
A
s

M
a

b

a

A
R
R
A

K
M
F
T
H
B

1

o
a
m
c
1
i
t
c
m

a
P
o
i

C

0
d

Accident Analysis and Prevention 42 (2010) 203–212

Contents lists available at ScienceDirect

Accident Analysis and Prevention

journa l homepage: www.e lsev ier .com/ locate /aap

pplying Bayesian hierarchical models to examine motorcycle crashes at
ignalized intersections

d. Mazharul Haquea,∗, Hoong Chor Chinb,1, Helai Huanga,2

Traffic Lab, Department of Civil Engineering, National University of Singapore, Engineering Drive 2, EW1, 04-02B, Singapore 117576, Singapore
Department of Civil Engineering, National University of Singapore, Singapore 117576, Singapore

r t i c l e i n f o

rticle history:
eceived 20 February 2009
eceived in revised form 23 June 2009
ccepted 28 July 2009

eywords:
otorcycle crashes

our-legged intersections
intersections

a b s t r a c t

Motorcycles are overrepresented in road traffic crashes and particularly vulnerable at signalized inter-
sections. The objective of this study is to identify causal factors affecting the motorcycle crashes at both
four-legged and T signalized intersections. Treating the data in time-series cross-section panels, this study
explores different Hierarchical Poisson models and found that the model allowing autoregressive lag-1
dependence specification in the error term is the most suitable. Results show that the number of lanes
at the four-legged signalized intersections significantly increases motorcycle crashes largely because of
the higher exposure resulting from higher motorcycle accumulation at the stop line. Furthermore, the
presence of a wide median and an uncontrolled left-turn lane at major roadways of four-legged intersec-
ierarchical models
ayesian inference

tions exacerbate this potential hazard. For T signalized intersections, the presence of exclusive right-turn
lane at both major and minor roadways and an uncontrolled left-turn lane at major roadways increases
motorcycle crashes. Motorcycle crashes increase on high-speed roadways because they are more vulner-
able and less likely to react in time during conflicts. The presence of red light cameras reduces motorcycle
crashes significantly for both four-legged and T intersections. With the red light camera, motorcycles are
less exposed to conflicts because it is observed that they are more disciplined in queuing at the stop line

art at
and less likely to jump st

. Introduction

Motorcyclists have a poor safety record when compared with
ther road user groups. According to the Singapore Traffic Police
nnual statistics report for 2006 (Singapore Police Force, 2006),
otorcycle crashes constitute about 36% of total road traffic

rashes, even though their share in vehicle population is only about
8%. Moreover, motorcyclists account for almost 54% of road fatal-

ties and about 51% of road injuries in the year 2006. Furthermore,
he fatality and injury rates per registered vehicle among motor-
yclists are, respectively, 13 and 7 times higher than that of other
otor vehicles.
A substantial portion of motorcycle crashes in Singapore occur
t intersections controlled by traffic signals. According to Traffic
olice Annual Report 2006, motorcycles are involved in about 47%
f crashes at Signalized intersections. Furthermore, while the crash
nvolvement of motorcyclists as a victim of other road users is 43%
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nationwide, the corresponding percentage at signalized intersec-
tions is higher at 57%. These statistics signify that motorcyclists are
more vulnerable at signalized intersections. Singapore crash statis-
tics also show that motorcycles are involved in about 77% of fatal
and about 67% of injury crashes that occurred at signalized inter-
sections. Hence, it is worthwhile to study the intersection crashes of
motorcycles to identify significant factors affecting the occurrence
of such crashes.

1.1. Motorcycle safety research

There has been considerable research work on the motorcy-
cle safety in the last two decades. A number of researchers (e.g.,
de Lapparent, 2006; Quddus et al., 2002; Shankar and Mannering,
1996) have attempted to quantify the effects of roadway, traffic,
environmental, human and vehicle factors on motorcyclist injury
severity while some other (e.g., Pai and Saleh, 2007, 2008) have con-
ducted the similar studies at intersections. A number of studies (e.g.,
Lin et al., 2003; Mannering and Grodsky, 1995; Rutter and Quine,

1996) have examined the crash risk based on the rider-motorcycle
characteristics, while others (e.g., Williams and Hoffmann, 1979;
Yuan, 2000) have examined the crash risk of motorcycles due to
conspicuity related issues. These studies generally provide useful
information on the crash risk and injury of motorcyclists. However,

http://www.sciencedirect.com/science/journal/00014575
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he road geometric and traffic related factors that may affect the
ccurrence of motorcycles crashes at signalized intersections have
ot been well explored.

The crash occurrence of motorcycles at signalized intersections
s affected by their risk as well as their exposure. A number of
tudies (e.g., Hurt et al., 1981; Williams and Hoffmann, 1979) have
eported that motorcyclists in the traffic stream are often over-
ooked by other drivers. This explains why the motorcyclists are
verrepresented in right-of-way violation crashes in which vehi-
les from the conflicting stream encroach into the path of an
pproaching motorcycle (Clarke et al., 2007; Hurt et al., 1981).
oreover, drivers tend to over-estimate the motorcycle arrival

imes approaching to the intersection, hence increasing the pos-
ibility of a collision (Caird and Hancock, 1994).

On the other hand, the over-exposure of motorcycles at signal-
zed intersections seems to increase their vulnerability to crashes.
aque et al. (2008) have reported that motorcycles are over
xposed at signalized intersections because they tend to accumu-
ate near the stop line during the red phase to facilitate an earlier
ischarge during the initial period of green. They have also showed
hat approaches with a wider lane width or with an exclusive right-
urn lane offer more freedom for motorcyclists to accumulate near
he stop line. Thus more exposed to the conflicting stream red light
unning vehicles.

Furthermore, the crash involvement characteristics of motorcy-
les are likely to different from other motor vehicles. Mannering
nd Grodsky (1995) have described several reasons why to differ-
ntiate the characteristics of the motorcycle crashes from those
f other road user groups. Firstly, they claimed that “automobile
rivers tend to be inattentive with regard to motorcyclists and
ave conditioned themselves to look only for other automobiles
s possible collision of dangers”. Secondly, the motorcycle riding
s a complex task which requires excellent motor skills, physical
oordination and balance. Motorcycle riding also requires coun-
erintuitive tasks such as counter-steering, balanced application of
ront and rear wheel brakes and opening the throttle while negoti-
ting turns.

A number of studies regarding traffic crashes at intersections
ave been mainly concerned with all vehicle crashes. Those have
sed frequency models which can model the number of crashes to
he intersection-related factors for examining the safety effects of
uch factors. For example, Chin and Quddus (2003) have examined
raffic crashes at signalized intersections in Singapore; Vogt and
ared (1998) have conducted similar analysis at Minnesota and
ashington; Poch and Mannering (1996) have examined inter-

ection crashes at Bellevue, Washington. However, analyzing all
ntersection crashes together may not reflect the crash occurrence
rocess and their influencing geometric and traffic related factors
or a specific crash type or a specific road user group.

Realizing the importance of segregate analysis for a specific road
ser group or crash type, a number of researchers has also studied
he crash occurrence process from this perspective. For example,

itra et al. (2002) have studied intersection crashes by maneuver
ypes; Abdel-Aty and Radwan (2000) have examined the arterial
raffic crashes by segregating crashes by driver age and gender;

ang and Abdel-Aty (2008) have modeled the left-turn crashes
t signalized intersections by further separating conflicting pat-
erns; Wang and Abdel-Aty (2006) have examined only rear-end
rashes at signalized intersections; Miaou (1994) has investigated
he relationship between truck crashes and geometric design of
oad sections. However, the occurrence of motorcycle crashes at

ignalized intersections has not been well studied.

Moreover, motorcycles crash occurrences (as described earlier)
t intersections may be different from other road user groups.
urthermore, intersection crashes could be more severe to the
otorcyclists as injurious crashes such as angle collisions com-
d Prevention 42 (2010) 203–212

monly take place at intersections (Pai and Saleh, 2007). Therefore,
more extensive research on this area, especially motorcycle crashes
at intersections, is highly justified.

