
QDAPS: Queueing Delay Aware Packet Spraying
for Load Balancing in Data Center

Jiawei Huang§, Wenjun Lv§, Weihe Li§, Jianxin Wang§, Tian He‡
§School of Information Science and Engineering, Central South University, Changsha, China 410083

‡Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA 55455

Email: {jiaweihuang,wenjunlv}@csu.edu.cn, weiheleecsu@gmail.com, jxwang@csu.edu.cn, tianhe@umn.edu

Abstract—Modern data center networks are usually construct-
ed in multi-rooted tree topologies, which require the highly
efficient multi-path load balancing to achieve high link utilization.
Recent packet-level load balancer obtains high throughput by
spraying packets to all paths, but it easily leads to the packet
reordering under network asymmetry. The flow-level or flowlet-
level load balancer avoids the packet reordering, while reducing
the link utilization due to their inflexibility. To solve these
problems, we design a Queueing Delay Aware Packet Spraying
(QDAPS), that effectively mitigates the packet reordering for
packet-level load balancer. QDAPS selects paths for packets ac-
cording to the queueing delay of output buffer, and lets the packet
arriving earlier be forwarded before the later packets to avoid
packet reordering. We compare QDAPS with ECMP, LetFlow
and RPS through NS2 simulation and Mininet implementation.
The test results show that QDAPS reduces flow completion time
(FCT) by ∼30%-50% over the state-of-the-art load balancing
mechanism.

Index Terms—Data center; Multi-path; Load balancing

I. INTRODUCTION

With the rapid development of cloud computing and big data

techniques, more and more distributed applications such as

web search, social networking and online retail are migrating

to data centers. These applications generate huge amounts of

traffic in data center networks, whose performance directly

affects the user experience and the revenue of data center

providers. Modern data centers are commonly organized in

multi-rooted tree topologies such as Fat-tree [1] and Clos [2] to

provide multiple equal cost paths for communication between

different servers. The multipath transmission becomes critical

in determining the performance of data center applications.

Random Packet Spraying (RPS) [3] is a simple packet-level

load balancing scheme in data center networks. RPS splits

each flow into packets on the switch and randomly sprays

packets to all available paths to the destination. RPS works

on a finer granularity to make good use of the multiple paths.

Moreover, RPS does not require any change on the hosts and

has already been implemented on many commodity switches

such as Cisco [4].

Unfortunately, RPS easily leads to TCP out-of-order prob-

lem under network asymmetry. When the packets in a single

flow are sent through multiple paths with different latency,

the packets arriving at the receiver have a great chance of out-

of-order. Since the current transport layer protocols such as

TCP and DCTCP are not able to distinguish the reordered

packets from the lost ones, RPS unavoidably brings about

the reduction of TCP congestion window, resulting in the

suboptimal network performance.
As a flow-level load balancer, Equal Cost Multi Path

(ECMP) [5] randomly assigns flows to different paths. Though

being widely deployed in data center, ECMP suffers from hash

collisions and the inability to adapt to network asymmetry.

In recent years, some flowlet-level load balancers such as

CONGA [6] and Letflow [7] are proposed to split a flow into

multiple flowlets and route a flowlet to one of the shortest

path to the receiver. The flowlet-based mechanisms mitigate

the packet reordering, but are not flexible enough as the flowlet

gap is set to a fixed value [8]. As a result, it is hard to fully

utilize all transmission paths.
We propose a packet-level load balancing design called

Queueing Delay Aware Packet Spraying (QDAPS), that is both

flexible to achieve high utilization and resilient to mitigate

packet reordering under network asymmetry. QDAPS makes

load balancing decisions on a per-packet granularity to obtain

high utilization, eliminating the restriction of fixed granularity

or passive path selection. Meanwhile, in order to avoid the

packet reordering, QDAPS selects the output path for the

arriving packet according to the queueing delay of the last

arriving packet in the same flow. We implement QDAPS

on the switches with negligible overhead, while making no

modifications on the TCP/IP protocol stack of the end-hosts.
We make the following contributions:

• We conduct an extensive simulation-based study to an-

alyze the problems of the current load balancing mech-

anisms, including TCP out-of-order of packet-level load

balancing and the low link utilization of flow-level and

flowlet-level ones.

• We propose a packet-level load balancing mechanism

QDAPS, which selects the output port for a packet based

on the queueing delay of the last arriving packet in

the same flow. Specifically, the packet arriving earlier is

forwarded before the later packets to resolve out-of-order

problem.

• We evaluate QDAPS extensively in the Mininet imple-

mentation and large-scale NS2 simulations under differ-

ent realistic traffic patterns. The test results show that

QDAPS greatly reduces the average flow completion

time (AFCT) by ∼30%-50% over the state-of-the-art load

balancing mechanisms.

The rest of the paper is organized as follows. We analyze

the TCP out-of-order problem of RPS and low link utilization

66

2018 IEEE 26th International Conference on Network Protocols

978-1-5386-6043-0/18/$31.00 ©2018 IEEE
DOI 10.1109/ICNP.2018.00017

of existing flow-level and flowlet-level mechanisms in Section

II. In Section III, we describe the design and implementation

details of QDAPS. We evaluate the performance of QDAPS

through NS2 simulation and Mininet implementation in Sec-

tion IV and Section V, respectively. We discuss the related

work in Section VI and conclude the paper in Section VII.

II. DESIGN MOTIVATION

To motivate our design, we first investigate the TCP out-of-

order problem of RPS mechanism. Then we show the draw-

backs of flow-level and flowlet-level load balancing mech-

anisms. Finally, we present the key insights underlying our

design.

A. Load balancing scheme with different granularities

Existing load balancing designs make switching decisions

at different levels. Specifically, packet-level load balancing

mechanism RPS simply sprays each packet to all available

shortest paths. ECMP randomly hashes flows to paths at

per-flow level. The switching granularities of CONGA and

LetFlow are flowlets, which are bursts of packets from a

flow that are separated by large enough gaps to avoid packet

reordering.

We illustrate the working mechanisms of RPS, ECMP and

LetFlow in Fig.1. As shown in Fig.1 (a), 3 equal cost paths

are provided for 2 flows. Each output port of the leaf switch

has a buffer queue. Fig.1 (b) shows that the packets are

randomly scattered to the output port queues in RPS. For

flow 2, packet 1 will leave the leaf switch later than packet

2, 3, 4 and 5, triggering the reduction of TCP congestion

window as DupAckThreshold is set to 3. As shown in Fig.1

(c), since all the packets of each flow are hashed to one

output port by ECMP, flow 1 and flow 2 may be transmitted

through the same path, leaving the other 2 paths idle. Fig.1

(d) shows that, under LetFlow, flow 1 is rerouted only when

the congestion state of its path becomes very heavy, resulting

in low utilization of the other paths. In ECMP and LetFlow,

a significant fraction of links may experience congestion even

while there are underutilized links elsewhere.

Q1

Q3

Leaf

Spine

(a)

RRSS

SS
Q2

flow1

flow2

(c)

RR

1 Q1

Q2

Q3

24 1 33 245 5

(b)

1 Q1

Q2

Q3

241

33

245

5

(d)

1 Q1

Q2

Q3

2

4

1 33 245

5

Fig. 1: Illustration example: (a) leaf-spine topology settings

with three equal cost paths; (b) RPS; (c) ECMP; (d) LetFlow.

