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Abstract—Modern data-center applications generate a diverse
mix of short and long flows with different performance re-
quirements and weaknesses. The short flows are typically delay-
sensitive but to suffer the head-of-line blocking and out-of-order
problems. Recent solutions prioritize the short flows to meet their
latency requirements, while damaging the throughput-sensitive
long flows. To solve these problems, we design a Coding-based
Adaptive Packet Spraying (CAPS) that effectively mitigates the
negative impact of short and long flows on each other. To exploit
the availability of multiple paths and avoid the head-of-line
blocking, CAPS spreads the packets of short flows to all paths,
while the long flows are limited to a few paths with Equal
Cost Multi Path (ECMP). Meanwhile, to resolve the out-of-order
problem with low overhead, CAPS encodes the short flows using
forward error correction (FEC) technology and adjusts the cod-
ing redundancy according to the blocking probability. The coding
layer is deployed between the TCP and IP layers, without any
modifications on the existing TCP/IP protocols. The experimental
results of NS2 simulation and Mininet implementation show that
CAPS significantly reduces the average flow completion time of
short flows by ∼30%-70% over the state-of-the-art multipath
transmission schemes and achieves the high throughput for long
flows with negligible traffic overhead.
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I. INTRODUCTION

With the rise of data centers, a variety of cloud-based

applications such as web search and social networking are

deployed by a large number of online service providers like

Google and Amazon. To obtain better user experience and

financial revenue, how to achieve the low latency and high

throughput becomes a crucially important issue.

In recent years, Random Packet Spraying (RPS) [1] is

proposed in data center networks (DCNs). As a packet-level

transmission scheme on the switch, RPS randomly assigns the

packets of every flow to one of the available shortest paths to

the destination. RPS splits each flow into packets and spreads

the packets to all available paths to achieve high efficiency

and easy deployment in the multipath topologies such as Fat-

tree and Clos, which are widely used in the large-scale data

centers. Recently, the packet spraying technique has already

been implemented on the commodity switches (e.g. Cisco [2]).

Unfortunately, RPS does not consider the important traffic

characteristic that the short and long TCP flows are mixed in

DCNs. The data center traffic can be characterized by heavy-

tailed distribution [3], [4], that is, around 90% of data is

provided by only around 10% of TCP flows, and about 90% of

TCP flows provide only about 10% of data. Furthermore, most

short flows belong to the delay-sensitive applications, while

the majority of long flows are throughput-sensitive. Since RPS

does not provide any differentiation between the short and long

flows, it inevitably leads to the negative interaction between

the two kinds of flows.
When the packets of both short and long TCP flows are

mixed over the multiple paths by RPS scheme, the following

two issues come up. The first one is the head-of-line blocking.

When the switch buffer is occupied by the packets of long

flows, the short flows have to experience large queuing delay,

leading to the long-tailed flow completion time (FCT). Sec-

ondly, RPS randomly spreads the packets into different paths,

possibly resulting in the TCP out-of-order problem.
Coding is a very powerful scheme to address these issues.

At the sender, the source packets are encoded and scat-

tered to multiple paths. Though some packets experience the

head-of-line blocking or out-of-order, once sufficient encoded

packets arrive at the receiver, the original packets can be

recovered immediately. We propose a coding-based adaptive

packet spraying (CAPS), which successfully integrates coding

into packet spraying and efficiently avoids both head-of-line

blocking and packet reordering. Moreover, the transparent

coding layer only needs to be deployed between the TCP and

IP layers at the end hosts, while making no modifications on

the existing TCP/IP protocols.
In summary, our major contributions are:

• We conduct an extensive simulation-based study to an-

alyze two key issues with multipath transmission: the

short flows experience large FCT due to the head-of-line

blocking caused by the long flows, and the coexisting of

short and long flows leads to the reordering problem.

• We propose a multipath transport scheme CAPS, which

randomly scatters the encoded packets of short flows to

all paths and transmits the long flows to a few paths.

Specifically, we design the coding layer, which rational-

ly adjusts the number of redundant packets to resolve

the out-of-order and head-of-line blocking problems. To

improve the link utilization, CAPS swiftly scatters the

packets of long flows to the unused paths by short flows.

