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Based on the simpli¯ed Lorenz multiwing attractor and the generalized Jerk multiscroll at-
tractor, the grid compound chaotic systems are designed via state variables exchanging, state

variables scale transformation, coordinate transformation and switching control. By designing

di®erent switching controllers, four kinds of grid compound attractors are realized. Dynamical

characteristics of these grid compound systems are analyzed by the means of phase diagram,
Poincar�e section, bifurcation diagram and the largest Lyapunov exponent (LLE). The digital

circuit and analog circuit are designed, which verify the feasibility of the circuit implement of

the compound chaotic system.
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1. Introduction

In 1963, Lorenz found the ¯rst chaotic attractor in three-dimensional autonomous

system when he studied the atmospheric convection.1 Since then, the generalized

Lorenz system has been extensively investigated.2–5 To improve the performance of

chaotic system, people began to study the strengthened chaotic system,6 including

multiwing chaotic system7–9 and multiscroll chaotic system.10,11 Actually, a variety

of design methods were proposed to generate multiwing chaotic attractor, such as

heteroclinic orbits method,12 fractal method,13–15 and piecewise linear control

method.16,17 Meanwhile, many nonlinear functions were also employed to generate

multiscroll attractor, such as step wave and saturated sequence,18–20 hyperbolic

tangent function series.21 Compared with single type chaotic system, compound
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chaotic system has richer dynamic characteristic, so designing new control methods

for constructing complex chaotic attractors has become a hot topic in recent years.

For example, Ref. 22 constructed compound chaotic attractors among the Lorenz

system family by designing the switching controller, and its analog circuit was

implemented with traditional operational ampli¯ers only for the same type of chaotic

attractors. Reference 23 constructed compound attractors with multiwing and

multiscroll chaotic attractors, and it was veri¯ed by circuit simulation. However,

these systems were constructed with simple one-dimensional compound chaotic

attractors, and the characteristic analysis of the compound system was not involved.

An interesting question is whether one can design a multiwing-multiscroll grid

compound chaotic system, which may have a more complex topological structure.

Circuit implementation is meaningful for the chaos application.24–26 Analog cir-

cuit can generate real chaotic signal, and digital circuit can generate chaotic signal

more conveniently and controllably. Nowadays, current conveyor has been widely

applied to realize simple chaotic circuits.27–29 Meanwhile, DSP implementation of

chaotic systems is repeatable, stable and reliable.30 So we will take the current

conveyor circuit and DSP platform as experimental veri¯cation for the designing of

grid compound chaotic systems.

In this paper, taking the simpli¯ed Lorenz multiwing chaotic attractor31 and the

generalized Jerk multiscroll chaotic attractor as the basic systems,32 we designed four

kinds of compound chaotic systems. The rest of this paper is organized as follows.

The compound chaotic systems are designed in Sec. 2. The dynamics of the com-

pound chaotic attractors are analyzed in Sec. 3. The circuit implementation is pre-

sented in Sec. 4. Finally, we summarize the conclusions.

2. Design of the Grid Compound Chaotic System

2.1. Design principle

There are 4 main steps to obtain compound chaotic attractors.22 Considering N

three-dimensional chaotic systems, the design steps are presented as follows:

Step 1. Exchange state variables of the systems to ensure that all these chaotic attractors

are located in di®erent regions in the same phase space.

Step 2. Transform the scale of the state variables of all theN chaotic systems to ensure

that each generated attractor has appropriate and comparable sizes in the

phase space.

Step 3.Transform the coordinates in an appropriate direction for the systems so that

each pair of adjacent chaotic attractors has a common connected domain.

Step 4.Generate a compound chaotic attractor via switching control based on the N

chaotic systems.

The multiscroll-multiwing chaotic system is compounded by switching control.