B. Out-of-order problems in RPS

We conduct the NS2 simulation to investigate the impact of

out-of-order problem of RPS. The test topology is leaf-spine

as shown in Fig.2. Each server sends a flow to a receiver via

multiple switches. The buffer size of each switch is set to 256

packets. The bandwidth of each path is 1Gbps and the round

trip propagation delay is 100μs.

Spine

Leaf

Sender Receiver

Fig. 2: Leaf-Spine topology

We generate 50 flows (from 50KB to 200KB) in heavy-

tailed distribution. Fig.3 shows the proportion of reordered

and dropped packets for each flow. The percent of reordered

packets is about 30% on average, while the packet loss rate is

almost zero. The reason is that, even when the traffic load is

not high, RPS randomly spreads the packets of each flow to

all paths, unavoidably resulting in out-of-order problem.

Reordered packets
Dropped packets

Pe
rce

nt
ag

e

0

20

40

60

80

Flow ID
10 20 30 40 50

Fig. 3: The percent of reordered and dropped packets

In order to test the impact of out-of-order event on the

network performances, we compare the simulation results of

RPS with DupAckThreshold of 3 and 100. As shown in

Fig.4 (a), the average congestion windows of each flow are

larger when DupAckThreshold is 100, because we eliminate

the effects of reordered packets on the congestion window.

In Fig.4 (b), when the DupAckThreshold is 100, the flow

completion time is greatly reduced, showing that the out-of-

order problem results in low sending rate and large FCT.

DupAckThreshold=3
DupAckThreshold=100

Av
er

ag
e

CW
N

D
 (p

kt
)

0

5

10

15

20

25

Flow ID
10 20 30 40 50

(a) The average congestion window

DupAckThreshold=3
DupAckThreshold=100

CD
F

0

0.2

0.4

0.6

0.8

1.0

FCT(ms)
0 5 10 15 20

(b) FCT of all flows

Fig. 4: The effects of packet reordering

67

C. Low link utilization in ECMP and LetFlow

In this test, we analyze the under-utilization problem of

ECMP and LetFlow in the leaf-spine topology shown in Fig.2.

We generate 2 flows through 4 equal cost paths. The flowlet

timeout is set as 500μs as recommended in [7].

Path1 Path2 Path3 Path4

Th
ro

ug
hp

ut
(M

bp
s)

0
200
400
600
800

1000

Time(ms)
0 5 10 15 20 25 30 35 40 45 50 55 60

(a) ECMP

Th
ro
ug
hp
ut
(M
bp
s)

0
200
400
600
800
1000

Time(ms)
0 5 10 15 20 25 30 35 40 45 50 55 60

(b) LetFlow

Th
ro
ug
hp
ut
(M
bp
s)

0
200
400
600
800
1000

Time(ms)
0 5 10 15 20 25 30 35 40 45 50 55 60

(c) RPS

Fig. 5: Throughput on each path with different schemes

We measure the link utilizations of 4 paths. As shown in

Fig.5 (a), when ECMP is used, 2 flows are respectively hashed

to path 2 and path 4, which are almost fully utilized. However,

the throughputs of the other two paths are always zero, leading

to only 50% utilization ratio of all paths. The result of LetFlow

is shown in Fig.5 (b). At beginning, flow 1 and flow 2 are

transmitted through path 2 and path 4, respectively. When

the time interval between two consecutive packets of a flow

arriving at the leaf switch is larger than the threshold of flowlet

timeout, flow 1 and flow 2 are rerouted to path 1 and path 3,

respectively. Though LetFlow transmits the flows through all

paths, it still leads to low link utilization due to its inflexibility.

As shown in Fig.5 (c), as a packet-level load balancer, RPS

uses all paths at the same time and obtains similar throughputs

on all paths. Because of the out-of-order problem, however,

RPS is not able to achieve the full utilization on each path.

D. Summary

Our analysis of the existing load balancing schemes leads

us to conclude that (i) packet-level load balancer RPS obtains

high link utilization, but leads to TCP out-of-order problem;

(ii) ECMP and LetFlow are not able to make full use of all

paths because of their coarse granularity in rerouting flows.

These conclusions motivate us to propose a queueing delay

aware packet-level load balancing mechanism to avoid packet

reordering and obtain high link utilization. We present the

design and implementation of QDAPS in the rest of the paper.

III. QDAPS DESIGN

In this section, we describe the overview of QDAPS and

elaborate the design and implementation details.

A. QDAPS Architecture

Our goal is to design a packet-level load balancing mecha-

nism QDAPS to resolve packets reordering and achieve high

link utilization. Specifically, on the one hand, QDAPS splits

individual flows into packets and reroutes each packets on

fine-granularity to provide better load balance and high link

utilization. On the other hand, QDAPS elaborately selects the

output ports for each arriving packets in a single flow in order

to mitigate packet reordering. Fig.6 shows the architecture of

QDAPS, which is implemented on switch and has three main

modules.

Input
Queue length>S

Queueing Delay
Estimation

Packet Reorder
Resolution

Large Flow
Rerouting

Switch

Output

Queue
lengths

Queueing
delay

Q1

...

Q2

Q3

Qn

Output Queue

Fig. 6: QDAPS Overview

(1) Queueing Delay Estimation: When a new packet

arrives, QDAPS estimates the queueing delay of the packet

according to the real-time queue length of its assigned output

ports. For each flow, QDAPS only records the queueing delay

of the last arrival packet.

(2) Packet Reorder Resolution: To avoid packet reorder-

ing, the earlier arrival packets should be sent by switch ahead

of the later arrival ones in the same flow. To achieve this target,

for each arriving packet, QDAPS selects a destined output port

with larger queueing delay than the last arrival packet in the

same flow.

(3) Large Flow Rerouting: Since QDAPS lets the later

arrival packets wait longer than the earlier arrival ones in a

same flow, the packets of large flow may experience large

queueing delay. To solve this problem, when the current queue

length is larger than a given threshold, QDAPS reroutes the

packets to the output port with shortest queue length.

B. Packet Reorder Resolution

When the first packet of a flow arrives at the switch, QDAPS

selects the output queue with the shortest queue length for this

packet. For later arrival packet, QDAPS selects a output queue

to ensure that its queueing delay is larger than the remaining

delay of the last arrival packet in the same flow.

As a simple example shown in Fig.7, since the queueing

delay of output port Q1 is larger than the remaining queueing

delay of packet 3, QDAPS selects Q1 for packet 4 to ensure

that packet 4 leaves the switch later than packet 3, avoiding

packet reordering.

68

1 Q1

Q2

Q32

4

3

R124 13

R2...

Rn...

...

Switch Receivers

Fig. 7: Packet scheduling method in switch with QDAPS

Here we present QDAPS’s algorithm for scheduling packets

on each switch in a leaf-spine topology. We assume that each

switch has a forwarding table, which stores the set of candidate

next-hops for each destination host. QDAPS is a switch-local

scheduling algorithm operating as follows.