1.2. Research objective

The objective of this research is to explore the intersection-
related factors on motorcycle crashes by establishing a more robust
statistical relationship correlating motorcycle crash frequencies
with intersection geometries and traffic characteristics at signal-
ized intersections. The study examines four-legged and T signalized
intersections separately.

2. Methodology

This section describes different statistical models considered
for modeling motorcycle crashes at signalized intersections. The
Bayesian inference which has been used for model calibration and
assessment is briefly described and this is followed by the descrip-
tion of model selection criteria and parameter effects estimations.

2.1. Model development

Starting with the basic Poisson Gamma model, several hierarchi-
cal models like Hierarchical Poisson Gamma, Hierarchical Poisson
Lognormal, and Hierarchical Poisson Autoregressive lag-1 model
have been explored to model motorcycle crash frequencies at sig-
nalized intersections. The framework and theoretical backgrounds
of those models are presented here.

A significant number of traffic safety studies has been con-
ducted to investigate the appropriateness of various count models
that explore the relationship between geometric and traffic char-
acteristics and the associated crash risk. The Poisson regression
model is the basic count model which can describe discrete, ran-
dom, non-negative and sporadic crash data. Since traffic crash data
are generally over-dispersed, Poisson Gamma or Negative Bino-
mial (NB) model has been developed from the Poisson model by
introducing a stochastic component to relax the mean-variance
equality constraint of the Poisson model (e.g., Miaou, 1994; Poch
and Mannering, 1996; Lord, 2006).

Let Yit is the number of crashes at ith entity and tth time period
is Poisson distributed and independents over all entities and time
periods such as

Yit |�it∼Poisson(�it), i = 1,2, . . . . . . , I and t = 1,2, . . . , T

where �it is the crash mean for ith entity and tth time period.

2.1.1. Model 1: Poisson Gamma model
The Poisson Gamma or Negative Binomial model has been

formulated to account for the over-dispersion in crash data by
introducing a stochastic component to the mean of the standard
Poisson model as follows (Lord, 2006):

�it = exp(X ′
itˇ + εit) (1)

where Xit = (1, Xit,1,. . .,Xit,k)′ is a vector of covariates representing
the site-specific attributes, � = (ˇ0,. . .,ˇk)′ is a vector of unknown
regression parameters, εit is the model error independent of all
covariates. In the Poisson Gamma model, it is assumed that exp(εit)
is gamma distributed (Gamma ∼ (�,�)) with mean 1 and a variance
1/� for all i and t (with � > 0). The inverse dispersion parameter, �

allows accommodating extra variations of the crash data.

The over-dispersion can be caused by various factors, such as
omitted variables, uncertainty in exposure and covariates, data
clustering, unaccounted temporal correlation, model misspecifi-
cation etc. In particular, the Poisson Gamma model may not be
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ppropriate for time-series cross-section panel data as data con-
ain location-specific effect and likely to be serially correlated. It is
resupposed that distributions of crash occurrences for sites with
imilar observed characteristics are the same and crash counts for
specific location in different time periods are assumed to be inde-
endent with each other. Indeed, some unobserved features may
ecessarily exist between traffic sites and hence crash occurrences

or a specific site may often be correlated serially. Consequently,
ithout appropriately accounting for the location-specific effects

nd potential serial correlations, the standard error estimations of
egression coefficients may be underestimated and inferences from
he estimated model may be misleading.

To explicitly model those structured heterogeneities introduced
y data collection and clustering process, hierarchical or random
ffect models have been found to be better alternative in sev-
ral recent traffic safety studies (e.g., Miranda-Moreno et al., 2007;
ang and Abdel-Aty, 2006; Chin and Quddus, 2003). These models

an deal with the over-dispersion problem due to unobserved het-
rogeneities as well as allow to incorporate the site-specific effects
nd complex variations, e.g., time and/or space patterns in the data.
o introduce the hierarchical specification in the Poisson Gamma
odel the error term (εit) of Eq. (1) can be replaced by a location-

pecific random effect ˛i. The gamma distribution assumption on
xp(˛i) leads to the Hierarchical Poisson Gamma specification as
ollows (Miranda-Moreno et al., 2007):

.1.2. Model 2: Hierarchical Poisson Gamma model
�it = exp(X ′

itˇ + ˛i)
ıi = exp(˛i)
ıi∼Gamma(ϕ,ϕ)

(2)

An alternative hierarchical specification may be the Hierarchical
oisson Lognormal model which may be more suitable for modeling
rash rates with a heavier-tailed distribution than the Gamma. The
pecification of this model is as follows.

.1.3. Model 3: Hierarchical Poisson Lognormal model
�it = exp(X ′

itˇ + ˛i)
˛i = log(ıi)|�2

˛∼Normal(0, �2
˛)

(3)

Hierarchical regression models here assume that the site-
pecific effects can explain the over-dispersion in the crash data.
he random effect introduced by hierarchical models establishes
hat the effect of covariates on crashes at each site is the same but
he intercept is different across the sites. Hence, the site-specific
ffect ˛i induces a correlation among observations obtained at
he same site. The underlying assumption is that the observations
ithin an entity are exchangeable and hence the correlation is con-

tant between any two observations within a site.
However, observations in different time periods for a specific

ite may be serially correlated which means that disturbances asso-
iated with observations in one time period are dependent on
isturbances from prior time periods. Serial correlations may exist

n the crash dataset due to the effect of omitted variables, correla-
ion over time, and a consequence of the nature of the phenomenon
nder study (Washington et al., 2003). In the context of this study,
xogenous regressors in the longitudinal crash datasets seldom
ary. Roadway geometrics and other design variables are practi-
ally constant with the exception of traffic volumes. Much of the
ynamics in the longitudinal crash datasets arises from overlapping
eterogeneity effects captured by the error term a “group of omit-
ed variables” effect. If the omitted variables are correlated with

he exogenous regressors, parameter bias is highly likely. Hence,
reating serial correlations in the motorcycle crash count context
ould mitigate the potential for parameter bias.

Furthermore, the serial correlation may cause the estimated
tandard errors to be biased and hence may result in misleading
d Prevention 42 (2010) 203–212 205

inference on parameter estimates. Thus, an alternative specification
may be the autoregressive lag-1 (AR-1) dependence specification
in the errors to assess the possible autocorrelation. It weighs the
correlation between two observations for a site by their separated
gap (order of measure). As the periodical distance between obser-
vations within a site increases, the correlation decreases. The AR-1
model can be developed by adding a serial variationωit in the basic
Poisson model which will allow modeling of lag-1 dependence in
the errors (see Congdon, 2003 for detail). The specification of this
model, with � as an autocorrelation coefficient, is given as follows.

2.1.4. Model 4: Hierarchical Poisson (AR-1) model
�it = exp(X ′

itˇ +ωit)
ωi1∼Normal(0, �ω2/(1 − �2))
ωit∼Normal(�ωi,t−1, �ω

2), for t > 1 to T
(4)

The aforementioned models can incorporate various structured
heterogeneities in different way according to the specific type of
crash data structures. Since the choice of one model over the other
is not always clear, the appropriate model should be selected by
comprehensive model diagnostics on the subject dataset. In this
study, those above safety performance models will be employed
to study the motorcycle crashes at signalized intersections and the
suitable model will be selected from those based on the proper
model selection criteria.

2.2. Bayesian inference

Bayesian analysis is a process of fitting a probability model to
the dataset and summarizing the posterior probability distribution
on model parameters and on unobserved quantities. Instead of pro-
ducing maximum likelihood estimates for unknowns totally based
on the sample data, Bayesian methods explicitly use the probabil-
ity for quantifying uncertainty in inferences based on the statistical
data analysis. In Bayesian models, given model assumptions and
parameters, the likelihood of the observed data is used to modify
the prior beliefs of the unknowns, resulting in the updated knowl-
edge in the form of posterior distributions (see Congdon, 2003 for
detail).

