

300

# of workers
10 20 30 40 50 60 70 80 90

(a) Search response time

DCTCP

ARS+DCTCP

ARS+TCP NewReno

TCP NewReno

Ti
m

eo
ut

 R
at

io
 (%

)

0

25

50

75

100

# of workers
10 20 30 40 50 60 70 80 90

(b) Time-out ratio

Fig. 8: Web search application

We measure SRT when n increases from 1 to 90, as
shown in Fig. 8 (a). During the experiments, ARSDC shows
generally low SRTs ranged between 54 ms and 60 ms in all
cases. ARSNR also achieves at most 63 ms SRT. However,
DCTCP’s SRT falls to around 215 ms and TCP NewReno’s
SRT increases by up to 230 ms because of the severe incast
congestion.

We also measure the timeout ratio, the fraction of queries
that suffer at least one timeout as shown in Fig. 8 (b). TCP
NewReno suffers at least one Time-Out event among the work-
ers in most experimental rounds when the number of workers
is more than 8, and it directly results in high SRT. DCTCP
starts to experience Time-Out when the number of workers is
15 since DCTCP cannot prevent TCP incast congestion when
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Fig. 9: The goodput of each scheme in MapReduce-like application
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Fig. 10: The number of Time-out events in MapReduce-like application

the number of workers becomes larger. Finally, we observe that
ARSDC suffers no Time-Out in all cases and ARSNR maintains
the very small Time-Out ratio as well, which directly results
in the low SRT.

C. MapReduce-like application scenario

In this test, a receiver generates a query to each sender,
and each of them immediately responds with 128 KB of
data. First, we test ARSDC and ARSNR without background
flows and compare to the results with original TCP NewReno
and DCTCP. Fig. 9 (a) shows that both ARSDC and ARSNR
utilize more than 80% link bandwidth. DCTCP’s performance
is better than TCP NewReno, but still experiences goodput
degradation when number of workers is larger than 15.

We present the total number of Time-out events in Fig. 10
(a). No Time-Out event is found in the result of ARSDC and
the maximum number of RTO events for ARSNR is 5. This is
because that ARS avoids congestion by adaptively batching
requests, reducing the number of concurrent flows via the
bottleneck link. TCP NewReno and DCTCP experience a large
number of RTO events as the number of workers increases,
which is validated by the performance degradation shown in
Fig. 9 (a).

Next, we add up to 2 long-lived background TCP flows
to test the performance under background workload. The
background TCP flows are sent from the worker that is only
responsible for sending background flows and we limit the
output rate of this server to 100Mbps to avoid overwhelming
the switch buffer. The goodput of each scheme is illustrated
in Fig. 9 (b) and 9 (c), respectively. Although the goodput
of ARSDC and ARSNR are lower than that without background
workload due to congestion caused by TCP background flows,
they both achieve significantly higher goodput than the original
TCP NewReno and DCTCP, which suffer from remarkably
goodput collapse.

Fig. 10 (b) and (c) show the number of RTO events
corresponding to the experiments performed in Fig. 9 (b)
and (c), respectively. The number of Time-Out events for
TCP NewReno exceeds 2000 for both experiments. Therefore,
its goodput is almost an order of magnitude lower than the
link capacity. DCTCP also experiences high number of Time-
Out events under highly concurrent flows. ARSNR experiences
higher number of RTO events due to severe congestion resulted
from background TCP flows. However, it still outperforms the
original TCP NewReno and DCTCP as the total number of
workers increases. ARSDC, in this case, maintains almost zero
Time-Out events and achieves the highest goodput.
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VI. RELATED WORKS

Many solutions have been proposed to address TCP incast
problem. Since the mismatch of RTOmin (at least 200ms)
and RTT (hundreds of microsecond) directly leads to TCP
throughput collapse, a well-known solution was proposed to
use fine-grained timer to estimate RTT [6]. In this way, it
largely quickens the process of loss recovery. Nonetheless,
this solution may stir up a multitude of spurious Time-outs and
unnecessary retransmissions, which waste available bandwidth
and degrade delivery efficiency. Other schemes also attempt to
alleviate TCP incast problem by modifying TCP parameters,
including decreasing duplicate ACK threshold [14], adding
a random factor in RTO calculation to de-synchronize re-
transmission [6]. Although these proposals could alleviate the
impact of Time-Out or reduce its frequency, they still cannot
fundamentally address TCP incast problem.

Furthermore, various proposals target enhancing TCP pro-
tocol to address TCP throughput collapse. In order to perform
accurate congestion control, DCTCP [8] leverages Explicit
Congestion Notification (ECN) to adjust congestion window
size. Thereby, DCTCP not only reduces the queueing delay
and but also achieves high throughput. To maintain TCP self-
clocking, TCP-PLATO [16] introduces labelling system to en-
sure that labelled packets are preferentially enqueued at switch.
Therefore, the sender can utilize duplicate ACK to trigger fast
retransmission instead of waiting for Time-Out. To avoid Time-
Out, Packet Slicing [17] uses only ICMP messages to adjust the
IP packet size with low overhead, allowing the switch buffer
to accommodate more packets. On the receiver side, ICTCP
[10] adaptively adjusts the advertisement window to control the
aggregate throughput. Similarly, PAC [18] throttles the sending
rate of ACKs on the receiver to prevent incast congestion.

Compared with the enhanced TCP protocols focusing on the
congestion window adjustment, our solution ARS tackles the
TCP incast problem by controlling the number of concurrent
flows. This key difference enables ARS to reduce significantly
Time-Out probability under highly concurrent flows, where
existing protocols become ineffective. Moreover, ARS is easily
deployed only at the aggregator-side, avoiding modifying any
switches or workers.

VII. CONCLUSION

We have presented ARS, a novel adaptive request schedul-
ing design that mitigates TCP incast problem under highly
concurrent flows in data center networks. ARS utilizes end-
to-end congestion signals to perform cross-layer congestion
control of the concurrent and bursty flows. ARS is deployed
only at the aggregator, without any hardware modifications on
switches and thousands of servers. ARS is a supporting design
compatible with a wide range of transport control protocols.
In other words, ARS can obtain great goodput improvement
without upgrade in existing transport protocols. To test ARS’s
broad applicability and effectiveness, we transparently inte-
grate ARS with DCTCP and TCP NewReno and evaluate
ARS with both NS2 simulations and small-scale Linux testbed.
The results indicate that, with ARS enabled, DCTCP and
TCP NewReno significantly reduce the Time-Out probability,

therefore alleviating the incast problem. The network goodput
is remarkably increased by up to 6x. In future work, we plan
to study ARS in various data center network topologies.
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