When a packet pi in flow f arrives at time ti, the queueing

delay QDi is calculated as

QDi =
M × (li + 1)

C
, (1)

where M is the packet size, li is the queue length of pi’s des-
tined output port, and C is the link bandwidth corresponding

to the output port.

When the following packet pi+1 in flow f arrival at time

ti+1, the remaining queueing delay RQDi of pi is

RQDi = QDi + ti − ti+1. (2)

Then, the forwarding engine of switch chooses d output

ports with larger queueing delay than RQDi, finds the one

with the current minimum queue length between these d ports,

and routes packet pi+1 to that port. For each flow, the engine

only updates the arriving time ti and queueing delay QDi of

last arrival packet pi.

C. Large Flow Rerouting

The data center traffic is heavy-tailed distributed [9], [10],

that is, 10% of TCP flows provide around 90% of data traffic,

and about 90% of TCP flows transfer only about 10% of data

traffic. QDAPS routes the first packet of a flow to the output

queue with the shortest queue length. The small flows are

usually completed quickly (i.e., even in slow start phase), and

will not experience long queueing delay.

However, we find that, the packets of large flows may accu-

mulate on a few queues with large queueing lengths, because

QDAPS routes the later arrival packets to output queues with

lager queueing delay to resolve the packet reordering. This

problem is illustrated in Fig.8. When packet 4 arrives, if

QDAPS chooses Q3 for packet 4 to avoid packet reordering,

the queueing delay becomes large. Therefore, if the queue

length is larger than a given threshold S, we propose to

reselect a shortest output queue (i.e., Q2) for packet 4 to reduce

the queueing delay.

Fig.9 shows the cost-benefit assessment QDAPS performs

when making rerouting decisions. On the one hand, consider-

ing a flow that is sending data, if it persists in the same output

queue, the large queueing delay leads to the slow increasing

speed in congestion window and low link utilization. On the

1 Q1

Q2

Q32

4

3

R123 14

R2...

Rn...

...

Switch Receivers
S

Fig. 8: long queue length problem in QDAPS

other hand, rerouting to a less congested output path obtains

low queueing delay and high link utilization, while may result

in packet reordering and rate reduction. In the following,

we seek a good tradeoff between queueing delay and packet

reordering by rerouting the large flows when its queue length

exceeds a threshold S.

Time

Window Size

W2

W1

W2/2

FCT1FCT2

W1/2

With rerouting Without rerouting

(a) Congestion window size

Time

Avg. sending rate

r2

FCT1FCT2

r1

With rerouting Without rerouting
Phase1 Phase2 Phase3

T1 T2 T3

r1/2

(b) Average sending rate

Fig. 9: Analysis of the cost and benefit

Given the fact that DCTCP [11] has been extensively

deployed in many data centers, such as Google [11] and

Morgan Stanley [12], we choose DCTCP as the transport

protocol to analyze the queue length threshold S in rerouting

long flow. We use Y , RTT , C and K to denote the flow

size, the propagation delay, the bottleneck link bandwidth and

the ECN marking threshold in DCTCP, respectively. Fig.9

compares the congestion windows of a single flow with and

without rerouting.
If the flow is not rerouted, its packets are accumulated in an

output queue at the switch and the queue length is maintained

at around K by DCTCP. Then, the maximum congestion

window W1 is capped by the the total number of packets that

can be accommodated in link pipeline and switch buffer, that

is, W1 is calculated as

W1 = C ×RTT +K. (3)

When the congestion window grows from W1

2 to W1, it

takes W1

2 RTT s. During each round, the average congestion

window and queueing delay are 3W1

4 and K
C , respectively.

Then we get the average sending rate r1 as

r1 =
3W1

4
K
C +RTT

. (4)

If the flow does not change its path during the transmission,

the flow completion time FCT1 is calculated as

FCT1 =
Y

r1
=
4Y × (KC +RTT)

3W1
, (5)

69

where Y is the flow size in packets.

If the flow is rerouted to the output port with shortest

queue length when the queue length exceeds S, the maximum

congestion window W2 is

W2 = C ×RTT + S. (6)

The flow completion time under rerouting includes three

phases as shown in Fig.9 (b). In first phase, the flow is sent at

the rate r1. The second phase starts when the average sending

rate is dropped from r1 to r1/2 by rerouting and ends once

the average rate increases to r2, which is the average rate in

the destined path. In the last phase, the flow is sent at rate r2.
Phase1: In this phase, the queue length is less than S. As

the congestion window increases from 1 to W2, it takes W2

RTT s, and the average window is W2/2. Then the data traffic

size S1 sent in this phase is

S1 =
W2

2
×W2. (7)

The time T1 in this phase is

T1 =
S1
r1

. (8)

Phase2: The average sending rate decreases from r1 to r1/2
because of rerouting and then increases to r2, which is the

average sending rate after rerouting. Note that if we reroute the

flow when the queue length exceeds S, the average queueing

delay is S/2C as the queue length increases from 0 to S.
Then, r2 is calculated as

r2 =
3W2

4
S
2C +RTT

. (9)

In this phase, the congestion window increases from W2/2
to W2. The data traffic size S2 sent in this phase is

S2 = (W2 − W2

2
)× W2 +

W2

2

2
. (10)

The average sending rate in this phase is (r1/2+r2)/2. We

get the time T2 in this phase as

T2 =
S2

r1
2 +r2
2

. (11)

Phase3: In this phase, the remaining data traffic of the flow

is sent at the average rate r2. We get the time T3 in this phase

as

T3 =
Y − S1 − S2

r2
. (12)

With rerouting, the flow completion time FCT2 is the sum

of T1, T2 and T3. According to Equation (8), (11) and (12),

we obtain FCT2 is

FCT2 =
S1
r1
+

S2
r1
2 +r2
2

+
Y − S1 − S2

r2
. (13)

In order to reduce the flow completion time, the queue

length threshold S is set as the minimum value satisfying

FCT1 ≥ FCT2.

Finally, we obtain the value of S as

S ≈
√
12Y C − 8Y r1
6C − 3r1 − C ×RTT. (14)

Note that flow rerouting is designed for long flows. Typ-

ically, there are few large flows in data center applications

compared with the large number of small flows. Moreover, the

large flow rerouting is triggered only when the queue length

exceeds the threshold S. Since the large flow rerouting is not

triggered very frequently, its impact on the normal operations

of switch is limited.

D. Implementation

We have implemented QDAPS in BMv2 and deployed it

in a small testbed. BMv2 is a P4 [13] software switch in

which we test the P4 implementation of QDAPS. Note that

our QDAPS prototype is deployed on switch, without any

modifications on TCP/IP protocol stack of end-hosts. In the

QDAPS’s P4 implementation, we mainly take two key points

into consideration.

Flow Table: The packets enter the ingress and egress

pipeline at the switch, which maintains a flow table to record

the flow information including the flow ID, flow size, flow age

bit and remaining queueing delay of the last arriving packet

in the corresponding flow.