Bayesian inference allows the flexibility in explicitly modeling
hierarchical models. However, one of the common problems in the
Bayesian hierarchical models is that the posterior distributions may
not tractable algebraically in many cases, as the hierarchical models
considered in this study. Moreover, posterior densities for the hier-
archical models often lead to non-standard densities. To overcome
such analytical limitations, sampling-based estimation methods
have been used. Markov Chain Monte Carlo (MCMC) methods (Gilks
et al., 1996) using Gibbs sampler and the Metropolis–Hastings algo-
rithm are widely applied to generate a large number of samples
from posterior distributions. Any distribution summary (such as
mean, median or quantiles) of the posterior distributions of model
parameters or unknowns can then be approximated by their sample
analogue.

2.3. Model selection

Some commonly used model selection criteria are Akaike infor-
mation criterion (AIC), Bayesian information criterion (BIC), and
Deviance information criterion (DIC). A model assessment using the
AIC or BIC requires the specification of the number of parameters in
the model. However, in complex hierarchical models whose param-

eters may outnumber the observations, these methods cannot
be directly applied. Therefore for model evaluation, the Deviance
information criterion (DIC), proposed by Spiegelhalter et al. (2003)
is used. The DIC provides a Bayesian measure of model complexity
and fit that can be used to compare models of arbitrary structure.
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pecifically, DIC is defined as:

IC = D(	̄) + 2PD = D(	) + PD (5)

hereD(	̄) is the deviance evaluated at the posterior means of esti-
ated unknowns (	̄), and D(	) is the posterior mean deviance that

an be taken as a Bayesian measure of fit or “adequacy”. PD repre-
ents a complexity measure for the effective number of parameters
n a model, as the difference between D(	) and D(	̄), i.e., mean
eviance minus the deviance of the means. As a generalization of
IC, DIC can thus been considered as a Bayesian measure of fit or
dequacy, penalized by an additional complexity term PD. As with
IC, models with lower DIC values are preferred.

While the DIC is used for the model selection, it is also neces-
ary to justify whether the model fit the crash data well. In order
o assess the fitness of the motorcycle crash data to the proposed

odels, the predictive loss criteria, PLC (Gelfand and Ghosh, 1998)
as been used. Let, Yit be the observed data,  be the parameters,
( |y) be the posterior distribution, and Zit be the predicted new
ata sampled from f(Z| ) such as

(Z|y) =
∫
f (Z| )
( |y)d (6)

uppose, �it and ςit are the mean and variance of Zit, then:

LC =
I∑
i=1

T∑
t=1

ςit + [w/(w + 1)]
I∑
i=1

T∑
t=1

(�it − Yit)2 (7)

herew is the weight factor. A large value ofw puts more weight on
he match between the predicted and observed data. In this study,
n infinite value forw is used to calculate the predictive loss criteria.

.4. Parameter effects

In order to interpret the effect of explanatory variables included
n the model, incidence rate ratios (IRR) have been computed
or those variables. IRR provides an estimate of the impact of an
xplanatory variable on the expected crash frequency for one unit
hange in that variable. For observed crashes Yit and a given set of
xplanatory variables Xit, the expected number of crashes can be
xpressed as

(Yit |X it , xk) = exp(ˇ0) exp(ˇ1x1)......exp(ˇkxk) (8)

here xk is the variable of interest to calculate IRR. If xk changes by
ne unit, then:

(Yit |X it , xk + 1) = exp(ˇ0) exp(ˇ1x1)......exp(ˇkxk)exp(ˇk ∗ 1) (9)

herefore, IRR for the variable xk, the factor change in the expected
rash count for a change of one unit in xk, can be calculated as

RR = E(Yit |X it , xk + 1)
E(Yit |X it , xk)

= exp(ˇk) (10)

ence, IRR for a variable is the exponential of its parameter esti-
ate. The interpretation is that if IRR of a given variable is much

ess than 1.0 then an increase in value of the variable is associated
ith a significant reduction of motorcycle crashes (i.e., improve-
ent on motorcycle safety). Conversely if IRR of an explanatory

ariable is much greater than 1.0, an increase in value of the vari-
ble results a significant decline on motorcycle safety. Otherwise,
he variable has no effect on motorcycle safety (Olmstead, 2001;
hin and Quddus, 2003).
. Data preparation

To establish an appropriate statistical model that examines the
elationship between motorcycle crash frequencies and geomet-
ic and traffic characteristics, a total of 270 four-legged and 101
d Prevention 42 (2010) 203–212

T signalized intersections from different parts of Singapore have
been used. These account for about 19% of signalized intersec-
tions in Singapore and they are chosen because they have relatively
high motorcycle activities. Note that Singapore is a city-state small
island (700 km2) country and fully urbanized.

In order to conduct the temporal analysis, the necessary data,
including intersection geometric design features, traffic character-
istics, and crash data for the same intersections, need to be collected
over the study period. However, it is difficult to obtain all this infor-
mation over a long period of time, and therefore data for the recent
4 years (2003–2006) have been used for the analysis. The intersec-
tion geometric features and traffic characteristics were provided by
a consultancy company in Singapore.

Detailed records of motorcycles crashes at the selected sites
were provided by the Singapore Traffic Police. A total of 1948 and
400 motorcycle crashes respectively at four-legged and T signal-
ized intersections were recorded over that time period for those
selected intersections. On an average each year, respectively, 1.80
and 0.99 motorcycle crashes have been found to occur at selected
four-legged and T signalized intersections.

In crash frequency modeling on traffic crashes, data prepa-
rations have been conducted in several ways, i.e., approach
level, roadway level or intersection level. For example, Poch and
Mannering (1996) have fitted intersection crash frequency models
at the approach level (i.e., four observations per intersection per
year); Chin and Quddus (2003) have fitted an intersection traffic
crash frequency model at the roadway level (i.e., two observations
per intersection per year); Wang and Abdel-Aty (2006) have fitted
crash frequencies at the intersection level (i.e., one observation per
intersection per year). Wang and Abdel-Aty (2007) have investi-
gated right-angle crashes at signalized intersections by modeling
at the intersection, roadway, and approach levels. For modeling, a
crash is usually assigned to a roadway or an approach of an inter-
section based on either roadway or approach with at-fault vehicle
or the roadway with the approach whose stop line is nearest to the
point of collision. The data preparation for modeling by those differ-
ent levels (intersection, roadway, or approach) has been elaborately
discussed by Wang and Abdel-Aty (2007).

Analysis at approach and roadway level may better relate traf-
fic crashes to characteristics of specific approach and/or roadway.
However, such disaggregation of crashes may give rise to “site cor-
relation” and cause excess zeros. To avoid excess zeros, Wang and
Abdel-Aty (2007) might have aggregated the crashes over the study
period of 6 years when modeling right-angle crashes at roadway
and approach levels. However, such aggregation may not be able
to account the temporal correlation of the crash data. Moreover,
it may be difficult to assign traffic crashes of a particular vehicle
group to any approach or roadway of an intersection if the exact
point of collision is unknown and/or the fault assignment is com-
plex. For simplicity as well as avoiding the problem of excess zeros,
an intersection level crash analysis has been adopted in this study.
Based on annual crash counts at 270 four-legged and 101 T sig-
nalized intersections over a 4-year period, a total of 1080 and 404
observations respectively have been obtained for model input for
four-legged and T signalized intersections.

The roadway variables includes: (1) number of lanes, (2) pres-
ence of one-way road, (3) presence of uncontrolled left-turn lane,
(4) presence of exclusive right-turn lane, (5) presence of wide
median, (6) presence of pedestrian crossing, (7) presence of red
light camera, (8) speed limit, and (9) traffic volume. Those explana-
tory variables which represent the presence or absence of a

geometric or traffic feature have been coded as dummy variables.
It is worth mentioning that most intersection-related variables are
first inputted at the approach level. Since the intersection level
analysis has been adopted, those approach level variables are aggre-
gated into the roadway level (major and minor roadway). The
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Table 1
Descriptive statistics of variables included in models for four-legged and T signalized intersections.