Through the combination of di®erent transformations with switch controllers, we

designed four kinds of the grid compound chaotic systems as shown in Fig. 1.
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2.2. Models of the basic compound chaotic system

By replacing a nonlinear cross-product in the simpli¯ed Lorenz system31 with a

multisegment quadratic function Fðx1Þ, the simpli¯ed Lorenz multiwing chaotic

system is obtained as

_x1 ¼ 10ðy1 � x1Þ;
_y1 ¼ ð24� 4cÞx1 � px1z1 þ cy1;

_z1 ¼ F ðx1Þ � ð8=3Þz1;

F ðx1Þ ¼ F0x1
2 �

XN
i¼1

Fið1þ 0:5ðx1 � EiÞ � 0:5ðx1 þEiÞÞ;

8>>>>>>><
>>>>>>>:

ð1Þ

where c is the system parameter, and p is the constant, which can facilitate the design

and implementation of the corresponding circuits.N;F0;Fi and Ei are the adjustable

parameters.

The generalized Jerk multiscroll chaotic system is written as32

_x2 ¼ y2;

_y2 ¼ z2;

_z2 ¼ �x2 � y2 � �z2 þGðx2Þ;

Gðx2Þ ¼ A sgnðx2Þ þ A
XN
n¼1

sgnðx2 � 2nAÞ þA
XN
n¼1

sgnðx2 þ 2nAÞ;

8>>>>>>><
>>>>>>>:

ð2Þ

where � is the system parameter, and A is the constant. Gðx2Þ is the nonlinear

term, which can control the number of scrolls. The switch controllers S1;S2 are

designed as

S1 ¼ 0:5ð1þ sgnðz� z0ÞÞ;
S2 ¼ 0:5ð1� sgnðz� z0ÞÞ;

�
ð3Þ

where z0 is the switching control point, and it should be located in common con-

nected domain of the two attractors. According to the compound principle, the

Eqs. (1) and (2) are in di®erent phase planes, then we exchange the state variable y2
and z2 of Eq. (2). In order to ensure that every generated attractor has appropriate

and comparable size in the phase space, we expand 10 times of the state variable x1 in

Eq. (1), then the one-dimensional multiwing-multiscroll compound chaotic attractor

Fig. 1. Block diagram of the design principle.
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system is designed as

_x ¼ ðz� lÞS1 þ 100ðy� 0:1xÞS2;

_y ¼ ð�x� ðz� lÞ � �yþGðxÞÞS1 þ ð0:1ð24� 4cÞx� 0:1pxzþ cyÞS2;

_z ¼ yS1 þ ðF ð0:1xÞ � ð8=3ÞzÞS2;

8<
: ð4Þ

where GðxÞ and F ðxÞ are de¯ned by Eqs. (1) and (2), respectively. When c ¼ 1;

p ¼ 20;F0 ¼ 400;F1 ¼ �20:5;E1 ¼ 0:2; � ¼ 0:75;A ¼ 1;N ¼ 1;M ¼ 1; l ¼ 3:5; z0 ¼
2:4, we obtained the compound chaotic attractor and time domain waveform

as shown in Figs. 2(a) and 2(b), respectively, and its Poincar�e section is shown in

Fig. 2(c), which is calculated with y ¼ 0 as a cross-section. It shows the four-wing and

four-scroll attractor is generated and the compound system is chaotic.

2.3. Design of the Jerk–Lorenz–Jerk–Lorenz compound chaotic system

According to Sec. 2.1, the grid compound Jerk–Lorenz–Jerk–Lorenz system is designed

by

_x ¼ ðz� l2ÞS1 þ 100ðy� 0:1xÞS2 þ ðz� l1 � fðzÞÞS3 þ 100ðy� 0:1xÞS4;

_y ¼ ð�x� ðz� l2Þ � �yþGðxÞÞS1 þ ð0:1ð24� 4cÞx� 0:1pxzþ cyÞS2;

þ ð�x� zþ l1 þ fðzÞ � �yþGðxÞÞS3 þ ð0:1ð24� 4cÞx
� 0:1pxðz� fðzÞÞ þ cyÞS4;

_z ¼ yS1 þ ðF ð0:1xÞ � ð8=3ÞzÞS2 þ yS3 þ ðF ð0:1xÞ � ð8=3Þðz� fðzÞÞÞS4;

8>>>>><
>>>>>:

ð5Þ

where l1 ¼ 3:7; l2 ¼ 3:1; p ¼ 20; c ¼ 1; � ¼ 0:75, and S1;S2;S3;S4; fðzÞ;FðxÞ are

designed as

S1 ¼ 0:5ð1� sgnðz� z01ÞÞ;
S2 ¼ 0:5ðsgnðz� z01Þ � sgnðz� z02ÞÞ;
S3 ¼ 0:5ðsgnðz� z02Þ � sgnðz� z03ÞÞ;
S4 ¼ 0:5ð1þ sgnðz� z03ÞÞ;
fðzÞ ¼ Að1þ sgnðz� z02ÞÞ;

FðxÞ ¼ F0x
2 �

XN
i¼1

Fið1þ 0:5ðx� EiÞ � 0:5ðxþEiÞÞ;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð6Þ

(a) (b) (c)

Fig. 2. Numerical simulations of the compound chaotic attractor: (a) Phase diagram on x� z plane,

(b) Time domain waveform of variable z, (c) Poincar�e section (y ¼ 0).
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where z01¼2:3; z02¼4:4; z03 ¼ 6:7;A ¼ 2:05;N ¼ 1;F0 ¼ 400;F1 ¼ �20:5;E1 ¼ 0:2.

S1;S2;S3;S4 are the switching controllers, and fðzÞ is the displacement function of

the Lorenz system. According to Eqs. (5) and (6), we set the initial value

ðx; y; zÞ ¼ ð0:1; 0:1; 0:1Þ, and the attractor and its Poincar�e section with y ¼ 0 are

shown in Figs. 3(a) and 3(c), respectively. The time domain waveform of this system is

also plotted as shown in Fig. 3(b). Obviously, the system is chaotic, and the largest

Lyapunov exponent (LLE) of the compound system is 8.6247, which indicates the

chaotic system is very complicated.

2.4. Design of the Jerk–Jerk–Lorenz–Lorenz compound chaotic system

According to the design principle, the grid compound Jerk–Jerk–Lorenz–Lorenz

chaotic system is obtained as

_x ¼ 100ðy� 0:1xÞS1 þ ðz� f1ðzÞÞS2;

_y ¼ ð0:1ð24� 4cÞx� 0:1pxðz� f2ðzÞ � l1Þ þ cyÞS1

þ ð�x� ðz� f1ðzÞÞ � �yþGðxÞÞS2;

_z ¼ ðFð0:1xÞ � ð8=3Þðz� f2ðzÞ � l1ÞÞS1 þ yS2;

8>>><
>>>:

ð7Þ

where S1;S2; gðxÞ; f1ðzÞ; f2ðzÞ;FðxÞ are designed as

S1 ¼ 0:5ð1þ sgnðz� z0ÞÞ;
S2 ¼ 0:5ð1� sgnðz� z0ÞÞ;
gðxÞ ¼ sgnðxÞ þ sgnðx� 2Þ þ sgnðxþ 2Þ;
f1ðzÞ ¼ 0:5A1ð1þ sgnðz� l1ÞÞ;
f2ðzÞ ¼ A2ð1þ sgnðz� l2 � l3ÞÞ;

FðxÞ ¼ F0x
2 �

XN
i¼1

Fið1þ 0:5ðx�EiÞ � 0:5ðxþ EiÞÞ;

8>>>>>>>>>>><
>>>>>>>>>>>:

ð8Þ

here, c ¼ 1; � ¼ 0:75; p ¼ 20; l1 ¼ 1:1; l2 ¼ 2:4; l3 ¼ 3:5;A1 ¼ 2:1;A2 ¼ 1:1; z0 ¼ 3:5;

N ¼ 1;F0 ¼ 400;F1 ¼ �20:5;E1 ¼ 0:2. z0 is the boundary between the Lorenz

system and the Jerk system, and l1 is the displacement distance of the Lorenz system.

f1ðzÞ is the displacement function of Jerk system, and f2ðzÞ is the Lorenz translation

(a) (b) (c)

Fig. 3. Numerical simulations of the Jerk–Lorenz–Jerk–Lorenz compound chaotic attractor: (a) Phase

diagram on x–z plane, (b) Time domain waveform of variable z, (c) Poincar�e section (y ¼ 0).
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function. S1 and S2 are the switching function. The compound attractor, time do-

main waveform and Poincar�e section at y ¼ 0 are shown in Fig. 4. It indicates this

grid compound system is chaotic.