• By using both NS2 simulations and Mininet implemen-

tation, we demonstrate that CAPS performs remarkably

better than the state-of-the-art multipath transmission

schemes. Especially, CAPS greatly reduces the aver-

age FCT (AFCT) of short flows by ∼30%-70% under

high workload. Meanwhile, CAPS yields up to ∼45%

and ∼35% throughput improvement for long flows over

RepFlow and Freeway, respectively.



The rest of the paper is organized as following. In Section

II and III, we respectively describe our design motivation

and overview. In Section IV and V, we introduce packet

spraying and coding of CAPS, respectively. We discuss the

implementation in Section VI. In Section VII and VIII, we

show the Mininet experimental and NS2 simulation results,

respectively. In Section IX, we present the related work and

then conclude the paper in Section X.

II. DESIGN MOTIVATION

To motivate our design, we investigate the impact of the

long flows on the short ones with existing RPS scheme.

A. Head-of-line Blocking

In the data center, almost 90% of TCP flows are less than

100KB [3]. Based on this characteristic, a flow with its data

size less than 100KB is considered as a short flow, otherwise,

that is a long flow. Since RPS does not isolate the short flows

from long ones, the packets of short flows may be spread to the

paths occupied by long flows, and have to be queued behind

the long flows. Therefore, the short flows may suffer from the

heavy head-of-line blocking and long tailed FCT [5], [6].

Fig. 1: Leaf-Spine topology

We conduct NS2 simulation test to analyze the head-of-line

blocking problem with the leaf-spine topology as shown in Fig.

1. Each sender sends a flow to a single receiver via multiple

switches. The buffer size of each switch is 256 packets. There

are 40 equal cost paths between the source and destination

nodes. The bandwidth of each path is 1Gbps and the round-

trip propagation delay is 100μs. In addition, according to the

measurement results in [7], the 75th and 95th percentile of

number of concurrent large flows sharing a ToR switch are 2

and 4, respectively. In this test, the mixture of 100 short TCP

flows (less than 100KB) and 4 long-lived background TCP

flows are generated in heavy-tail distribution.
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Fig. 2: Average queueing delay

We compare the average queueing delay of short flows

under two cases. Firstly, the ToR switch uses RPS to spread

all packets of short and long flows to all paths. Secondly,

without long flows, only the packets of short flows are spread

to all paths. Fig. 2 demonstrates the average queueing delay

for the short flows. In the case without the long flows, the

short flows do not experience the head-of-line blocking, and

thus the average queueing delay of the short flows is reduced

significantly by up to around 80%.

B. Out-of-order

Since RPS randomly spreads the packets to all paths, the

long flows potentially make the short flows suffer from the

out-of-order problem, which means the later-sent packets may

be received ahead of the earlier-sent ones. Fig. 3 (a) shows

the ratio of the number of disorder packets to all packets.

Compared with scenario without the long flows, the ratio of

disorder packets of short flows becomes larger when both

kinds of flows are mixed.

When the out-of-order event happens, the TCP sender

assumes the packets are lost and then cuts its congestion

window, resulting in spurious retransmission and even timeout.

As shown in Fig. 3 (b), the average congestion windows of

the short flows are about 50% smaller than that in the scenario

without the long flows.
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Fig. 3: Disorder due to long flows

Without the long flows, both the queueing delay and the

number of disorder packets in short flows are significantly

reduced. Therefore, as shown in Fig. 4, the FCT of short flows

is greatly reduced without the impact of long flows.
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Fig. 4: FCT of short flows

C. Summary

Our analysis of the coexisting short and long flows leads

us to conclude that (i) the short flows experience increasing
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delay due to the head-of-line blocking once all flows are

treated as the same, (ii) the packet reordering due to the

long flows seriously enlarges the FCT of short flows. These

conclusions motivate us to tackle above problems by designing

and implementing a coding-based adaptive packet spraying

scheme.

III. DESGIN OVERVIEW

In this section, we present an overview of CAPS. The two

key points of CAPS are using packet spraying and FEC coding

to solve the head-of-line blocking and out-of-order problem,

respectively. Specifically, on the one hand, when the long

flows are limited to a few paths, most packets of the short

flows are spread on the paths without blocking and therefore

achieve the lower queueing delay. On the other hand, FEC

coding eliminates the impact of packets reordering. Even if

some encoded packets of the short flows are blocked by the

long flows, the original packets can be recovered from the

other non-blocked encoded packets. The architecture of CAPS

consists of three modules, as shown in Fig. 5.