Specifically, when a packet arrives at the switch and enters

the ingress pipeline, QDAPS acquires the 5-tuple of the packet

header and adopts CRC16 algorithm to calculate the hash

value used as the flow ID. The flow size is measured as

the amount of data that a flow has already sent through the

switch. The remaining queueing delay of the arrival packet

is computed according to the queue length of the packet’s

destined output port. To avoid unnecessary storage wastage in

flow table due to idle connections, QDAPS samples the flows

periodically and removes the idle connections from the flow

table. Upon the arrival of a packet, the corresponding flow’s

age bit is set to 1. At a fixed time interval, 2RTT , QDAPS
removes the flow with age bit as 0 and clears the age bits of the

other flows. QDAPS uses 8 bytes to record the information of

each flow. Since the number of active flows is less than 10,000

on a leaf switch [11], the deployment overhead is negligible.

Leaf-to-leaf Delay Estimation: As a localized load balanc-

ing scheme, QDAPS makes forwarding decisions according to

the queue lengths of the output ports in the leaf switches. How-

ever, the local congestion state on the leaf switch is not always

consistent with the global or leaf-to-leaf information about

congestion. In our implementation, we design an enhanced

version called QDAPS*, which gathers congestion feedback

from remote leafs to make forwarding decisions.

We modify the egress pipeline at the leaf switches to record

the sending time. When a packet is sent by the port ps of

source leaf switch, the sending time is filled in the timestamp

field of packet header. When receiving the packet at a port

pd, the destination leaf switch fetches the sending time in

the packet header and calculates the leaf-to-leaf delay by

subtracting the sending time from the arriving time. To quickly

feed the path delay to the source leaf switch without any traffic

70

RPS
LetFlow

ECMP
QDAPS

Re
or

de
re

d p
ac

ke
ts(

%)

0

20

40

60

80

Flow ID
5 10 15 20 25 30

(a) The percent of reordered packets

RPS
LetFlow

ECMP
QDAPS

Av
er

ag
e C

WN
D(

pk
t)

0

20

40

60

Flow ID
5 10 15 20 25 30

(b) The average congestion window

RPS
LetFlow

ECMP
QDAPS

CD
F

0

0.2

0.4

0.6

0.8

1.0

FCT(ms)
0 2 4 6 8 10

(c) The average FCT of flows

Ut
iliz
ati
on

0.2

0.4

0.6

0.8

ECMP LetFlow RPS QDAPS

(d) The utilization ratio of network

Fig. 10: The basic simulation performance with different load balancing mechanisms

overhead, the destination leaf switch piggybacks the leaf-to-

leaf delay on the timestamp field of any data or ACK packet

sent though port pd to port ps of source leaf switch. Finally,

the source leaf switch obtains the delay from ps to pd by

reading the timestamp field of packets arriving port ps, and
makes the forwarding decisions based on the sum of leaf-to-

leaf delay and local queueing delay. The test results in section

IV.D show that QDAPS* is resilient enough to mitigate the

packet reordering under the impact of global congestion.

It should be noted that, to reduce the feedback delay,

QDAPS* uses the data or ACK packets at the head of the

queue to piggyback the leaf-to-leaf delay. Moreover, QDAPS*

employs all available packets in reverse direction to piggyback

the delay information to ensure high reliability. Therefore,

QDAPS* utilizes the data or ACK packets to obtain the real-

time leaf-to-leaf delay without any extra traffic overhead.

IV. SIMULATION EVALUATION

We conduct NS2 simulations to evaluate the performance of

QDAPS in the large-scale scenarios. In the tests, DCTCP is

adopted as the transport protocol. The buffer size of switches

and buffer occupancy threshold K are 256 and 65 packets,

respectively. We compare QDAPS with the following three

state-of-the-art load balancing schemes.

(1) ECMP: As a standard multipath load balancing mech-

anism, ECMP is widely deployed on commodity switches

in data center networks. It hashes each flow to an available

shortest path to the destination based on the five-tuple of TCP

packet header.

(2) LetFlow: LetFlow is a flowlet-level load balancing

algorithm which has been implemented in silicon for data

center switches. A flowlet is formed when the gap between

the arrival time of two consecutive packets of a flow is larger

than the threshold, which is 500μs to avoid packet reordering.

(3) RPS: RPS is a simple packet-level approach which

randomly spreads packets to all available equal cost paths

between any pairs of source and destination hosts.

A. Basic Performance

In this test, we compare the percentage of packet reorder-

ing, average congestion window of TCP flows and network

utilization in different load balancing approaches. The test

topology is a leaf-spine network with 4 equal cost paths shown

in Fig.2. We generate 30 flows from 50KB to 200KB in heavy-

tailed distribution and the start time of these flows follows the

Poisson distribution. The round trip propagation delay is 100μs
and the link bandwidth is 1Gbps.
As shown in Fig.10 (a), the percentage of reordered packets

in RPS is as large as about 40%. The reason is that RPS

randomly selects the output ports for each packet, resulting

in lots of reordered packets. ECMP avoids packet reordering

because it spreads all the packets of each flow through a single

path to the destination. In LetFlow, the percentage of reordered

packets is very small as the flowlet timeout is large enough

to trigger less flow rerouting. QDAPS experiences few packet

reordering as it schedules packets according to queueing delay.
As shown in Fig.10 (b), the average congestion window in

RPS is much less than the other load balancing mechanisms

due to its heavy packet reordering. Since ECMP adopts a static

hash method and does not sense the congestion state, the hash

collision leads to the packet loss and reduction of congestion

window. QDAPS obtains larger congestion window than the

other schemes, because it is able to perceive the queueing

length of output ports to forward packets, achieving the in-

order delivery and packet-level flexibility in balancing traffic.
Fig.10 (c) shows the CDF of flow completion time. QDAPS

effectively reduces the FCT with the following two reasons.

On the one hand, QDAPS forwards the packet based on the

remaining queueing delay of the last arriving packet at the

switch to avoid packet reordering. On the other hand, as shown

in Fig.10 (d), since QDAPS is a packet-level transmission

scheme, it is more flexible to switch packets than flow-

based scheme and achieves the higher link utilization. We

show the maximum, minimum and average link utilization

ratios in Fig.10 (d). The experiments are repeated for 10

times. Since ECMP is a static load balancing mechanism,

the average link utilization of all paths in ECMP is less than

50%, that is, some paths are congested while some ones are

unutilized. Since LetFlow scheme uses fixed gap between

two consecutive packets to trigger rerouting flows, the link

utilization is reduced due to its inflexibility. Though RPS

scatters packets to all paths, the packet reordering degrades

the sending rate. Therefore, QDAPS obtains the largest link

utilization by making full use of all parallel paths and avoiding

out-of-order packets.

B. Asymmetric Scenario
In real data center networks, the traffic dynamics, device

heterogeneity and switch malfunctions easily lead to asymmet-

ric scenario, which greatly hurts the performances of load bal-

ancing. Here, we test if QDAPS can appropriately split traffic

71

RPS
LetFlow

ECMP
QDAPS

FC
T

(s

0

0.01

0.02

0.03

0.04

Link Bandwidth (Gbps)
0.2 0.4 0.6 0.8 1.0

(a) The average FCT

RPS
LetFlow

ECMP
QDAPS

FC
T

(s

0

0.01

0.02

0.03

0.04

Link Bandwidth (Gbps)
0.2 0.4 0.6 0.8 1.0

(b) The 99th percentile FCT

Fig. 11: The FCT performance in asymmetric topology

among multiple paths in reaction to path conditions under an

asymmetric topology. We adopt the leaf-spine topology with

8 paths between two leaf switches and vary the bandwidth

of one randomly selected leaf-to-spine link from 200Mbps to

1Gbps. The bandwidth of other links is 1Gbps. We generate

50 flows (from 50KB to 200KB) in heavy-tailed distribution.