Variables Four-legged intersection T intersection

Mean SD Min Max Mean SD Min Max

Number of motorcycle crashes per year for intersection 1.804 1.690 0 10 0.990 1.270 0 7

Major roadway
Traffic volume ADT in thousand 18.431 4.285 5.70 37.52 15.489 4.599 4.80 30.27
Presence of one-way road 0.104 0.305 0 1 0.099 0.299 0 1
Number of lanes 4.222 0.800 2 6 3.624 0.688 2 5
Presence of uncontrolled left-turn lanea 0.722 0.448 0 1 0.554 0.498 0 1
Presence of wide median (>2 m) 0.922 0.268 0 1 0.970 0.170 0 1
Presence of exclusive right-turn lane 0.930 0.256 0 1 0.881 0.324 0 1
Presence of pedestrian crossing 0.441 0.497 0 1 0.347 0.476 0 1
Presence of red light camera 0.348 0.477 0 1 0.653 0.476 0 1
Speed limit ≥50 km/h 0.978 0.147 0 1 0.970 0.170 0 1

Minor roadway
Traffic volume ADT in thousand 14.509 4.549 2.85 31.27 10.447 3.438 2.55 25.01
Presence of one-way road 0.119 0.323 0 1 0.079 0.270 0 1
Number of lanes 3.330 0.865 1 5 2.168 0.599 1 4
Presence of uncontrolled left-turn lane 0.770 0.421 0 1 0.574 0.495 0 1
Presence of wide median (>2 m) 0.870 0.336 0 1 0.624 0.485 0 1
Presence of exclusive right-turn lane 0.885 0.319 0 1 0.822 0.383 0 1
Presence of pedestrian crossing 0.422 0.494 0 1 0.366 0.482 0 1
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Presence of red light camera 0.163 0
Speed limit ≥50 km/h 0.938 0

a In Singapore, driving is on the left side of the road.

oadways are defined as major and minor based on traffic vol-
me. The explanatory variables of major and minor roadways for
our-legged and T signalized intersections are shown in Table 1.

. Estimation of results

This section illustrates the model calibration process and model
iagnostic results for selecting the most appropriate model. The
ignificant variables affecting motorcycle crashes at four-legged
ignalized intersections are explained and followed by the discus-
ions of significant variables for T signalized intersections.

.1. Model estimation

The safety performance models are calibrated by the freeware
oftware package WINBUGS 1.4 (Spiegelhalter et al., 2003) using
he Markov Chain Monte Carlo (MCMC) algorithm (Gilks et al.,
996). The priors for regression coefficients � are assumed to
ave non-informative distributions such as Normal distribution (0,
000). The hyper-parameters of the disturbance term of each of
he models are also assigned a vague or non-informative prior. An
nverse gamma distribution (0.001, 0.001) are assumed for 1/�, 1/ϕ,
2
˛, and �2

ω in the Poisson Gamma, Hierarchical Poisson Gamma,
ierarchical Poisson Lognormal, and Hierarchical Poisson (AR-1)
odel, respectively. All of the eight models, four models for each

ype of intersection, have been estimated by using three chains for

CMC up to 15,000 simulation iterations. The model convergence

as been obtained after about 3000 iterations producing trace plots
ith a good degree of mixing and the convergence has been assured

y the Gelman–Rubin statistics (Brooks and Gelman, 1998) below
.2. After ensuring convergence, 5000 samples from each chain

able 2
odel comparison criteria.

Criteria Intersection type Poisson Gamma Hierarchical Poisson Ga

DIC
Four-legged 3711.21 3653.04
T 992.94 945.51

PLC
Four-legged 4401.98 4322.46
T 822.95 783.29
0 1 0.119 0.324 0 1
0 1 0.911 0.285 0 1

have been discarded as adaption and burn-in iterations. From rest
samples, one in every tenth samples have been retained to reduce
autocorrelation. This forms a total of 3000 samples for each of the
parameter estimate.

Statistics of both model selection criteria, i.e., DIC and predic-
tive loss criteria, for all models are presented in Table 2. In all
cases, the hierarchical models are found to be better than the
standard Poisson Gamma model. This is expected as hierarchical
structures exist extensively in the traffic crash data because of the
data collection and clustering process. Among hierarchical mod-
els, the hierarchical Poisson Gamma and the Hierarchical Poisson
Lognormal are found to be competitive. For four-legged signalized
intersections the Hierarchical Poisson (AR-1) model is found to be
superior to other models based on both DIC with 3614.2 and PLC
with 3912.3. For T intersections, though the Hierarchical Poisson
(AR-1) model produces a slightly lower DIC (=928.2), the DIC val-
ues for all three hierarchical models have been found to be very
similar (945.5 or 943.7). However, the Hierarchical Poisson (AR-1)
model also shows an improved fit than other hierarchical models
based on PLC (746.5 vs. 783.3 or 773.9). Hence, for both type of the
intersections the Hierarchical Poisson (AR-1) model is found to be
better than others. Moreover, the autocorrelation coefficient �, as
shown in Tables 3 and 4, is 0.567 and 0.916 for four-legged and T
intersections, respectively, and both of them are also found to be
significant. This further confirms that there exists strong structured
temporal serial correlation effect in motorcycle crashes at signal-
ized intersections and further justifies the appropriateness of this

model.

Parameter estimates for motorcycle crashes by all candidate
models for four-legged and T signalized intersections are presented
in Tables 3 and 4, respectively. To obtain the most parsimonious

mma Hierarchical Poisson Lognormal Hierarchical Poisson (AR-1)

3654.07 3614.18
943.67 928.18

4303.74 3912.27
773.92 746.50
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crashes for the traffic operations with the use of such a lane at
signalized intersections. This type of crash involvement of motor-
Fig. 1. Effect of red light cameras on the queuing pa

odel, preliminary multicollinearity tests and backward stepwise
ethod have been employed in selecting covariates. The insignifi-

ant variables have been dropped from the model one by one based
n their significance level. The 95% Bayesian credible interval (BCI)
ave been used to interpret the significance of variables. Specifi-
ally, those coefficient estimations are significant whose 95% BCI
o not cover zero. Furthermore, to interpret the effect of variables
n the motorcycle safety, the incidence rate ratio (IRR) has also been
alculated. In Tables 3 and 4, IRR of the explanatory variables have
een reported only for the best fit model, i.e., Hierarchical Poisson
AR-1) model.

.2. Interpretation of significant variables at four-legged
ntersections

An examination of Table 3 shows a number of factors to be
ignificantly associated with motorcycle crashes at four-legged sig-
alized intersections. For the major roadway, they are (1) number
f lanes, (2) presence of uncontrolled left-turn lane, (3) presence of
ide median, (4) presence of red light camera, (5) speed limit and

6) traffic volume. For the minor roadway, they are (1) number of
anes, (2) presence of red light camera and (3) traffic volume. The
ffects of these variables are discussed below.

.2.1. Number of lanes
The number of lanes along the major roadway of four-legged sig-

alized intersections has been found to be significantly (95% BCI
0.01, 0.25), IRR 1.13) associated with motorcycle crashes. The IRR
or this variable indicates that all other things being equal, a road-
ay with one additional lane increases the motorcycle crashes by

bout 13%. This may be because of several reasons. Firstly; a higher
umber of lanes allow more opportunities for motorcycles to move

n between the traffic queue and accumulate in front of the stop line.
his will increase the exposure of motorcyclists to the conflicting
tream. Secondly; the number of the conflict points increases with
he number of lanes. Thirdly; red light running propensity at inter-
ections is higher on roads with higher number of lanes (Porter
nd England, 2000) and this is made worst because motorcycles
re overexposed due to a higher likelihood of them forming up at
he stop line (Haque et al., 2008).
For the minor roadway, the number of lanes has also been found
o have a positive (95% BCI (0.001, 0.34), IRR 1.19) association with

otorcycle crashes. The reasons are similar to those for the major
oadway as discussed in the previous paragraph. Results show that
n additional lane in the minor roadway increases the motorcycle
of motorcyclists (source: Chin and Haque, in press).

crashes by about 19%. This higher value than the one for the major
roadway is obvious as high number of lanes at the minor roadway
is mainly for large intersections where the exposure problem of
motorcyclists is likely to be higher.