Applications

TCP

Encoding Layer

IP

Applications

TCP

Decoding Buffer

IP

Sender Receiver

Lower Layers Lower Layers

ECMP if short flow is in ON mode

RPS if short flow is in OFF mode

Encoded packets

Source packets

ToR Switch

Source packets

Encoded packets

ACK ACK

Input Output

Encoding Buffer Decoding Layer

Short Flows         RPS

Long
Flows

Fig. 5: CAPS Architecture

(1) Encoding Module: On the sender side, the encoding

module accepts the source packets from the transport layer and

caches them into an encoding buffer. Then the sender generates

k+r encoded packets (i.e., a coding unit) from k original

packets in the encoding buffer, and delivers the k+r encoded

packets to the network layer. During the encoding procession,

an important task is to dynamically adjust the number of

redundant packets r according to real-time state of network

traffic. When receiving the ACK packets, the sender removes

the ACKed packets from the coding buffer and delivers the

ACK packets to the transport layer.

(2) Packet Spraying Module: At the switch, the packets

of the short flows are spread to all output ports using RPS

technique which have already been implemented in many

commodity switches. On the other hand, the long flows are

transmitted by ECMP [8] or RPS respectively according to

the ON or OFF mode of short flows.

(3) Decoding Module: On the receiver side, the encoded

packets from the network layer are cached into the decoding

buffer. The original k packets can be decoded from k+r
encoded packets and handed over to the upper layer.

IV. PACKET SPRAYING

To reduce the negative impact of short and long flows on

each other, CAPS uses different strategies to transmit the two

kinds of flows. When the short and long flows are transmitted

at the same time, the long flows are limited to only a few paths

by ECMP strategy, while the short flows are simply spread to

all paths by RPS to make full use of the multiple paths between

any given pair of hosts. The details of CAPS operation on ToR

switch are described as following.

(1) Long flows: For a long flow arriving at the ToR switch

with the short flows existing at the same time, it is forwarded

to the next hop by ECMP, which is extensively used as the

de facto routing algorithm. As identified by the TCP 5-tuple,

the TCP flows are randomly hashed to their respective paths.

Thus, the small number of long flows are limited to a few paths

and the head-of-line blocking problem due to the long flows

is avoided for the short flows on the other paths. Moreover,

since ECMP is a flow-level scheme, the out-of-order problem

of long flows is also resolved.

(2) Short flows: Once arriving at the ToR switch, the packet

of short flows is routed by RPS. Since the packets of short

flows are randomly scattered to all available paths to the desti-

nation on the packet-level, RPS utilizes all available bandwidth

more efficiently than ECMP in terms of the throughput and

flow completion time. However, RPS potentially results in the

significant packet reordering due to the large queuing delay

on the paths with long flows. To overcome the out-of-order

problem, we use FEC coding technology to encode the packets

of short flows at the sender as illustrated in the following

section.

V. ENCODING AND DECODING

In this section, we firstly give our rational selection for cod-

ing algorithm. Then the key point of redundancy optimization

is discussed. Finally, we analyze the delay improvement and

traffic overhead.

A. Coding Algorithm

Forward Error Correction (FEC) technology [9], [10], [11]

effectively mitigates the negative impact of packets blocking

and reordering. The reason is that FEC only cares about how

many, rather than which encoded packets have been received.

FEC codes are mainly divided into two categories, called fixed-

rate codes [12] and rateless codes [13]. For rateless codes,

redundancy should be adjusted in real-time according to the

varying packet loss or blocking probability. In order to avoid

unnecessary redundant packets, the receiver sends the feedback

information to the sender to stop encoding for the current
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coding unit [14], [15], unavoidably increasing the latency and

also reducing the robustness of data transmission.
In our CAPS, we use the fixed-rate codes due to the

following reasons. Firstly, the fixed-rate coding scheme works

well when the blocking rate does not change rapidly. Here,

we investigate the probability of a short flow being blocked by

long flows (i.e., blocking probability). We conduct a simulation

in NS2 with the same settings as described in Section II. As

shown in Fig. 6, the traffic of short flows shows ON/OFF

mode, in which the packets of short flows start and finish their

transmissions during the ON periods. Both the ON and OFF

periods follow exponential distribution and the OFF period

is much longer than the bursty ON period [3]. During the

ON periods of the short flows, the long flows are always

existing because the long flows have much larger flow size.