2.5. Design of the Jerk–MirrorLorenz–Jerk compound chaotic system

Replacing the variable z with a mirror transformation function sgnðz� z0Þ�
ðz� z0Þ þ z0 � gðzÞ in Eq. (1), and the mirror Lorenz system becomes to

_x ¼ 100ðy� 0:1xÞ;
_y ¼ 0:1ð24� 4cÞx� 0:1pxðsgnðz� z0Þðz� z0Þ þ z0 � gðzÞÞ þ cy;

_z ¼ sgnðz� z0ÞFðxÞ � ð8=3Þðz� z0Þ � 8=3 sgnðz� z0Þðz0 � gðzÞÞ;

8<
: ð9Þ

and then the Jerk–MirrorLorenz–Jerk compound system is obtained as

_x ¼ ðz� l1ÞS1 þ 100ðy� 0:1xÞS2 þ ðz� l2ÞS3;

_y ¼ ð�x� ðz� l1Þ � �yþ gðxÞÞS1 þ ð0:1ð24� 4cÞx� 0:1pxðsgnðz� z0Þðz� z0Þ
þ z0 � gðzÞÞ þ cyÞS2 þ ð�x� ðz� l2Þ � �yþ gðxÞÞS3;

_z ¼ yS1 þ ðsgnðz� z0ÞF ð0:1xÞ � ð8=3Þðz� z0Þ
� 8=3 sgnðz� z0Þðz0 � gðzÞÞÞS2 þ yS3;

8>>>>><
>>>>>:

ð10Þ
where S1;S2;S3; gðxÞ; gðzÞ, and FðxÞ are designed by

S1 ¼ 0:5ðsgnðz� j1Þ � sgnðz� j2ÞÞ;
S2 ¼ 0:5ðsgnðz� l3Þ � sgnðz� l4ÞÞ;
S3 ¼ 0:5ðsgnðz� j3Þ � sgnðz� j4ÞÞ;
gðxÞ ¼ sgnðxÞ þ sgnðx� 2Þ þ sgnðxþ 2Þ;

gðzÞ ¼
XM2

i¼1

ð�Að1� sgnðsgnðz� z0Þðz� z0Þ � ðzi � z0ÞÞÞÞ;

F ðxÞ ¼ F0x
2 �

XN
i¼1

Fið1þ 0:5ðx� EiÞ � 0:5ðxþ EiÞÞ;

8>>>>>>>>>>>>>><
>>>>>>>>>>>>>>:

ð11Þ

(a) (b) (c)

Fig. 4. Numerical simulations for Jerk–Jerk–Lorenz–Lorenz grid compound chaotic attractor: (a) Phase

diagram on x–z plane, (b) Time domain waveform of variable z, (c) Poincar�e section (y ¼ 0).
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where the values of A; z0 and zi are obtained by trial and error method, and M2 is

nonnegative integer. When c ¼ 1; p ¼ 20;F0 ¼ 400;F1 ¼ �20:5;E1 ¼ 0:2; � ¼ 0:75;

A ¼ 1:1;N ¼ 1;M2 ¼ 1; z0 ¼ 0:2; z1 ¼ 2:8; j1 ¼ 2:45; j2 ¼ j1 þ 5; j3 ¼ l3 � 5; j4 ¼ l3;

l1 ¼ 3:3; l2 ¼ �3:05; l3 ¼ �1:95; l4 ¼ 2:45, the grid compound attractor, time

domain waveform and Poincar�e section at y ¼ 0 are shown in Fig. 5. It is clear that

the grid compound system is chaotic.