4.2.2. Presence of wide median (>2 m)
The presence of wide median in the major roadway of a four-

legged signalized intersection is associated with higher motorcycle
crashes (95% BCI (0.006, 0.44), IRR 1.20). Compared to roads without
a wide median, roads with a wide median increase the motorcy-
cle crashes by about 20%. There may be several reasons for the
increase of motorcycle crashes due to the wide median. Firstly;
a wide median often block the driver’s views during the unpro-
tected right-turn3 green phase (Yan and Radwan, 2007). Moreover,
the motorcycles approaching the junction are less likely to be
perceived by the drivers compared to approaching cars (Crundall
et al., 2008). Hence, less conspicuous motorcycles coupled with
restricted driver’s views in presence of a wide median are likely to
increase the motorcycle crashes. Secondly; a wide median allows
greater degree of spatial freedom for right-turning vehicles. Chin
and Quddus (2003) have argued that wider median width may
also create more conflicts between the interacting vehicles near the
stop line as movements of through vehicles are less channelized.
Thirdly; while crossing the intersection with a wide median, vehi-
cles from the conflicting stream need a longer clearance time thus
increasing the likelihood of crashes with motorcycles discharging
early in the green (Haque et al., 2008).

4.2.3. Presence of uncontrolled left-turn lane
The presence of uncontrolled left-turn lane at the major road-

way of an intersection is associated with higher motorcycle crashes
(95% BCI (0.042, 0.40), IRR 1.23) and it increases such crashes by
about 23%. The uncontrolled left-turn lane at signalized intersec-
tions allows left-turn vehicles to merge into the cross traffic stream.
Chin and Quddus (2003) have reported that the presence of uncon-
trolled left-turn lane increases traffic crashes while Mitra et al.
(2002) have reported that the presence of such lane increases head-
to-side crashes. Hence motorcyclists may involve in head-to-side
cyclists may be due to several reasons. Firstly; motorcyclists tend
to weave forward (Haque et al., 2008) and may queue to the left of

3 In Singapore, driving is on the left side of the road.
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Table 3
Model estimates of significant variables for four-legged signalized intersections.

Explanatory variables Poisson Gamma Hierarchical Poisson Gamma Hierarchical Poisson Lognormal Hierarchical Poisson (AR-1)

Mean (SD) 95% BCI Mean (SD) 95% BCI Mean (SD) 95% BCI Mean (SD) 95% BCI IRR

Major roadway
Number of lanes 0.126 (0.0544) (0.014, 0.232) 0.135 (0.0635) (0.013, 0.231) 0.122 (0.0625) (0.011, 0.243) 0.125 (0.0624) (0.012, 0.246) 1.133
Presence of wide median (>2 m) 0.182 (0.1091) (0.008, 0.414) 0.177 (0.1298) (0.007, 0.437) 0.189 (0.131) (0.005, 0.445) 0.184 (0.1299) (0.006, 0.441) 1.202
Presence of uncontrolled left-turn lane 0.214 (0.0922) (0.042, 0.403) 0.205 (0.1060) (0.038, 0.398) 0.199 (0.1063) (0.036, 0.395) 0.210 (0.1059) (0.042, 0.402) 1.234
Presence of red light camera −0.417 (0.0880) (−0.588, −0.243) −0.44 (0.1017) (−0.642, −0.247) −0.474 (0.1030) (−0.680, −0.277) −0.459 (0.1019) (−0.661, −0.257) 0.632
Speed limit ≥50 km/h 0.782 (0.2452) (0.324, 1.282) 0.778 (0.2763) (0.257, 1.316) 0.779 (0.2762) (0.253, 1.33) 0.786 (0.2767) (0.272, 1.371) 2.195
Traffic volume in ADT 0.027 (0.0125) (0.003, 0.052) 0.027 (0.0146) (0.007, 0.056) 0.025 (0.0147) (0.006, 0.055) 0.023 (0.0142) (0.005, 0.051) 1.024

Minor roadway
Number of lanes 0.175 (0.0771) (0.020, 0.321) 0.159 (0.0867) (0.001, 0.331) 0.155 (0.0903) (0.001, 0.332) 0.171 (0.0875) (0.001, 0.340) 1.186
Presence of red light camera −0.278 (0.1043) (−0.481, −0.071) −0.285 (0.1187) (−0.515, −0.051) −0.307 (0.1210) (−0.549, −0.067) −0.294 (0.1210) (−0.535, −0.060) 0.746
Traffic volume in ADT 0.014 (0.0063) (0.005, 0.025) 0.013 (0.0079) (0.003, 0.276) 0.011 (0.0077) (0.002, 0.026) 0.015 (0.0081) (0.004, 0.030) 1.015

Intercept −1.017 (0.3356) (−1.68, −0.373) −0.98 (0.3807) (−1.72, −0.255) −1.054 (0.3860) (−1.818, −0.308) −1.093 (0.3888) (−1.848, −0.349)
Variancea 0.219 (0.0355) (0.151, 0.291) 0.138 (0.0262) (0.09, 0.191) 0.139 (0.0263) (0.093, 0.195) 0.152 (0.0393) (0.079, 0.234)
� 0.567 (0.1070) (0.354, 0.793)
Number of observations 1080 1080 1080 1080

a 1/� for Poisson Gamma, 1/ϕ for Hierarchical Poisson Gamma, �2
˛ for Hierarchical Poisson Lognormal, and �2

ω for Hierarchical Poisson (AR-1) model.

Table 4
Model estimates of significant variables for T signalized intersections.

Explanatory variables Poisson Gamma Hierarchical Poisson Gamma Hierarchical Poisson Lognormal Hierarchical Poisson (AR-1)

Mean (SD) 95% BCI Mean (SD) 95% BCI Mean (SD) 95% BCI Mean (SD) 95% BCI IRR

Major roadway
Presence of one-way road −0.863 (0.2847) (−1.465, −0.326) −0.917 (0.357) (−1.646, −0.222) −0.903 (0.3642) (−1.641, −0.203) −0.914 (0.3687) (−1.671, −0.219) 0.401
Presence of uncontrolled left-turn lane 0.310 (0.1516) (0.004, 0.608) 0.332 (0.2026) (0.012, 0.732) 0.319 (0.2029) (0.007, 0.733) 0.333 (0.2035) (0.013, 0.735) 1.395
Presence of exclusive right-turn lane 0.831 (0.2511) (0.365, 1.360) 0.907 (0.3268) (0.287, 1.557) 0.905 (0.3324) (0.272, 1.587) 0.916 (0.3343) (0.271, 1.578) 2.500
Presence of red light camera −0.599 (0.1663) (−0.913, −0.278) −0.707 (0.2307) (−1.173, −0.276) −0.833 (0.2408) (−1.317, −0.376) −0.794 (0.2422) (−1.275, −0.323) 0.452
Traffic volume in ADT 0.005 (0.0028) (0.001, 0.012) 0.006 (0.0038) (0.001, 0.013) 0.007 (0.0037) (0.001, 0.014) 0.008 (0.0039) (0.003, 0.015) 1.008