This phenomenon means that, for short flows, the blocking

probability is fixed during their lifetime.
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Secondly, the blocking probability can be estimated in

advance at the sender based on the measurement of RTT.

As shown in Fig. 7, 4 paths with long flows have much

larger RTT than the other paths with only short flows. The

blocking probability by long flows can be estimated as 0.1,

which is the ratio of the number of paths with large RTT to

the total number of paths. However, since CAPS randomly

spreads packets of the short flows to all paths on the ToR

switch, the sender is unable to directly obtain the exact RTT

for each path. Here, we utilize the TCP congestion control

mechanism. Specifically, when the sender receives the ACK

packets, based on the corresponding RTT for each ACK, the

blocking probability is calculated as the ratio of the number of

ACK packets with large RTT to the total number of received

ACK packets. According to the RTT statistics, the empirical

threshold for the large RTT is set as 2x average RTT of all

packets.
The classical fixed-rate codes include Reed-solomon codes

(RS) and Low Density Parity Check Codes (LDPC). Since

RS is suitable for the short code unit with total number of

bits less than 1000, we choose LDPC because it is more

practical to combine multiple packets (i.e., 1500 Bytes for each
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Fig. 8: Data Transmission for a Coding Unit

packets) into a code unit [12]. As shown in Fig. 8, a code unit

containing k source packets (S1, S2, ... , Sk) is encoded into

k+ r encoded packets (C1, C2, ... , Ck+r) at the sender. The

value of r can be changed at each encoding unit according

to the blocking probability. The receiver performs decoding

process to reconstruct the original packets from any set of k′

encoded packets, for k′ slightly larger than k. In CAPS, k is

set to the congestion window size of short flows. Since k′ can

be approximated by k when the number of bits of a code unit

is large (i.e., >1000 bits) [11], for simplicity, we substitute k
for k′ in the following sections. At the receiver, the subsequent

received encoded packets belonging to the same coding unit

are dropped directly.

B. Redundancy Optimization

In the encoding operation, the coding redundancy affects

both the decoding delay and traffic overhead. It is hard to

balance these two aspects. For instance, in order to speed up

the decoding operation, the sender should send more redundant

packets, which unavoidably brings about unnecessary traffic

overhead and limits the transmission rate of the sender by

itself. However, if too less redundant packets are transferred,

the decoding speed is limited because the receiver has to

wait for enough encoded packets for decoding operation. In

brief, the coding redundancy should be elaborately adjusted to

achieve good tradeoff between the decoding delay and traffic

overhead. We give the redundancy optimization as following.

Let nL and n denote the number of ACK packets with

large RTT and the total number of received ACK packets,

respectively. Then we get the blocking probability pB of a

short flow blocked by long flows as

pB =
nL

n
. (1)

A code unit has k source packets and r redundant packets.

That is, k source packets are encoded into k + r encoded

packets. To guarantee that at least k encoded packets reach the

receiver without blocking, the following Equation (2) should

be satisfied

(1− pB)× (k + r) ≥ k. (2)
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To reduce the traffic overhead, with Equation (1) and (2),

the number of redundant packets r for each k source packets

is set as

r =
k

1− pB
− k. (3)

Fig.9 shows the number of redundant packets r with increas-

ing pB . For the higher blocking probability or larger coding

unit, the sender uses more redundant packets to compensate

the blocked packets and achieve the high successful decoding

probability.
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Unfortunately, since the short flows are randomly spread

to all paths, the decoding probability of short flows is not

100%, because some unlucky packets may be blocked or even

dropped on the paths with long flows. Here, we analyze the

successful decoding probability pS of short flows.