We measure the average and 99th percentile FCT of all flows.

Fig.11 (a) shows that the average FCT of for RPS rises

quickly when the bandwidth difference is large. For example,

the average FCT with the degraded link as 200Mbps is ∼5× of

that in 1Gbps. The reason is that RPS does not sense the link

congestion and randomly spreads packets to all available paths.

Under the asymmetric topology, RPS experiences heavy packet

reordering and rate reduction. ECMP is also a congestion-

oblivious load balancing scheme. When the flows are hashed to

a congested path, ECMP does not reroute these unlucky flows.

Since QDAPS and LetFlow sense the congestion state and

adaptively route the flows to uncongested paths, they achieve

low average FCT.

Fig.11 (b) shows the 99th percentile FCT, presenting the

tail delay of all flows. When the bandwidth of degraded link

is 200Mbps, QDAPS reduces the 99th percentile FCT by

∼80% and ∼70% over ECMP and RPS, respectively. In brief,

QDAPS perceives the queue differences of all output ports

before making the routing decisions and thus achieves good

performance in the asymmetric networks.

C. Large-Scale Application Performances

We further compare the performance of QDAPS with the

state-of-the-art load balancing mechanisms through a large-

scale test. In the test, we adopt the workload of web search

[11] and data mining [1], which are the typical applications in

real data center networks. The distribution of the flow size in

different workload scenarios are shown in Table I. The average

flow sizes are 1.6MB and 7.4MB in the web search and data

mining applications, respectively.

TABLE I: Flow size distribution of realistic workload.

0-
10KB

10KB-
100KB

100KB-
1MB

>1MB

Data Mining 77% 5% 8% 10%

Web Search 55% 7% 18% 20%

We use a 8×8 leaf-spine topology with 8 equal cost paths

between any pair of hosts in the simulation. Each leaf switch

connects to 32 hosts and the oversubscription ratio is 4:1. The

bandwidth of links is 1Gbps and the round trip propagation

delay is 100μs. We evaluate the performance of QDAPS with

the load varying from 0.1 to 0.8.

The flow completion time is the primary metric in our tests

because the delay performance is very important for online

applications which focus on the user experience. For short

flows (≤100KB), we compare the average and 99th percentile

FCT. We also compare the average FCT of long flows (≥1MB)

and all flows to provide throughout understanding. We show

the simulation results of web search workload and data mining

workload in Fig.12 and Fig.13, respectively.

As shown in Fig.12 (a) and Fig.13 (a), under light load, RPS

and ECMP perform well and the FCT of all flows is close to

that of LetFlow and QDAPS. But under heavy load, QDAPS

performs much better because it spreads packets according

to the queueing delay to achieve less packet reordering.

Specifically, in web search workload, QDAPS reduces the

FCT of all flows by ∼50%, ∼30% and ∼40% over ECMP,

LetFlow and RPS at 0.8 network load, respectively. In data

mining workload, QDAPS reduces the FCT of all flows by

∼50%, ∼25% and ∼45% over ECMP, LetFlow and RPS at

0.8 network load, respectively.

As shown in Fig.12 (b) and Fig.13 (b), for short flows, RPS

and QDAPS perform better than ECMP and LetFlow. Since

the short flows experience less packet reordering, RPS obtains

low delay for short flows. Due to many hash collisions, FCT

of short flows in ECMP is very large. Fig.12 (c) and Fig.13

(c) show the 99th percentile FCT of short flows to present

the tail FCT. QDAPS performs well especially under heavy

loads. For example, in web search workload, QDAPS reduces

the 99th percentile FCT by ∼90%, ∼80% and ∼15% over

ECMP, LetFlow and RPS at 0.8 network load, respectively.

Fig.12 (d) and Fig.13 (d) show the FCT of long flows. RPS

spreads packets to all available paths, results in many reordered

packets and large FCT. ECMP and LetFlow easily degrade

the link utilization due to their inflexibility. Under the light

and heavy loads, QDAPS always obtains better performance

compared with the other schemes.

D. QDAPS* Performance

In this test, we evaluate the performance of QDAPS* under

global congestion. We use a leaf-spine topology with 4 equal

cost paths and 30 flows. The propagation delay of a congested

path is varying from 100μs to 300μs and that of the other paths
is 100μs. We generate the mixture of long and short flows

(from 50KB to 500KB) in uniform distribution and the flow

arrival time follows the Poisson distribution. The bandwidth

of all links is set to 1Gbps.

Fig.14 (a) shows the average FCT of all the flows. When

the propagation delay of congested path increases, all schemes

experience larger average FCT. Since RPS does not sense

the congestion on the degraded path, it causes more packet

reordering and much larger FCT than the other schemes.

As a congestion-unaware load balancing mechanism, ECMP

72

RPS
LetFlow

ECMP
QDAPS

FC
T

(s

0

0.04

0.08

0.12

0.16

0.20

Load
0.2 0.4 0.6 0.8

(a) Overall avg FCT

RPS
LetFlow

ECMP
QDAPS

FC
T

(s

0

0.005

0.010

0.015

0.020

0.025

Load
0.2 0.4 0.6 0.8

(b) Short flows (≤ 100KB) avg

RPS
LetFlow

ECMP
QDAPS

FC
T

(s

0

0.02

0.04

0.06

0.08

0.10

0.12

Load
0.2 0.4 0.6 0.8

(c) Short flow 99th percentile

RPS
LetFlow

ECMP
QDAPS

FC
T

(s

0

0.04

0.08

0.12

0.16

0.20

Load
0.2 0.4 0.6 0.8

(d) Long flows (≥ 1MB) avg

Fig. 12: FCT statistics for web search workload

RPS
LetFlow

ECMP
QDAPS

FC
T

(s

0

0.04

0.08

0.12

0.16

0.20

Load
0.2 0.4 0.6 0.8

(a) Overall avg FCT

RPS
LetFlow

ECMP
QDAPS

FC
T

(s

0

0.005

0.010

0.015

0.020

0.025

Load
0.2 0.4 0.6 0.8

(b) Short flows (≤ 100KB) avg

RPS
LetFlow

ECMP
QDAPS

FC
T

(s

0

0.02

0.04

0.06

0.08

0.10

0.12

Load
0.2 0.4 0.6 0.8

(c) Short flow 99th percentile

RPS
LetFlow

ECMP
QDAPS

FC
T

(s

0

0.3

0.6

0.9

1.2

1.5

Load
0.2 0.4 0.6 0.8

(d) Long flows (≥ 1MB) avg

Fig. 13: FCT statistics for data mining workload

RPS
LetFlow
ECMP

QDAPS
QDAPS*

FC
T

(s

0

0.01

0.02

0.03

Propagation (μs)
100 150 200 250 300

(a) The average FCT

RPS
LetFlow
ECMP

QDAPS
QDAPS*

FC
T

(s

0

0.01

0.02

0.03

Propagation (μs)
100 150 200 250 300

(b) The 99th percentile FCT

Fig. 14: QDAPS* performance under different delay

RPS
LetFlow
ECMP

QDAPS
QDAPS*

FC
T

(s

0

0.01

0.02

0.03

0.04

of ows
6 12 18 24 30

(a) The average FCT

RPS
LetFlow
ECMP

QDAPS
QDAPS*

FC
T

(s

0

0.01

0.02

0.03

0.04

of ows
6 12 18 24 30

(b) The 99th percentile FCT

Fig. 15: QDAPS* performance under different number of

flows

will not reroute flow even though serious congestion is ex-

perienced. Though LetFlow is aware of global congestion,

it randomly reroutes flow once senses the path congestion

and therefore is not able to achieve the optimal performance.