Minor roadway
Number of lanes 0.510 (0.1946) (0.118, 0.898) 0.557 (0.2709) (0.022, 1.086) 0.508 (0.2688) (0.013, 1.074) 0.548 (0.2776) (0.005, 1.086) 1.729
Presence of exclusive right-turn lane 0.421 (0.1826) (0.059, 0.787) 0.533 (0.2501) (0.043, 1.054) 0.458 (0.2428) (0.03, 0.972) 0.473 (0.2583) (0.007, 0.998) 1.604
Speed limit ≥50 km/h 1.121 (0.4890) (0.259, 2.166) 1.225 (0.5468) (0.240, 2.423) 1.268 (0.5576) (0.198, 2.556) 1.272 (0.5750) (0.188, 2.490) 3.568
Traffic volume in ADT 0.004 (0.0021) (0.001, 0.009) 0.005 (0.0028) (0.001, 0.012) 0.005 (0.0029) (0.001, 0.011) 0.006 (0.0031) (0.002, 0.014) 1.006

Intercept −3.294 (0.6463) (−4.64, −2.087) −3.666 (0.8064) (−5.315, −2.153) −3.771 (0.8843) (−5.603, −2.158) −3.796 (0.8428) (−5.574, −2.223)
Variancea 0.254 (0.0966) (0.076, 0.456) 0.359 (0.1022) (0.193, 0.592) 0.387 (0.1123) (0.210, 0.646) 0.06 (0.0438) (0.005, 0.178)
� 0.916 (0.0627) (0.759, 0.994)
Number of observations 404 404 404 404

a 1/� for Poisson Gamma, 1/ϕ for Hierarchical Poisson Gamma, �2
˛ for Hierarchical Poisson Lognormal, and �2

ω for Hierarchical Poisson (AR-1) model.
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he front vehicle, obvious that the driver may not know its presence
hile making the merge. Secondly; this queuing arrangement also
akes the motorcycles invisible to the vehicles in the cross traffic.

hirdly; as suggested by Crundall et al. (2008), motorcycles from
he cross traffic may be less perceived by drivers waiting for merg-
ng as motorcycles are less conspicuous. Fourthly; the arrival times
f motorcycle from the cross traffic are likely to be misjudged by
rivers (Caird and Hancock, 1994) waiting for merging and increase
he possibility of collisions during merging.

.2.4. Presence of red light camera
The presence of red light camera (RLC) at the major roadway has

een found to be effective in reducing motorcycle crashes (95% BCI
−0.66, −0.26), IRR 0.63). The corresponding reduction of motor-
ycle crashes is about 37% compared to roads without the RLC.
oreover, the presence of red light cameras at the minor roadway is

lso found to reduce motorcycle crashes (95% BCI (−0.54, −0.06),
RR 0.75) with the corresponding reduction of about 25%. Previ-
us studies have shown that RLC is very effective in curbing red
ight violations (e.g., Chin, 1989; Lum and Wong, 2003) and hence
otential right-angle crashes (Huang et al., 2006).

From a field study, Chin and Haque (in press) have reported that
otorcycles are less disciplined in queuing behind the stop line
here there is no red light camera (see Fig. 1). They will discharge

arly in the green interval thus becoming more exposed to red-
unners from the conflicting traffic stream. In the presence of a RLC,
otorcyclists are reluctant to queue beyond the stop line, so that

here are fewer motorcycles in the front of the queue. Since weav-
ng spaces become blocked by the motorcycles in front, the weaving
pportunities for motorcyclists behind also reduce. Consequently,
ess motorcycle is discharging from the head of the queue as well
s their start up is delayed due to waiting behind the stop line.
ence they are less exposed during the initial period of green which
ay reduce their not-at-fault crash involvements. Indeed, Haque

t al. (2009) have reported that the presence of red light cameras
educe the not-at-fault crash involvement of motorcyclists. Hence
LC improves the safety to motorcyclists by not only reducing vio-

ations due to red light running but also motorcycle exposure due
o a less accumulation in the front of the queue as well as a later
tart up.

The reduction of motorcycle crashes is higher when the RLC
nstalls at the major roadway of four-legged intersections. This
igher reduction is due to reduction in violations and exposure of
otorcycles on the major road where the motorcycle traffic is likely

o be higher than on the minor road.

.2.5. Speed limit ≥50 km/h
Compared to roads with lower speed limits, higher speed major

oads are associated with the higher motorcycle crashes (95% BCI
0.27, 1.37), IRR 2.19). Previous studies, as reviewed by Aarts and
an Schagen (2006), have also shown that roads with higher speed
imits have the higher crash potential. Specifically, these roads may
ive rise to more rear-end crashes at the intersection (Poch and
annering, 1996; Wang and Abdel-Aty, 2006). A rear-end collision

t signalized intersections commonly happen when the leading
ehicle chooses to stop at the onset of amber but the following
ehicle decides to cross or fails to stop. Quddus et al. (2002) have
rgued that motorcyclists are less able to respond when the leading
ehicle stops suddenly. This is worse on high-speed roads.

.2.6. Traffic volume

Traffic volume on the major roadway has been found to have a

ositive association (95% BCI (0.005, 0.051), IRR 1.024) with motor-
ycle crashes. Higher traffic on the minor roadway has also been
ound to show a positive effect (95% BCI (0.004, 0.030), IRR 1.015)
n motorcycle crashes.
d Prevention 42 (2010) 203–212

Exposure of crashes is likely to depend on the traffic volume.
Available gaps for the right-turn opposing as well as the left-
turn merging traffic are likely to reduce with the higher volume.
Hence riders or drivers may more willing to take risk when making
turn. Moreover, traffic volume has a significant correlation with
the frequency red light running (Bonneson et al., 2001) in which
motorcycles are particularly vulnerable.

4.3. Interpretation of significant variables at T intersections

On T signalized intersections, (1) the presence of one-way road,
(2) presence of uncontrolled left-turn lane, (3) presence of exclusive
right-turn lane, (4) presence of red light camera, (5) traffic volume
at the major roadway and (1) the number of lanes, (2) presence of
exclusive right-turn lane, (3) presence of red light camera, (4) speed
limit of the minor roadway are found to be significantly associated
with motorcycle crashes (See Table 4). The effects of those variables
are discussed below.

4.3.1. Presence of one-way road
Motorcycle crashes at T signalized intersections have been

found to reduce significantly (95% BCI (−1.67, −0.22), IRR 0.40) if
the major roadway is a one-way road. The corresponding reduction
of motorcycle crashes is about 60%. In a T configuration where only
two movements per approach, the number of conflicting streams
is greatly reduced when the major road way is a one-way road.
Specifically T intersections with one-way major road have only
two conflicting groups while two-way major roads have five con-
flicting groups. Hence reduction of conflicting streams decreases
motorcycle crashes significantly.

4.3.2. Presence of uncontrolled left-turn lane
The presence of the uncontrolled left-turn lane on the major road-

way is associated (95% BCI (0.01, 0.74), IRR 1.40) with the higher
motorcycle crashes and it increases motorcycle crashes by about
40%. Generally, the provision of a left-turn lane creates more merg-
ing conflicts. In the T configuration, the uncontrolled left-turn at
the major roadway allows vehicles to merge with right-turning
vehicles from the oncoming traffic. This may result in a higher like-
lihood of a crash, perhaps sideswipe and head-to-side types which
are more serious by nature. Moreover, with the difficulties to detect
the motorcycles or to perceive correctly their speed, the likelihood
of motorcycle crashes during merging by the uncontrolled left-turn
lane will increase.