Within k + r encoded packets, supposing the number of

blocked packets by long flows is j, we obtain the probability

of any blocked j encoded packets out of k + r packets as

pB(j) = Cj
k+r × pB

j × (1− pB)
k+r−j . (4)

The receiver can successfully decode the original packets

only when the number of blocked packets is no larger than the

number of redundant packets r. Then the successful decoding

probability pS is computed as

pS =

j�r∑

j=0

pB(j) =

j�r∑

j=0

Cj
k+r × pB

j × (1− pB)
k+r−j . (5)
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Fig. 10: pS with varying r and nL

The numeric comparison of the successful decoding prob-

ability pS is shown in Fig. 10 (a). The number of paths and

the coding unit size k are set as 40 and 10, respectively. In

the numeric analysis, we simply substitute the ratio of the

number of long flows’ paths to the total number of paths for the

blocking probability. With the increasing number of redundant

packets r, the successful decoding probability becomes larger

due to more unblocked packets. Furthermore, it is much

easier to decode successfully with a smaller number of long

flows. For 2 long flows, the successfully decoding probability

reaches almost 1 when r is 2. We also conduct the simulation

experiments in NS2 with the same settings in Section V.A.

Fig.10 (b) shows the test result, which is consistent with the

trend of numeric analysis.

C. Delay Performance Analysis

In our designed CAPS, the long flows are limited to a few

paths when the short flows are transmitted. For the short flows,

once enough number of encoded packets arrive, the original

packets can be recovered immediately by the receiver, thus

greatly reducing the transfer delay. However, the redundancy

still leads to the buffering delay for decoding operation at

the receiver. Here, we analyze the delay performance of short

flows without and with coding.

(i) Without Coding

Let RTTL and RTTS represent the maximum values of the

RTT of paths with and without long flows, respectively. Given

the blocking probability pB for each packet, the probability

for all k packets transmitted though the paths without long

flows is (1− pB)
k. Then the probability for at least a packet

experiencing the paths with long flows is 1−(1−pB)
k. Finally,

we obtain the average delay dnc of k packets without coding

as

dnc = (1− pB)
k ×RTTS + (1− (1− pB)

k)×RTTL. (6)

(ii) With Coding

In the decoding operation, the receiver should buffer k
encoded packets before reconstructing the original packets,

introducing the extra buffering delay dB . Since the k packets

are sent back-to-back by the sender, the ith packet has to

wait for the rest k − i packets, with the buffering time as
(k−i)MSS

C . Here, we use C and MSS to denote the bottleneck

link capacity and the size of a TCP segment, respectively.

The average buffering delay for waiting any set of k encoded

packets within a coding unit is calculated as

dB =
k∑

i=1

(k − i)MSS

C
× 1

k
=

(k − 1)MSS

2C
. (7)

Though introducing the buffering delay, the coding oper-

ation helps the short flows to avoid the impact of blocked

packet by the long flows. The delay improvement is analyzed

as following.

When at least k encoded packets are transferred through

the paths without long flows and successfully recovered at the

receiver, the total delay of the successful decoding includes

both RTTS and the buffering delay dB . The probability for

this case is the successful decoding probability pS . When more
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than r packets go through the paths with long flows, since

the buffering delay for decoding operation is much smaller

than RTTL, we only consider RTTL for the blocked packets.

Therefore, the average coding delay dc for a coding unit is

calculated as

dc = pS × (RTTS + dB) + (1− pS)×RTTL. (8)

Taking Equation (3), (5) and (7) into (8), we obtain

dc = RTTL + (RTTS −RTTL +
(k − 1)MSS

2C
)

×
j�r∑

j=0

Cj
k+r × pB

j × (1− pB)
k+r−j .

(9)

Fig. 11 (a) shows the coding delay dc decreases as the re-

dundant packets increasing with a certain blocking probability

pB . The bottleneck link capacity C is 1Gbps and the size of a

TCP segment MSS is 1500 Bytes. k is set as 10. Based on the

measurement result of the maximum RTT on the paths with

and without long flows, RTTS and RTTL are set to 0.1ms

and 3ms, respectively. When the blocking probability pB is

increased, the corresponding values of dnc and dc are shown

in Fig. 11 (b). It is clear that dnc is much greater than dc,

which means the total delay is significantly reduced by the

coding operation.
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D. Traffic Overhead Analysis

The coding operation adds more redundant packets to the

network system, bringing about the traffic overhead. However,

our CAPS design only encodes the short flows, which account

for about 10% of the total network traffic. The traffic overhead

of CAPS is limited. Here, we analyze the traffic overhead of

CAPS.