QDAPS* reduces the average FCT by up to ∼35%,∼15%, and

∼60% over ECMP, LetFlow and RPS, respectively. Fig.14 (b)

shows the 99th percentile FCT of all flows. RPS performance

is the worst in the test. Compared with QDAPS, QDAPS* de-

tects the leaf-to-leaf delay and makes more accurate decisions

to resolve packet reordering.

Next, we test the delay performance under different network

loads. The propagation delay of a congested path is 300μs,
while that of the other paths are 100μs. We change the

number of flows and show the delay results of different load

balancing mechanisms in Fig.15. When the number of flows

increases, the delay performances are degraded in all schemes.

RPS’s delay is always very large due to the packet reordering

problem. QDAPS* achieves the best delay performance in both

average and 99th percentile FCT.

V. TESTBED EVALUATION

In this section, we implement QDAPS with P4, which is

a high-level language for programming protocol-independent

packet processors. We test the performance of QDAPS through

a realistic testbed in Mininet [14], [17], [18]. Mininet is a net-

work emulation system, which creates virtual hosts, switches,

links and controller on the standard Linux kernel. Most of the

behaviors in Mininet are similar to the real network elements

[19]. However, the test scale in Mininet is smaller than real

data center networks due to the limitation of CPU.

In the test, we implement the packet processing pipeline of

QDAPS with P416 v1.0. We use Mininet 2.3.0d1 to create a

leaf-spine topology as shown in Fig.2. There are 4 equal cost

paths between the leaf and spine switch. BMv2 is installed

as the software programmable switch. The link bandwidth is

set as 20Mbps as recommended in [14]. We set the round

trip propagation delay to 1ms and the buffer size at switches

to 256 packets [17]. We compare the performance of QDAPS

with ECMP [5], LetFlow [7] and RPS [3]. The flowlet timeout

in LetFlow is set to 15ms. The average flow size is 64KB [16]

and all flows are less than 1MB.

We firstly test the delay performance under different number

of flows that follow the distribution like Web Server [15]. As

shown in Fig.16, we normalize the FCT of ECMP, RPS and

LetFlow to that of QDAPS. In Fig.16 (a), the normalized

73

RPS
LetFlow

ECMP
QDAPS

N
or

m
al

iz
ed

 F
CT

1.2

1.5

1.8

2.1

2.4

of ows
5 10 15 20 25

(a) Overall avg FCT

RPS
LetFlow

ECMP
QDAPS

N
or

m
al

iz
ed

 F
CT

1.2

1.5

1.8

2.1

2.4

of ows
5 10 15 20 25

(b) Short flows (≤ 100KB) avg

RPS
LetFlow

ECMP
QDAPS

N
or

m
al

iz
ed

 F
CT

1.2

1.5

1.8

2.1

2.4

of ows
5 10 15 20 25

(c) Short flow 99th percentile

RPS
LetFlow

ECMP
QDAPS

N
or

m
al

iz
ed

 F
CT

1.2

1.5

1.8

2.1

2.4

of ows
5 10 15 20 25

(d) Long flows (≥ 100KB) avg

Fig. 16: Performance with different number of flows in symmetric scenario

RPS
LetFlow

ECMP
QDAPS

N
or

m
al

iz
ed

 F
CT

1.2

1.5

1.8

2.1

2.4

Propagation (ms)
1 2 3 4 5

(a) Overall avg FCT

RPS
LetFlow

ECMP
QDAPS

N
or

m
al

iz
ed

 F
CT

1.2

1.5

1.8

2.1

2.4

Propagation (ms)
1 2 3 4 5

(b) Short flows (≤ 100KB) avg

RPS
LetFlow

ECMP
QDAPS

N
or

m
al

iz
ed

 F
CT

1.2

1.5

1.8

2.1

2.4

Propagation (ms)
1 2 3 4 5

(c) Short flow 99th percentile

RPS
LetFlow

ECMP
QDAPS

N
or

m
al

iz
ed

 F
CT

1.2

1.5

1.8

2.1

2.4

Propagation (ms)
1 2 3 4 5

(d) Long flows (≥ 100KB) avg

Fig. 17: Performance with varying propagation delay in asymmetric scenario

RPS
LetFlow

ECMP
QDAPS

N
or

m
al

iz
ed

 F
CT

1.2

1.5

1.8

2.1

2.4

Link Bandwidth (Mb)
12 14 16 18 20

(a) Overall avg FCT

RPS
LetFlow

ECMP
QDAPS

N
or

m
al

iz
ed

 F
CT

1.0

1.2

1.4

1.6

1.8

2.0

of ows
12 14 16 18 20

(b) Short flows (≤ 100KB) avg

RPS
LetFlow

ECMP
QDAPS

N
or

m
al

iz
ed

 F
CT

1.0

1.2

1.4

1.6

1.8

2.0

Link Bandwidth (Mb)
12 14 16 18 20

(c) Short flow 99th percentile

RPS
LetFlow

ECMP
QDAPS

N
or

m
al

iz
ed

 F
CT

1.2

1.5

1.8

2.1

2.4

Link Bandwidth (Mb)
12 14 16 18 20

(d) Long flows (≥ 100KB) avg

Fig. 18: Performance with varying bandwidth in asymmetric scenario

overall average FCT of ECMP, RPS and LetFlow is large

than 1, meaning that QDAPS achieves the shortest average

FCT of all flows. Specifically, QDAPS reduces the average

FCT of all flows by ∼25%-50%, ∼10%-20% and ∼15%-25%

over ECMP, LetFlow and RPS, respectively. Due to heavy

hash collisions, ECMP experiences much larger FCT with the

increasing number of flows.

Fig.16 (b) and Fig.16 (c) show the performances of short

flows. QDAPS reduces the average and tail FCT thanks for its

flexibility in load balancing mechanism and delay-awareness

to avoid packet reordering. As shown in Fig.16 (d), QDAPS

reduces the FCT of long flows by mitigating the packet

reordering and reducing queueing delay. QDAPS reduces the

average FCT of long flows by ∼35%-45%, ∼2%-10% and

∼20%-40% over ECMP, LetFlow and RPS, respectively.

Next, we further explore the performance of QDAPS in

the asymmetric scenarios. We set the number of flows as 25.