4.3.3. Presence of exclusive right-turn lane
The presence of exclusive right-turn lanes in the major road-

way has been found to increase (95% BCI (0.27, 1.58), IRR 2.50)
motorcycle crashes by about 2.5 times over roads without exclusive
right-turn lanes. Haque et al. (2008) reported that motorcyclists use
the exclusive right-turn lane as a bypass if it is not fully utilized. In
general, the utilization of the straight-through lanes and right-turn
lanes are not balanced. Motorcyclists tend to utilize the unused
lanes to maneuver to the front of the queue. Hence the presence
of the right-turn lane gives more opportunity for motorcyclists to
form up at the stop line, thus increasing the exposure to the traffic
from the conflicting stream. Furthermore the vehicles in the exclu-
sive right-turn lane may turn during the unprotected green phase
making it hazardous to motorcyclists for several reasons: (1) right-
turning drivers may not pay attention to motorcyclists around them
(e.g., Hurt et al., 1981; Mannering and Grodsky, 1995), (2) turning

drivers may be less able to perceive motorcycles from the oppos-
ing stream (Crundall et al., 2008), (3) drivers may over-estimate
the arrival time of motorcycles from the opposing stream (Caird
and Hancock, 1994), and (4) motorcycles are less conspicuous (e.g.,
Williams and Hoffmann, 1979).
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The presence of exclusive right-turn lanes in the minor roadway
as also been found to have a positive association (95% BCI (0.007,
.99), IRR 1.60) with motorcycle crashes and the corresponding

ncrease is about 60%. Right-turning vehicles from the minor road-
ay of a T intersection have potential conflicts with the through

raffic from the major roadway. As right tuning vehicles from the
inor roadway may take longer time to clear the T intersections,

arly discharging behavior of motorcyclists from the major road-
ay may increase the crash likelihood of motorcycles.

.3.4. Presence of red light camera
The presence of red light camera (RLC) along the major roadway

lso shows a decreasing effect on the motorcycle crashes (95% BCI
−1.27, −0.32), IRR 0.45) with a reduction of about 55% over the case
f without a camera. The safety impact of RLC on motorcycle safety
t T intersections is similar to that of four-legged intersections as
iscussed in the previous section.

.3.5. Number of lanes
Number of lanes on the minor roadway of T signalized intersec-

ions is found to have a positive association (95% BCI (0.01, 1.09),
RR 1.73) with motorcycles crashes. Lanes on the minor roadway
f T configuration are used for either left turning or right turning.
ence turning lanes on the minor roadway of T signalized intersec-

ions appear to cause more motorcycle crashes. One additional lane
n the minor roadway increases motorcycle crashes by about 73%.
igher number of lanes may increase two types of exposure. Firstly;
eaving opportunities of motorcycles increase with higher num-

er of lanes and thus accumulate in front of stop line and increase
xposure of motorcyclists to the traffic from the major roadway.
econdly; the exposure of right-turning vehicles from major road-
ay increase with higher number of lanes at minor roadway as

he crossing distance increases and hence lead to high number of
rashes (Wang and Abdel-Aty, 2008).

.3.6. Speed limit ≥50 km/h
The higher speed limit along the minor roadway is also found to

ave a positive association with motorcycle crashes (95% BCI (0.19,
.49), IRR 3.57). Bonneson and Zimmerman (2004) have reported
hat red light violations increase for the roads with higher speed
imit as the degree to which a driver underestimates his/her speed
ncreases with speed. As motorcycles are highly exposed to the con-
icting stream, high-speed roads with potentially higher red light
iolations are likely to increase the motorcycle crashes.

.3.7. Traffic volume
Motorcycle crashes have also been found to increase with the

raffic volume (95% BCI (0.003, 0.015), IRR 1.008) on the major
oadway of T intersections. Interactions between vehicles increase
ith the higher traffic volume and hence increase the likelihood of

rashes. Moreover, higher traffic volume on the major roadway will
ffer fewer available gaps for merging of left turning traffic from the
inor roadway in case of operating priority controlled left turning

nd motorists may accept a smaller gap and hence higher risk.
Traffic volume on the minor roadway also shows a positive

ffect (95% BCI (0.002, 0.014), IRR 1.006) on the motorcycle crashes
t T signalized intersections. The traffic from the minor road-
ay of T intersection is mainly turning vehicles. Hence increasing

he volume of turning vehicles is likely to increase motorcycle
rashes.
. Conclusion

This study attempts to model the motorcycle crashes at four-
egged and T signalized intersections in Singapore. The models have
een employed to take care of unobserved heterogeneities as well
d Prevention 42 (2010) 203–212 211

as location-specific effects and/or serial correlations in the time of
the crash counts. By treating the data in time-series cross-section
panels, the Hierarchical Poisson (AR-1) model has been found to be
superior in modeling motorcycle crashes at both four-legged and
T signalized intersections. The further application of this model in
hot spots or black spots identification may be promising.

Signalized intersections, being locations where there are many
instances of speed differential between vehicles and conflicts
between directional movements. While the severity of motorcycle
problem may also be affected by the vulnerability of motorcycles,
the study shows that there are a number of site-related factors
which are linked to high motorcycle crash potential.

The presence of red light cameras reduces motorcycle crashes
significantly for both four-legged and T intersections. It has been
observed that the red light camera induces more disciplined queu-
ing of motorcycles at the stop line hence reducing jump starts as
well as less red-running on the conflicting approaches.

Higher imposed speed limits also affect motorcycle crashes at
signalized intersections; increasing crashes for higher speed limit at
major roadway of four-legged intersections but at minor roadway
for T intersections. The presence of a wide median at major roadway
of four-legged intersections has a positive association with high
motorcycle crashes.

The number of lanes and presence of turning lanes have been
found to affect motorcycle crashes for both types of intersections.
The number of lanes is mainly found to have a significant influence
on motorcycle crashes for four-legged intersections while the pres-
ence of turning lanes mainly influence crashes at T intersections.
Four-legged intersections with more lanes at both major and minor
roadways are linked to higher motorcycle crashes. However, higher
number of lanes at minor roadways, i.e., turning lanes, of T sig-
nalized intersections is associated with higher motorcycle crashes.
The presence of uncontrolled left-turn lane at the major roadway
of both four-legged and T signalized intersections is associated
with high motorcycle crashes. For T intersections, exclusive right-
turn lanes on both major and minor roadways increase motorcycle
crashes significantly. As a follow up to this study, further field
work is now being carried out to understand the interactions
between motorcycles and other vehicles operating during the turn-
ing phases.

Given these findings, more care should be exercised when
designing intersections on high-speed roads with multi-lanes and
with exclusive right and left-turn facilities, where a high proportion
of motorcycles are expected in the traffic stream. One mitigating
measure may be to install red light cameras on such sites.

Acknowledgements

The authors would like to acknowledge Traffic Safety Manage-
ment (TSM) Consultancy Pte Ltd. in Singapore for providing the
intersection geometries and traffic data. The authors would also
like to thank Singapore Traffic Police for providing the road traffic
crash data of Singapore. The findings of this paper do not necessarily
reflect the view point of those organizations.

References

Aarts, L., van Schagen, I., 2006. Driving speed and the risk of road crashes: a review.
Accident Analysis & Prevention 38 (2), 215–224.

Abdel-Aty, M.A., Radwan, A.E., 2000. Modeling traffic accident occurrence and
involvement. Accident Analysis & Prevention 32 (5), 633–642.
Bonneson, J.A., Brewer, M., Zimmerman, K., 2001. Review and Evaluation of Factors
that Affect the Frequency of Red Light Running. FHWA/TX-02/4027-1. Federal
Highway Administration, Washington, DC.

Bonneson, J.A., Zimmerman, K., 2004. Development of Guidelines for Identifying
and Treating Locations with a Red Light Running Problems. Research Report
0-4196-2. Texas Transportation Institute, USA.