Supposing the ratio of total packets of long flows to short

flows is g and the total packets of short flows is s, according

to the Equation (3), the load overhead η is calculated as

η =
s
k × r

s+ s× g + s
k × r

=
pB

1 + g × (1− pB)
. (10)

In Fig. 12 (a), the ratio of total packets of long flows to

short flows g is set to from 90%:10% to 99%:1%, which is

heavy tailed distribution as illustrated in Section I. The results

show that the traffic overhead increases with larger g, but is

always less than 3.5%. In Fig. 12 (b), it is clear that the traffic
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Fig. 12: Traffic overhead with increasing g and pB

overhead under the increasing blocking probability is less than

5%, that is small enough to be negligible.

VI. IMPLEMENTATION

We implement the design of CAPS with two key points. The

first one is to guarantee the throughput of long flows. When

long flows are transmitted on a few paths, the short flows on

most paths will not be blocked, while the throughputs of the

long flows will be unavoidably decreased. Furthermore, unlike

short flows, the throughput is much more important than FCT

in view of the long flows. Thus, it is necessary to alleviate

this performance impairment of long flows.

Fortunately, we can take advantage of the ON/OFF traffic

pattern of short flows to adaptively adjust the number of paths

for long flows to deal with rapid changes of network dynamics

and make full use of available multiple paths. As shown in Fig.

6 in Section V.A, the short flows are only transmitted during

the ON periods, leaving the unused paths during the long OFF

periods. Therefore, to ensure the throughput of long flows

without making damage to the short flows meanwhile, we

adopt different strategies to control the long flows according

to the traffic mode of short flows.

Specifically, CAPS samples the short flows periodically at

the switch. When none packet of short flows is received during

the sampling interval T , the mode of short flows is set as OFF

and vice versa. Here, the sampling interval T is set as 500μs

[16], which is the general inactivity gap between two bursts

of packets in short flows. If the short flows are in OFF mode,

the long flows will be spread to all paths with RPS to achieve

high throughput. Otherwise, the long flows are limited to a

few paths with ECMP to avoid the impact on the short flow.

The other key consideration of our CAPS is that, in most

cases, it is hard to obtain accurate flow size information at the

start of a flow. For example, the partial results for online query

responses are typically transferred when they are generated,

instead of waiting for the end of the query execution. Thus

under these situations, CAPS needs to work in the dark even

without prior knowledge. In the absence of prior knowledge,

CAPS considers all flows as short flows in the beginning, and

scatters all packets to all paths. When the amount of data

belonging to one flow is larger than the threshold for large

flows (i.e., 100KB) [3], [17], [18], the flow is distinguished

as a long flow and then transmitted in the different way. The

experimental results in Section VIII show that CAPS works

well in the dark.
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VII. TESTBED EVALUATION

In this section, we use a realistic Mininet, implementa-

tion [18], [19], [20] in a small-scale testbed to test CAPS’s

broad applicability and effectiveness. We implement CAPS on

Mininet, a network emulation system based on Linux kernel

using virtualization. Mininet’s virtual hosts, switches, links and

controllers are real components running on the standard Linux

kernel, and for the most part their behavior is similar to the

discrete hardware elements.

In this test, CAPS is implemented in Mininet 2.3.0 on a

Ubuntu kylin 16.04. The test topology is leaf-spine network

shown in Fig. 1. The total number of the equal cost paths

between the leaf and spine switch is 20. We set the link

bandwidth to 20Mb and delay to 1ms [18]. POX is installed

as the controller on switches to support ECMP and RPS. The

buffer size at switches is 256 packets. The default numbers of

short flows and long flows are 100 and 4 [21], respectively. The

sizes of short flows are randomly distributed within 100KB.

The sizes of large flows are larger than 10MB [22]. The overall

traffic obeys heavy tailed distribution as illustrated in [3] .
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We normalize the results of ECMP[8], RPS [1], RepFlow

[18] and Freeway [23] to that of CAPS. Then we compare

the performances of them with varying number of short or

long flows. RepFlow simply replicates each short flows to reap

multi-path diversity to minimize the flow completion time.

Freeway adaptively partitions the paths into low latency paths

and high throughput paths respectively for the short and long

flows to alleviate the impact of long flows to the short ones.