We vary the propagation of one randomly selected path from

1ms to 5ms to produce delay asymmetry. We also change the

bandwidth of one of the output ports from 12Mb to 20Mb to

make bandwidth asymmetry.

The results shown in Fig.17 demonstrate that QDAPS

achieves better performance than ECMP and RPS schemes

when the propagation delay is different between the parallel

paths. Fig.18 presents the similar trend of the FCT under

bandwidth asymmetry. For RPS, when the delay or bandwidth

asymmetrical extent becomes higher, more packets are out-

of-order, leading to more spurious retransmission and even

timeout. For ECMP, once a flow is hashed to the path with

large delay or low bandwidth, the flow will be transferred on

the bad path all the time instead of being rerouted to other

good paths. Since conducting load balancing according to the

network congestion, QDAPS and LetFlow perform well under

the delay and bandwidth asymmetry.

CP
U

Ut
iliz

ati
on

 (%
)

0

5

10

15

20

ECMP LetFlow RPS QDAPS

(a) CPU utilization

Me
m.

 U
til

iza
tio

n (
%)

0

0.2

0.4

0.6

ECMP LetFlow RPS QDAPS

(b) Memory utilization

Fig. 19: Overhead of the leaf switch with different schemes

74

QDAPS is implemented on switch with computing over-

head. We measure the CPU and memory utilization ratios

to evaluate the overhead. The experimental scenario involves

25 flows. Fig.19(a) shows the CPU utilization of the leaf

switch with different schemes. Since RPS simply sprays all

the packets to all the equal cost paths, its CPU utilization is

the lowest. QDAPS does not incur excessive CPU overhead to

switch compared with other schemes, because the computing

overhead only generates a tiny fraction of CPU load. From

Fig.19(b), we observe that QDAPS brings about 0.5% memory

utilization of the leaf switch. Compared with the gain in the

delay performance, the system overhead is acceptable.

VI. RELATED WORKS

Nowadays, the load balancing mechanisms in data center

network are roughly divided into the following four types:

flow-level, flowlet-level, flowcell-level and packet-level mech-

anisms. We demonstrate existing approaches and discuss their

pros and cons in the section.

ECMP [5] is a standard flow-level load balancing mech-

anism used in data center networks. The switches use the

five-tuple in packet header for hash calculations. Based on

the hash result, an outgoing port is selected for a flow. This

static method works well for short flows. However, when some

long flows are hashed to the same path, the hash collision

leads to the persist congestion on a few paths and low link

utilization on the other paths. Moreover, the performance of

ECMP is degraded greatly in asymmetric topology as it does

not sense the congetion. According to the path states, WCMP

[20] adds weights to ECMP to obtain better load balancing.

When sensing the path congestion through the congestion

signals like ECN, FlowBender [21] randomly reroutes flows

to another path. However, the random approach is very hard

to achieve the optimal performance.

MPTCP [22] divides a TCP flow into multiple subflows to

make use of the multiple transmission paths. Each subflow

maintains its congestion window to achieve load balancing

on multiple paths and improve network utilization. However,

MPTCP needs to modify the host stack, which is not suitable

for deployment in a multi-tenant environment. Moreover,

MPTCP does not perform well in incast scenarios as many

subflows are transfered simultaneously .

Other proposals like Hedera [23] and MicroTE [24] are

centralized load balancing mechanisms. Hedera adaptively

schedules long flows to uncongested paths with global knowl-

edge of traffic to avoid collisions. But the network utilization

is still low since Hedera adopts flow-level scheduling method

which is not flexible. Similar to Hedera, MicroTE schedules

flows by leveraging the traffic predictability to achieve load

balancing through OpenFlow switches.

CONGA [6], LetFlow [7], HULA [25] and CLOVE [26]

are flowlet-level load balancing approaches, which reroute the

flowlet to get high link utilization and low packet reordering.

CONGA and HULA use the path utilization information to

reroute the flowlets. On the switch, LetFlow randomly spreads

each flowlet to one available shortest path. However, the

threshold set for a flowlet gap directly affects the performances

of these approaches in highly dynamic network. On the one

hand, when the threshold is too large, these approaches are not

flexible enough to utilize the idle paths, resulting in suboptimal

performance. On the other hand, when the threshold is too

small, the flowlet gaps and path reselection operations are

likely to occur, easily resulting in the out-of-order problem.

Presto [27] is a flowcell-level load balancing proposal.

Presto is implemented in the network edge, such as Open

vSwitch, to split a flow into many units with fixed size (i.e.,

64KB) and spread the units to all paths. Presto deals with

packet reordering problem with enhanced Generic Receive

Offload (GRO) at the receiver side. Presto is a congestion-

oblivious scheme which is not able to sense and avoid the

congested paths.

SRR [28] is a multipath transmission scheme based on quan-

tum of service, which is proportional to the path bandwidth.

The receiver uses Causal Fair Queueing (CFQ) to reorder

the packets from different paths. However, it does not work

well in asymmetric scenario as it can not sense the network

congestion.

RPS [3] adopts a simple packet-level multipath transmission

scheme to achieve good load balancing. However, RPS causes

the out-of-order problem due to the negative interaction of

different flows and the random manner in path selection. To

mitigate the packet reordering of RPS [3], DRB [29] sprays

packets to multiple paths in a round robin way. Detail [30] pro-

poses an adaptive packet-level mechanism which can deal with

the asymmetry network, but needs the complex modifications

of the network stack. SAPS [31] is a SDN-based scheme which

divides the topology into several symmetric virtual ones to

improve the performance of RPS in the asymmetric topologies.

Hermes [8] is resilient to the network uncertainties such as

traffic dynamics and switch failures. It is an edge-based load

balancing solution which makes timely yet cautious rerouting

decisions. To mitigate the impact of congestion mismatch, only

when there is benefit, Hermes changes the transmission path

for packets instead of vigorous rerouting to reduce packet

reordering and FCT. DRILL [32] uses a packet-based load

balancing mechanism which is based on the information of

local switch. Its main objective is to solve the problem of

micro bursts load balancing with a method similar to power

of two choices paradigm [33]. When DRILL selects the path

for a packet arriving at the switch, the destined path will be

selected from the best path in last round and the two paths

randomly selected in this round.

Our QDAPS is a packet-level load balancing scheme to

achieve low packet reordering and high link utilization. Q-

DAPS makes rerouting decision for each packet according to

the queueing delay. For each TCP flow, QDAPS selects the

output port with the shortest queue for the firstly arriving

packet on the switches. The following packets belonging to

the same flow are scheduled to the output queue according to

the remaining queueing delay of the last arrival packet to avoid

packet reordering. QDAPS is implemented at the switches

and does not require any modifications in the existing TCP/IP

protocol stack.

75

VII. CONCLUSION

In this paper, we propose QDAPS, a queueing delay aware

load balancing mechanism which significantly reduces the flow

completion time. QDAPS selects a suitable output queue to

ensure that the packets arrive at the receiver in order and avoid

the low link utilization with a flexible manner. We also design

a flow rerouting method to reduce the queueing delay of long

flows. As a supplementary for QDAPS, we design QDAPS*

which takes both global leaf-to-leaf delay and local queueing

delay into consideration.