2 ysis an

B

C

C

C

C

C

C
C

d

G

G

H

H

H

H

L

L

L

M

M

12 M.M. Haque et al. / Accident Anal

rooks, S.P., Gelman, A., 1998. Alternative methods for monitoring convergence
of iterative simulations. Journal of Computational and Graphical Statistics 7,
434–455.

aird, J.K., Hancock, P.A., 1994. The perception of arrival time for different oncoming
vehicles at an intersection. Ecological Psychology 6 (2), 83–109.

hin, H.C., 1989. Effect of automatic red-light cameras on red-running. Traffic Engi-
neering & Control 30 (4), 175–179.

hin, H.C., Haque, M.M., in press. Effectiveness of red light cameras on the right-angle
crash involvement of motorcycles. Journal of Advanced Transportation.

hin, H.C., Quddus, M.A., 2003. Applying the random effect negative binomial model
to examine traffic accident occurrence at signalized intersections. Accident Anal-
ysis & Prevention 35 (2), 253–259.

larke, D.D., Ward, P., Bartle, C., Truman, W., 2007. The role of motorcyclist and other
driver behaviour in two types of serious accident in the UK. Accident Analysis &
Prevention 39 (5), 974–981.

ongdon, P., 2003. Applied Bayesian Modeling. John Wiley & Sons Ltd., England.
rundall, D., Humphrey, K., Clarke, D., 2008. Perception and appraisal of approaching

motorcycles at junctions. Transportation Research Part F: Traffic Psychology and
Behaviour 11 (3), 159–167.

e Lapparent, M., 2006. Empirical Bayesian analysis of accident severity for motor-
cyclists in large French urban areas. Accident Analysis & Prevention 38 (2),
260–268.

elfand, A., Ghosh, S., 1998. Model choice: a minimum posterior predictive loss
approach. Biometrika 85, 1–11.

ilks, W.R., Richardson, S., Spiegelhalter, D.J., 1996. Markov Chain Monte Carlo in
Practice. Chapman and Hall, New York.

aque, M.M., Chin, H.C., Huang, H.L., 2008. Examining exposure of motorcycles at
signalized intersections. Transportation Research Record 2048, 60–65.

aque, M.M., Chin, H.C., Huang, H.L., 2009. Modeling fault among motorcyclists
involved in crashes. Accident Analysis & Prevention 41 (2), 327–335.

uang, H., Chin, H.C., Heng, A.H.H., 2006. Effect of red light cameras on accident risk
at intersections. Transportation Research Record 1969, 18–26.

urt, H.H., Ouellet, J.V., Thom, D.R., 1981. Motorcycle Accident Cause Factors and
Identification Of Countermeasures. DOT HS-5-01160. Traffic Safety Center, Uni-
versity of Southern California, Los Angeles, CA.

in, M.-R., Chang, S.-H., Pai, L., Keyl, P.M., 2003. A longitudinal study of risk factors for
motorcycle crashes among junior college students in Taiwan. Accident Analysis
& Prevention 35 (2), 243–252.

ord, D., 2006. Modeling motor vehicle crashes using Poisson-gamma models: exam-
ining the effects of low sample mean values and small sample size on the
estimation of the fixed dispersion parameter. Accident Analysis & Prevention
38 (4), 751–766.

um, K.M., Wong, Y.D., 2003. Impacts of red light camera on violation characteristics.

Journal of Transportation Engineering 129 (6), 648–656.

annering, F.L., Grodsky, L.L., 1995. Statistical analysis of motorcyclists’ perceived
accident risk. Accident Analysis & Prevention 27 (1), 21–31.

iaou, S.-P., 1994. The relationship between truck accidents and geometric design of
road sections: poisson versus negative binomial regressions. Accident Analysis
& Prevention 26 (4), 471–482.
d Prevention 42 (2010) 203–212

Miranda-Moreno, L.F., Labbe, A., Fu, L., 2007. Bayesian multiple testing proce-
dures for hotspot identification. Accident Analysis & Prevention 39 (6), 1192–
1201.

Mitra, S., Chin, H.C., Quddus, M.A., 2002. Study of intersection accidents by maneuver
type. Transportation Research Record 1784, 43–50.

Olmstead, T., 2001. Freeway management systems and motor vehicle crashes: a
case study of Phoenix, Arizona. Accident Analysis & Prevention 33 (4), 433–
447.

Pai, C.-W., Saleh, W., 2007. Exploring motorcyclist injury severity resulting from var-
ious crash configurations at T-junctions in the United Kingdom—an application
of the ordered probit models. Traffic Injury Prevention 8 (1), 62–68.

Pai, C.-W., Saleh, W., 2008. Exploring motorcyclist injury severity in approach-
turn collisions at T-junctions: focusing on the effects of driver’s failure to yield
and junction control measures. Accident Analysis & Prevention 40 (2), 479–
486.

Poch, M., Mannering, F., 1996. Negative binomial analysis of intersection-accident
frequencies. Journal of Transportation Engineering 122 (2), 105–113.

Porter, B.E., England, K.J., 2000. Predicting red-light running behavior: a traffic safety
study in three urban settings. Journal of Safety Research 31 (1), 1–8.

Quddus, M.A., Noland, R.B., Chin, H.C., 2002. An analysis of motorcycle injury and
vehicle damage severity using ordered probit models. Journal of Safety Research
33 (4), 445–462.

Rutter, D.R., Quine, L., 1996. Age and experience in motorcycling safety. Accident
Analysis & Prevention 28 (1), 15–21.

Shankar, V., Mannering, F., 1996. An exploratory multinomial logit analysis of single-
vehicle motorcycle accident severity. Journal of Safety Research 27 (3), 183–194.

Singapore Police Force, 2006. TP Annual 2006. Available online, accessed on
07/04/2009, at http://www.spf.gov.sg/prints/tp annual/2006/index tp 06.htm.

Spiegelhalter, D.J., Thomas, A., Best, N.G., Lunn, D., 2003. WinBugs Version 1.4.1 User
Manual. MRC Biostatistics Unit, Cambridge, UK.

Vogt, A., Bared, J.G., 1998. Accident models for two-lane rural roads: segments and
intersections. Transportation Research Record 1635, 18–29.

Wang, X., Abdel-Aty, M., 2006. Temporal and spatial analyses of rear-end crashes at
signalized intersections. Accident Analysis & Prevention 38 (6), 1137–1150.

Wang, X., Abdel-Aty, M., 2007. Investigation of right-angle crash occurrence at sig-
nalized intersections. Transportation Research Record 2019, 156–168.

Wang, X., Abdel-Aty, M., 2008. Modeling left-turn crash occurrence at signalized
intersections by conflicting patterns. Accident Analysis & Prevention 40 (1),
76–88.

Washington, S.P., Karlaftis, M.G., Mannering, F.L., 2003. Statistical and Econometric
Methods for Transportation Data Analysis. Chapman and Hall/CRC, Boca Raton,
FL.

Williams, M.J., Hoffmann, E.R., 1979. Motorcycle conspicuity and traffic accidents.

Accident Analysis & Prevention 11 (3), 209–224.

Yan, X., Radwan, E., 2007. Effect of restricted sight distances on driver behaviors
during unprotected left-turn phase at signalized intersections. Transportation
Research Part F: Traffic Psychology and Behaviour 10 (4), 330–344.

Yuan, W., 2000. The effectiveness of the ‘ride-bright’ legislation for motorcycles in
Singapore. Accident Analysis & Prevention 32 (4), 559–563.

http://www.spf.gov.sg/prints/tp_annual/2006/index_tp_06.htm

	Applying Bayesian hierarchical models to examine motorcycle crashes at signalized intersections
	Introduction
	Motorcycle safety research
	Research objective

	Methodology
	Model development
	Model 1: Poisson Gamma model
	Model 2: Hierarchical Poisson Gamma model
	Model 3: Hierarchical Poisson Lognormal model
	Model 4: Hierarchical Poisson (AR-1) model

	Bayesian inference
	Model selection
	Parameter effects

	Data preparation
	Estimation of results
	Model estimation
	Interpretation of significant variables at four-legged intersections
	Number of lanes
	Presence of wide median (>2m)
	Presence of uncontrolled left-turn lane
	Presence of red light camera
	Speed limit 50km/h
	Traffic volume

	Interpretation of significant variables at T intersections
	Presence of one-way road
	Presence of uncontrolled left-turn lane
	Presence of exclusive right-turn lane
	Presence of red light camera
	Number of lanes
	Speed limit 50km/h
	Traffic volume


	Conclusion
	Acknowledgements
	References