2.6. Design of the pseudorandom compound chaotic system

To improve the performance of the compound system further, we designed a

compound chaotic system by employing pseudorandom switch method. It is

de¯ned by

_x ¼ 100ðy� 0:1xÞS1 þ ðz� f3ðzÞ � j2ÞS2 þ ðz� f1ðzÞÞS3;

_y ¼ ð0:1ð24� 4cÞx� 0:1pxðz� f2ðzÞ � l3Þ þ cyÞS1

þ ð�x� ðz� f3ðzÞÞ�j2��yþ gðxÞÞS2 þ ð�x� ðz� f1ðzÞÞ � �yþ gðxÞÞS3;

_z ¼ ðFð0:1xÞ � ð8=3Þðz� f2ðzÞ � l3ÞÞS1 þ yS2 þ yS3;

8>>>>>>><
>>>>>>>:

ð12Þ

where the switching controllers S1;S2 and S3 are designed by

S1 ¼ 0:5ð1þ sgnðz� z0ÞÞW1ðzÞ;
S2 ¼ 0:5ð1� sgnðz� z0ÞÞ;
S3 ¼ 0:5ð1þ sgnðz� z0ÞÞW2ðzÞ;

8>>><
>>>:

ð13Þ

(a) (b) (c)

Fig. 5. Numerical simulations of the Jerk–MirrorLorenz–Lorenz compound chaotic attractor: (a) Phase

diagram on x–z plane, (b) Time domain waveform of variable z, (c) Poincar�e section (y ¼ 0).
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and the functions are designed as

W1ðzÞ ¼ 0:5ð1þ sgnðU1ðzÞ �W1ðzÞÞÞU1ðzÞ þ 0:5ð1� sgnðU1ðzÞ �W1ðzÞÞÞW1ðzÞ;
W2ðzÞ ¼ 0:5ð1þ sgnðU2ðzÞ �W2ðzÞÞÞU2ðzÞ þ 0:5ð1� sgnðU2ðzÞ �W2ðzÞÞÞW2ðzÞ;
U1ðzÞ ¼ 0:5ð1þ sgnðR� 50ÞÞ;
U2ðzÞ ¼ 0:5ð1� sgnðR� 50ÞÞ;
f1ðzÞ ¼ 0:5A1ð1þ sgnðz� l1ÞÞ;
f2ðzÞ ¼ A2ð1þ sgnðz� l2 � l3ÞÞ;
f3ðzÞ ¼ A2ð1þ sgnðz� j1 � j2ÞÞ;

F ðxÞ ¼ F0x
2 �

XN
i¼1

Fið1þ 0:5ðx� EiÞ � 0:5ðxþ EiÞÞ;

8>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>:

ð14Þ
where f1ðzÞ; f2ðzÞ; f3ðzÞ are the parallel transformation functions. A1; A2 are con-

stants, j1; j2; l1; l2; l3 are the space displacements, and they are obtained by trial-and-

error method. Obviously, this compound system is uncertain before the initial values

of chaotic system are selected, so it will be more appropriate than other chaotic

systems when it is applied to secure communication. For simplicity, we set the

switching controller S2 be always valid, and it determines that the half of this system

is Jerk system with 2� 4 scrolls. There is only one e®ective controller between S1 and

S3, and they eventually determine the type of system to be generated. The °ow

diagram is shown in Fig. 6.

Setting j1 ¼ 1:1; j2 ¼ 6:1; c ¼ 1; � ¼ 0:75; p ¼ 20; z0 ¼ 3:5; l1 ¼ 1:1; l2 ¼ 2:4; l3 ¼
3:5;A1 ¼ 2:1;A2 ¼ 1:1;N ¼ 1;F0 ¼ 400;F1 ¼ �20:5;E1 ¼ 0:2, and changing initial

values, the two kinds of compound chaotic systems appear randomly as shown in

Figs. 7(a) and 7(d), respectively. Here, we get the sum of decimal part of initial three

coordinates, and then let it fall into a speci¯c interval by numerical processing, and

the result is R. When R falls into the half of this interval, Fig. 7(a) appears.

Otherwise, Fig. 7(d) shows up. When R is obtained, one of the groups in U1ðzÞ;
W1ðzÞ;S1 and U2ðzÞ;W2ðzÞ;S3 are selected. S1;S2;S3 are switch controllers. W1ðzÞ
and W2ðzÞ determine which switch controller is valid between S1 and S3.