We implement QDAPS at the software switch BMv2 in

P4 language. We evaluate QDAPS through the large-scale

NS2 simulations and a Mininet testbed. The test results show

that QDAPS effectively reduces the flow completion time by

∼30%-50% compared with the state-of-the-art load balancing

mechanisms.

ACKNOWLEDGMENT

This work is supported by the National Natural

Science Foundation of China (61572530, 61629302

and 61420106009), CERNET Innovation Project (Grant

No.NGII20160113) and Fundamental Research Funds

for Central Universities of Central South University

(2018zzts066).

REFERENCES

[1] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, P.
Patel, and S. Sengupta. VL2: A scalable and flexible data center network.
In Proc. ACM SIGCOMM, 2009.

[2] M. Al-Flare, A. Loukissas, and A. Vahdat. A scalable, commodity data
center network architecture. In Proc. ACM SIGCOMM, 2008.

[3] A. Dixit, P. Prakash, Y. C. Hu, and R. R. Kompella. On the impact
of packet spraying in data center networks. In Proc. IEEE INFOCOM,
2013.

[4] Per packet load balancing. http://www.cisco.com/c/en/us/td/docs/ios/
12 0s/ feature/guide/pplb.pdf?dtid=osscdc000283.

[5] CE Hopps. Analysis of an Equal-Cost Multi-Path Algorithm. In RFC
2992.

[6] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A.
Fingerhut, V. T. Lam, F. Matus, R. Pan, N. Yadav, and G. Varghese.
Conga: Distributed congestion-aware load balancing for datacenters. In
Proc. ACM SIGCOMM, 2014.

[7] V. Erico, P. Rong, A. Mohammad, T. Parvin, and E. Tom. Let it Flow:
Resilient Asymmetric Load Balancing with Flowlet Switching. In Proc.
USENIX NSDI, 2017.

[8] H. Zhang, J. Zhang, W. Bai, K. Chen, and M. Chowdhury. Resilient
datacenter load balancing in the wild. In Proc. ACM SIGCOMM 2017.

[9] T. Benson, A. Akella, and D. Maltz. Network traffic characteristics of
data centers in the wild. In Proc. IMC, 2010.

[10] L. Chen, K. Chen, W. Bai, et al. Scheduling mix-flows in commodity
datacenters with karuna. In Proc. ACM SIGCOMM, 2016.

[11] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel, B.
Prabhakar, S. Sengupta, and M. Sridharan. Data center TCP (DCTCP).
In Proc. ACM SIGCOMM, 2010.

[12] G. Judd. Attaining the Promise and Avoiding the Pitfalls of TCP in the
Datacenter. in Proc. USENIX NSDI, 2015.

[13] P. Bosshart, D. Daly, G. Gibb, et al. P4:Programming Protocol-
Independent Packet Processors. ACM SIGCOMM Computer Commu-
nication Review, 44(3):87-95, 2014.

[14] H. Xu, B. Li. RepFlow: Minimizing flow completion times with repli-
cated flows in data centers. In Proc. IEEE INFOCOM, 2014.

[15] A. Roy, H. Zeng, J. Bagga, G. Porter, and A. C. Snoeren. Inside the
social Network’s (Datacenter) Network. In Proc. ACM SIGCOMM,
2015.

[16] I. Cho, K. Jang, and D. Han. Credit-Scheduled Delay-Bounded Conges-
tion Control for Datacenters. In Proc. ACM SIGCOMM, 2017

[17] J. Hu, J. Huang, W. Lv, Y. Zhou, J. Wang, and T. He. CAPS: Coding-
based Adaptive Packet Spraying to Reduce Flow Completion Time in
Data Center. In Proc. IEEE INFOCOM, 2018.

[18] N Handigol, B. Heller, V. Jeyakumar, B. Lantz, and N. McKeown.
Reproducible network experiments using container-based emulation. In
Proc. ACM CoNEXT, 2012.

[19] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P.B. Godfrey. Veriflow:
Verifying network-wide invariants in real time. In Proc. USENIX NSDI,
2013.

[20] J. Zhou, M. Tewari, M. Zhu, A. Kabbani, L. Poutievski, A. Singh, and
A. Vahdat. WCMP: Weighted Cost Multipathing for Improved Fairness
in Data Centers. In Proc. ACM EuroSys 2014.

[21] A. Kabbani, B. Vamanan, J. Hasan, and F. Duchene. FlowBender:
Flow-level Adaptive Routing for Improved Latency and Throughput in
Datacenter Networks. In Proc. ACM CoNEXT, 2014.

[22] C. Raiciu, S. Barre, C. Pluntke, A. Greenhalgh, D. Wischik, and
M. Handley. Improving datacenter performance and robustness with
multipath TCP. In Proc. ACM SIGCOMM, 2011.

[23] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat.
Hedera: Dynamic flow scheduling for data center networks. In Proc.
USENIX NSDI, 2010.

[24] T. Benson, A. Anand, A. Akella, and M. Zhang. MicroTE: Fine grained
traffic engineering for data centers. In Proc. ACM CoNEXT, 2011.

[25] N. Katta, M. Hira, C. Kim, A. Sivaraman, and J. Rexford. Hula:
Scalable load balancing using programmable data planes. In Proc. ACM
Symposium on SDN Research, 2016.

[26] N. Katta, A. Ghag, M. Hira, I. Keslassy, A. Bergman, C. Kim, and J.
Rexford. Clove: Congestion-Aware Load Balancing at the Virtual Edges.
In Proc. ACM CoNEXT, 2017.

[27] K. He, E. Rozner, K. Agarwal, W. Felter, J. Carter, and A. Akella.
Presto: Edge-based Load Balancing for Fast Datacenter Networks. In
Proc. ACM SIGCOMM, 2015.

[28] H. Adiseshu, G. Varghese, and G. Parulkar. An architecture for packet-
striping protocols[J]. ACM Transactions on Computer Systems (TOCS),
1999, 17(4): 249-287.

[29] J. Cao, R. Xia, P. Yang, C. Guo, G. Lu, L. Yuan, Y. Zheng, H. Wu, Y.
Xiong, and D. Maltz. Per-packet Load-balanced, Low-latency Routing
for Clos-based Data Center Networks. In Proc. ACM CoNext, 2013

[30] D. Zats, T. Das, P. Mohan, D. Borthakur, and R. Katz. Detail: Reduing
the flow completion time tail in datacenter networks. In Proc. ACM
SIGCOMM, 2012.

[31] S. M. Irteza, H. M. Bashir, T. Anwar, I. A. Qazi, F. R. Dogar.
Load Balancing Over Symmetric Virtual Topologies. In Proc. IEEE
INFOCOM, 2017.

[32] S. Ghorbani, Z. Yang, P. Godfrey, Y. Ganjali, and A. Firoozshahian.
DRILL: Micro Load Balancing for Low-lantency Data Center Networks.
In Proc. ACM SIGCOMM, 2017.

[33] Michanel Mizenmacher. The Power of Two Choices in Randomized
Load Balancing. IEEE Tansactions on Parallel and Distributed Systems
12, 10(2001).

76