In Fig. 13 (a), the normalized AFCT of ECMP, RPS,

RepFlow and Freeway is larger than 1, meaning that CAPS

achieves the smaller AFCT of short flows. Specifically, CAPS

reduces the AFCT of short flows by ∼50%-70%, ∼40%-

60%, ∼30%-40% and ∼1%-5% with increasing the number

of short flows over ECMP, RPS, RepFlow and Freeway,

respectively. This is because CAPS is not affected by the

head-of-line blocking or packets reordering, only requires to

receive sufficient packets regardless of which path they come

from. Since ECMP and RPS are agnostic to the short and

long flows, the short flows suffer from the long queuing

delay and long-tailed FCT. The performance of RepFlow is

worse than CAPS, because RepFlow only replicates, but does

not isolate the short flows from the long flows on different

paths. Moreover, the traffic overhead of RepFlow limits its

performance improvement under the heavy load.

Fig. 13 (b) shows the normalized throughputs of long flows

with increasing number of short flows. CAPS improves the

throughputs of long flows by ∼30%-40%,∼25%-45%, ∼25%-

35% over ECMP, RepFlow and Freeway, respectively. The

reason is that ECMP, RepFlow and Freeway employ only one

path to transfer each long flow, resulting the low utilization

on the multiple paths. CAPS and RPS work on the packet-

level and flexibly scatter the packets to all paths, obtaining

the higher throughputs of long flows. Since CAPS sprays the

packets of long flows to all paths only during the OFF periods

of short flows, the throughputs of long flows in CAPS are

lower than that of RPS, showing the tradeoff between the delay

gain of short flows and the throughput loss of long flows.

Fig. 14 (a) shows the normalized AFCT with varying

number of long flows. Compared with the other schemes,

CAPS achieves the better performance. However, with the

increasing number of long flows, much more traffic is injected

into the network system. Moreover, more long flows lead to

larger blocking probability and thus more redundant packers

after the coding operation, making the network congestion

heavier. Thus, the performance improvement for short flows

becomes less compared with the case of increasing only the

number of short flows. Fig. 14 (b) shows that CAPS obtains

the higher throughputs of long flows compared with ECMP,

RepFlow and Freeway.

VIII. SIMULATION EVALUATION

To evaluate the performance of CAPS in the large-scale

scenarios, we conduct the NS2 simulation tests in the web

search [7] and data mining [24] application scenarios. In the

web search scenario, 30% of flows larger than 1MB provide

more than 95% bytes. In the data mining scenario, ∼ 3.6%

flows larger than 35MB provide 95% bytes, while around 80%

of flows are less than 100KB.

We use the leaf-spine topology with 24 ToR switches,

each of which connects to 36 hosts. The whole network has

864 hosts and 12 core switches. There are 12 equal cost

paths between any pair of hosts. All flows are generated

between random pairs of hosts following a Poisson process

with load varying from 0.1 to 0.8 to thoroughly evaluate

CAPS’s performance. We also test the performance of CAPS

without prior knowledge of flow size.

A. Delay Performances of Short Flows

Here, we focus on the flow completion time of short flows

with the web search and the data mining workload as shown

in Fig. 15 and Fig. 16, respectively. Fig. 15 (a) and 16 (a)
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Fig. 16: Data mining application

show the average flow completion time, while Fig. 15 (b) and

16 (b) gives the 99th percentile FCT, presenting the tail FCT.

We observe that CAPS improves the AFCT and tail FCT

significantly compared to the other schemes except for Free-

way, especially in high workloads. For example, under the web

search workload, CAPS reduces the AFCT of short flows by

by ∼60%-70%, ∼50%-60% and ∼40%-50% for loads from

0.3 to 0.8 over ECMP, RPS, and RepFlow, respectively.

The results demonstrate the advantage of CAPS in the

typical multi-path topology. CAPS avoids the impact of out-of-

order and head-of-line blocking problem due to the mixture of

short and long flows. When the workload becomes high, more

long flows occupy more paths, with the result that more short

flows hit the long tail. CAPS is able to get enough gain by

adaptively adjusting the redundancy of short flows and limiting

the number of long flows’ paths. For the other schemes, since

most short flows experience large queueing delay, the delay

performance is degraded. Only the result of Freeway is close

to CAPS, because Freeway dynamically separates the short

and long flows.