Fig. 6. Flow diagram of pseudorandom switch method.
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Apparently, it is more di±cult for people to predict the orbit of the chaotic

attractor. So, this approach can be used to obtain more complicated attractors. It is

worth mentioning that the randomness of the compound system can not only be

determined by the initial value, but also by other factors.

3. Dynamics of the Grid Compound Chaotic System

3.1. Lyapunov exponents

The Lyapunov exponents of di®erent grid compound chaotic systems are shown in

Fig. 8. It can be seen that the Lyapunov exponents of Jerk–Lorenz are similar to that

of the 1� 4-wing Lorenz system when c > 2. The Lyapunov exponents of Jerk–Jerk–

Lorenz–Lorenz are similar to that of the 1� 4-wing Lorenz system when c > 0:5. The

Lyapunov exponents of Jerk–Lorenz–Jerk–Lorenz are similar to that of the

1� 4-wing Lorenz system when c > 0. The Lyapunov exponents of Jerk–MirrorLor-

enz–Jerk are similar to that of the 1� 4-wing Lorenz system when c 2 ð2; 6Þ. It shows
that the compound system still contains the dynamic properties of subsystems.

3.2. The LLE analysis

The LLE33 of the grid compound systems are listed in Table 1. The Jerk–Lorenz–

Jerk–Lorenz system has the largest LLE, which means it has more complex

(a) (b) (c)

(d) (e) (f)

Fig. 7. Numerical simulations of the pseudorandom compound system: (a) Phase diagram on x–z plane,
(b) Time domain waveform of variable z, (c) Poincar�e section (y ¼ 0), (d) Phase diagram on x–z plane, (e)

Time domain waveform of variable z, (f) Poincar�e section (y ¼ 0).
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dynamical behaviors. The LLE of Jerk–Lorenz system stays between that of Jerk

system and Lorenz system, while the LLE of Lorenz–Lorenz–Jerk–Jerk does not

increased apparently. It can be seen that the complexity of the grid compound

attractor is improved by suitable combination control.

3.3. Chaotic graph of the Jerk–Lorenz–Jerk–Lorenz chaotic system

As the Jerk–Lorenz–Jerk–Lorenz and Jerk–Jerk–Lorenz–Lorenz have the larger

LLE, we focus on the dynamical properties of the two systems. Chaos diagram is a

comprehensive way to re°ect dynamics of a chaotic system in the parameter space.

As shown in Fig. 9, the darker the color is, the larger the LLE is, and it indicates that

the chaotic system is more complex. When it is applied to secure communication,

(a) (b) (c)

(d) (e)

Fig. 8. The Lyapunov exponents of di®erent compound chaotic systems: (a) Jerk–Lorenz, (b) Jerk–Jerk–

Lorenz–Lorenz, (c) Jerk–Lorenz–Jerk–Lorenz, (d) Jerk–MirrorLorenz–Jerk, (e) 1� 4-wing Lorenz.

Table 1. The LLE of di®erent compound attractors.

Chaotic systems LLE (c ¼ 1; � ¼ 0:75)

Multiwing chaotic attractor (1� 4 Lorenz) 1.7180
Multiscroll chaotic attractor (1� 4 Jerk) 0.0602

Parallel transform multiwing chaotic attractor (4� 4 Lorenz) 1.8781

Parallel transform multiscroll chaotic attractor (4� 4 multiscroll) 0.0698

Multiwing-multiscroll compound (1� 4 Jerk-1� 4 Lorenz) 0.5562
Multiwing-multiscroll grid compound (Jerk–Jerk–Lorenz–Lorenz) 6.8354

Multiwing-multiscroll mirror compound (Jerk–MirrorLorenz–Jerk) 1.8312

Multiwing-multiscroll cross grid compound (Jerk–Lorenz–Jerk–Lorenz) 8.6247
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the parameters of system should be selected in darker areas. While changing

compound systems parameters c and �, respectively, the maximum value of LLE

reachs 40. One can choose the most suitable parameters from this diagram in

applications. For Fig. 9(a), we found that when the parameter c 2 ð�6; 3Þ;

(a) (b)

Fig. 9. Chaotic diagrams for the di®erent compound chaotic systems: (a) The Jerk–Lorenz–Jerk–Lorenz
system, (b) The Jerk–Jerk–Lorenz–Lorenz system.

(a) (b)

(c) (d)

Fig. 10. Bifurcation diagram of the Jerk–Lorenz–Jerk–Lorenz chaotic system: (a) � ¼ 0:75; c 2 ½�5; 8�,
(b) c ¼ 1; � 2 ½0:4; 1�, (c) � ¼ 0:75; c 2 ½1:1; 1:4�, (d) � ¼ 0:75; c 2 ½5:1; 5:7�.
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� 2 ð0:9; 0:98Þ, the system has larger LLE in most area. When � 2 ð0:6; 0:85Þ, the
LLE is relatively smaller. For Fig. 9(b), when the parameter c 2 ð�6; 2Þ;
� 2 ð0:9; 0:98Þ, the system has larger LLE in most area, and � should be avoided the

values at the range (0.7, 0.9).

3.4. Bifurcation of the Jerk–Lorenz–Jerk–Lorenz chaotic system

The bifurcation diagrams of the compound system about c and � are shown in

Figs. 10(a) and 10(b), respectively. It is found that the system is chaotic over most of

the rang c 2 ½�6; 7�. There are two apparent periodic windows at c 2 ð1:21; 1:27Þ [
ð5:28; 5:5Þ as shown in Fig. 10(a). It is consistent with the Lyapunov exponent

diagram as shown in Fig. 8(c). To display it clearly, the magni¯ed diagrams are

shown in Figs. 10(c) and 10(d). There exist a pitchfork bifurcation, °ip bifurcation

and interior crisis in Fig. 10(d). It is observed from Fig. 10(b) that the grid compound

system is chaotic when c ¼ 1 and � 2 ½0:4; 1�.

4. Circuit Design and Implementation

4.1. Analog circuit implementation

Among all the current conveyers, the current conveyer II is versatile.34 The V-I

characteristics are given as follows: Vx ¼ Vy; iy ¼ 0, and iz ¼ �ix. iz ¼ ix is referred

to positive-type current conveyer(CCIIþ), while iz ¼ �ix is referred to negative-type

current conveyer (CCII�). CCIIs are implemented by AD844, and it consists of a

CCIIþ and a voltage bu®er.

Based on the dimensionless state equations and the improved module-based

method, the attractor of Eq. (4) is implemented by analog circuit. The multiwing-

multiscroll compound chaotic attractor circuit based on CCII is shown in Fig. 11(a),

where U1, U2 and U3 are integrators, and A1, A2, A3, A4, A5 and A6 are multipliers

realized by AD633, and D is the inverting ampli¯er. The circuits of switching con-

troller S1, S2 are shown as Fig. 11(b). The circuits of nonlinear function GðxÞ;FðxÞ
are presented in Figs. 12(a) and 12(b), respectively.

According to Eq. (4) and the given parameters, the function f1ðxÞ; f2ðxÞ; f1ðyÞ;
f2ðyÞ; f1ðzÞ; f2ðzÞ in Fig. 11(a) are obtained as

f1ðxÞ ¼ �ðz� lÞ;
f2ðxÞ ¼ 100y� 10x;

f1ðyÞ ¼ �ð�x� ðz� lÞ � �yþGðxÞÞ;
f2ðyÞ ¼ 0:1ð24� 4cÞx� 0:1ð1=pÞxzþ cy;

f1ðzÞ ¼ �y;

f2ðzÞ ¼ F ð0:1xÞ � 8=3z:

8>>>>>>>><
>>>>>>>>:

ð15Þ

Considering the parasitic of AD844, we choose its circuit elements Rx ¼ 50�,

Ry ¼ 10M�, Rz ¼ 3M�, Cy ¼ 2 pF, Cz ¼ 4:5 pF. The nonlinear circuit system as
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shown in Fig. 11(a) is described by

_x ¼ S1f1ðxÞ=ððR1 þRxÞðC1 þ CzÞÞ þ S2f2ðxÞ=ððR2 þRxÞðC1 þ CzÞÞ;
_y ¼ S1f1ðyÞ=ððR3 þRxÞðC3 þ CzÞÞ þ S2f2ðyÞ=ððR4 þRxÞðC2 þ CzÞÞ;
_z ¼ S1f1ðzÞ=ððR5 þRxÞðC3 þ CzÞÞ þ S2f2ðzÞ=ððR6 þRxÞðC3 þ CzÞÞ:

8><
>: ð16Þ

Let C1 ¼ C2 ¼ C3 ¼ 100 nF, and compare Eq. (16) with Eq. (4), the resistance

values in Figs. 11 and 12 are obtained by R1 ¼ R2 ¼ R3 ¼ R4 ¼ R5 ¼ R6 ¼ 10 k�,

(a) (b)

Fig. 11. Design of system circuits: (a) Circuit of the compound chaotic attractor, (b) Circuits for
switching controllers S1;�S2.

(a) (b)

Fig. 12. Circuits for nonlinear functions GðxÞ and FðxÞ: (a) For GðxÞ, (b) For F ðxÞ.
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R7 ¼ R12 ¼ R17 ¼ R20 ¼ R23 ¼ R27 ¼ R29 ¼ 470�,R8 ¼ R13 ¼ R18 ¼ R21 ¼ R24 ¼
R28 ¼ R30 ¼ 5M�, R9 ¼ R14 ¼ R19 ¼ R22 ¼ R25 ¼ R31 ¼ R32 ¼ 11:4 k�, R11 ¼
R16 ¼ 500�, R10 ¼ R15 ¼ R33 ¼ R34 ¼ 1 k�, R35 ¼ R40 ¼ R38 ¼ 10 k�, R37 ¼ 5 k�,

R39 ¼ 50 k�, R41 ¼ 96:5 k�, R42 ¼ 200 k�.

The hardware circuit is implemented by using electronic components. All the

supply voltages are set to � 15V. The circuit experimental results are obtained as

shown in Fig. 13, it is consistent with Fig. 2(a). Because the center frequency of

multiwing chaotic system is totally di®erent with that of multiscroll chaotic system,

so we use digital oscilloscope to observe the complete phase diagram.

4.2. DSP implementation

The digital circuit of Jerk–Jerk–Lorenz–Lorenz system is implemented based on DSP

technique. There are four parts to realize it as shown in Fig. 14. The CPU is DSP

TMS320F2812, and the DA converter DAC8552 is a 16-bit dual-channel converter.

It is controlled by the DSP board via SPI interface, and the converted data is sent to

the oscilloscope, which is used to record phase portraits of the system.26

We set the same values of the system parameters in DSP experiment, including

step size h ¼ 0:01, initial value ðx; y; zÞ ¼ ð0:1; 0:1; 0:1Þ, and the phase diagram is

shown in Fig. 15. It is consistent with the computer simulation result as shown in

Fig. 4(a). It is worth mentioning that the di®erential equations are solved by

employing modi¯ed Euler method in DSP implementation.35 The precision is lower

than that of the computer simulation which employs the fourth-order Runge Kutta

(a) (b) (c)

Fig. 13. Circuit experimental results of the compound multiwing-multiscroll chaotic attractors: (a) Phase

diagram on x–z, (b) Phase diagram on x–y, (c) Hardware circuit experiment.

Fig. 14. Structure diagram of DSP implementation.
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method, so the distribution uniformity of attractor shown in oscilloscope is a little

di®erent from the computer simulation results.

5. Conclusions

In this paper, four types of grid compound chaotic attractors are designed via

switching control. The characteristics of the compound chaotic systems have been

investigated by Poincar�e section, LLE, and bifurcation diagram. The results show

that the LLE of Jerk–Lorenz–Jerk–Lorenz and Jerk–Jerk–Lorenz–Lorenz systems

are several times larger than that of other chaotic systems, and the LLE of the Jerk–

MirrorLorenz–Jerk system is as large as that of the 1� 4-wing Lorenz system. By

choosing suitable combination, the LLE of the compound system increases. It is in

favor of improving the security of chaotic secure communication system. The

pseudorandom switching method has a great potential for applications. Circuit and

DSP experiments show a good agreement with numerical simulation results. We

found that the grid compound attractor has complex dynamics, and its application in

secure communication is our next work.
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