Moreover, though CAPS-dark has not any prior knowledge

of the flow size, the impact of long flows on the short flows is

negligible when the long flows are regarded as short flows in

the beginning, because the number of long flows for each ToR

switch is very small (i.e., less than 4) and the threshold for

large flows in CAPS-dark is only 100KB. Thus, CAPS-dark

achieves almost the same performance as CAPS.

We also find that the short flows in the data mining workload

has lower AFCT than those in the web search workload. The

reason is that the data mining workload has more obvious

boundary between the vast majority of short flows and a few

long flows, while in the web search workload there are many

medium flows between 100KB and 1MB. These medium flows

lead to larger queueing delay.

B. Throughput Performances of Long Flows

We test the throughputs of long flows. As shown in Fig.

15 (c) and Fig. 16 (c), RPS obtains the highest throughput,

because it spreads the packets of long flows to all paths.

ECMP, RepFlow and Freeway do not effectively utilize all

available multiple paths. As a packet-level scheme, CAPS

flexibly adjusts the number of paths for long flows according

to the ON/OFF mode of short flows. When the short flows

are in OFF mode, CAPS scatters the packets of long flows to

all paths, significantly improving the throughput performance

of long flows compared to the flow-level schemes. Moreover,

since the threshold for large flows in CAPS-dark is 100KB,

which is much smaller that the long flow size, CAPS-dark has

the similar performance to CAPS.

IX. RELATED WORKS

Recent data center architecture uses a large number of

commodity switches organized as multi-rooted tree with mul-

tiple paths from the sender to the receiver. To leverage

these multiple paths, ECMP [8] is widely used in current

fabrics due to its simplicity. However, the hash collisions

problem in ECMP leads to the traffic imbalance if a few long

flows exist. To address this shortcoming, the centralized flow
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scheduling architecture named Hedera [25] uses the global

first fit algorithm to schedule elephant flows to uncongested

paths. MultiPath TCP (MPTCP) [26] protocol splits the long

TCP flows in subflows across available paths. Furthermore,

FMTCP [9] is proposed to use network coding to alleviate

the impact of path diversity. Compared with these flow-based

traffic splitting schemes, RPS works on the packet-level. RPS

randomly spreads all packets along different paths, achieving

better load balance and network utilization. However, RPS

easily brings about the TCP out-of-order problem, potentially

triggering the suboptimal performance.

Various proposals target differentiating short and long flows

to provide low latency for short flows. L2DCT [27] achieves

the LAS scheduling discipline at the sender in a distributed

way. According to the flow size that has been sent, L2DCT

distinguishes the long and short flows and assigns higher

bandwidth to the short flows, thereby reducing the average

flow completion time. Based on the multi-path diversity, many

multipath transmission schemes are proposed. RepFlow [18]

simply replicates each short flow to exploit multiple paths

diversity to minimize flow completion times. Based on the

RPS and MPTCP, MMPTCP [28] spreads the packet of short

flows to reduce the FCT and transmit the long lows by MPTCP

to improve their throughputs. Freeway [23] adaptively isolate

the short and long flows on different transmission paths to

reduce the impact of two types of flows.

In contrast with the multipath transmission schemes on

the flow-level, our solution CAPS works through a different

perspective: we isolate the two kinds of flows on the packet-

level to avoid the head-of-line blocking and introduce the

FEC coding to solve the TCP out-of-order for short flows.

Meanwhile, CAPS flexibly switches the packets of long flows

to idle paths to obtain high throughput.

X. CONCLUSION

To mitigate the negative impact of short and long flows

on each other in data center networks, we propose CAPS,

a coding-based adaptive packet spraying design that reduces

the flow completion time for short flows and guarantees the

throughputs for long flows. CAPS utilizes the FEC code to

encode only the short flows and spreads the packets of short

flows to all equal cost multipath. CAPS limits the long flows

when coexisting with the short flows to avoid the head-of-

line problem and scatters the packets of long flows to the

unused paths by the short flows to achieve high throughput.

We evaluate CAPS with both NS2 simulations and small-scale

Mininet testbed. The results indicate that CAPS significantly

reduces the AFCT by ∼30%-70% for short flows and achieves

high throughput for long flows with negligible traffic overhead.
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