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a b s t r a c t

Crash aggressivity (CA), along with conventional crash worthiness (CW), has been recently studied to
deal with the crash incompatibility between vehicles on roads. Clearly, injury severity depends on the
attacking ability of striking vehicle as well as the protective ability of struck vehicle. This study proposes
a systematic crash-based approach to index CA and CW of various vehicles. The approach deviates from
existing methods in three aspects: (a) an explicit definition and specification in the model for CW and
CA; (b) Bayesian hierarchical analysis to account for the crash-vehicle two-level data structure; (c) a
five-level ordinal model to explicitly consider all levels of crash severity. The case study on major vehi-
rash aggressivity
ayesian hierarchical model
rdered logistic model

cle types illustrated the method and confirmed the consistency of results with previous studies. Both
crash worthiness and crash aggressivity significantly vary by vehicle types, in which we identified the
dominating effect of vehicle mass, and also highlighted the extraordinary aggressivity of Light Trucks
and Vans (LTVs). While it was not surprising to identify least CA and CW of motorcycles, buses were
unconventionally found to be less aggressive than other motor vehicles. The method proposed in this

etail
research is applicable to d

. Introduction

This study proposes an empirical model to systemically index
rash worthiness (CW), i.e. self-protective capacity of a vehicle, and
rash aggressivity (CA), i.e. hazardousness that the subject vehicle
mposes on counterpart vehicle(s) involved in the same crash.

Safety characteristics of various vehicles have long been a
rominent focus of both safety researchers and vehicle designers
Evans, 2004). Given that a crash occurs, of particular concern is
he crash severity. The most important components affecting crash
everity include CW of the struck vehicle and CA of the striking vehi-
le (for multi-vehicle crashes), and other external factors regarding
oad infrastructure, collision circumstances, driver behavior and
asualty characteristics, etc.

Crash data have been extensively used to empirically investigate
ehicle safety around the world (e.g. Cameron et al., 1996, 1999 in
ustralia; Broughton, 1994, 1996 in U.K.; Gustafsson et al., 1989;
adeby, 2000 in Sweden; Tapio, 1995; Tapio et al., 1995; Huttula
t al., 1997 in Finland; and Subramanian, 2006; Wenzel and Ross,

005 in U.S.). One of the major criteria in large-scale evaluation

s fatality rate associated with different vehicle types controlled by
he number of registered vehicles (e.g. Subramanian, 2006; Wenzel
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and Ross, 2005), or by distance traveled (e.g. Kahane, 2003). As it
controls exposure, the per-mile approach is comparatively better
in reflecting fatality risk than the per-vehicle approach. But doubt-
less, without controlling for crash propensity (how the vehicle is
driven), the per-mile approach is not able to evaluate the compo-
nents affecting crash severity, i.e. CW and CA (Kahane, 2003).

Clearly, in order to examine safety performance associated with
various vehicles, a crash-specific approach has to be adopted.
With crash-specific approach, safety protection effect of vehicles,
reflected by crash severity, could be separated from effects of crash
exposure and crash propensity. Numerous crash-specific research
efforts have been conducted to relate vehicle damage or occupant
injury to various vehicle properties (type, make, model, etc.) by con-
trolling for other external or instant factors (Evans and Frick, 1992,
1993; Farmer et al., 1997; Broyles et al., 2001, 2003; Ulfarsson and
Mannering, 2004; Acierno et al., 2004; Huang et al., 2008; Fredette
et al., 2008). Those models have usually been used to evaluate CW
of different vehicle properties.

Recently, crash compatibility has been more of a concern. In
the context of crash compatibility, CA of the counterpart vehi-
cles is known as an important component affecting the severity
of subject vehicle with certain level of CW. A majority of research
have been focused on car-LTV compatibility due to the substan-

tial increase of light trucks including sport utility vehicles and vans
(LTV) especially in North America (Wenzel and Ross, 2005; Kahane,
2003; Acierno et al., 2004; Fredette et al., 2008; Toy and Hammitt,
2003). Various vehicle–vehicle interactions have been investigated,
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http://www.elsevier.com/locate/aap
mailto:huanghelai@alumni.nus.edu.sg
mailto:kawsar_arefin@knights.ucf.edu
mailto:mabdel@mail.ucf.edu
dx.doi.org/10.1016/j.aap.2011.02.010


s and P

i
(
p
c
A

a
a
i
t
(
o
i
o
a
s

a
o
a
f
t
v
m
t
m
t

2
A

m
o
2
i
d

-
-
-
-
-

s
H
v
h
t
l
f
m

g
i
fi
m
b
T
r
v

H. Huang et al. / Accident Analysi

ncluding distinct physical performances such as mass and size
Evans and Frick, 1992, 1993), structural and geometric incom-
atibility etc. (Wenzel and Ross, 2005; Acierno et al., 2004), and
rash configuration and trends impacted by LTVs (Abdel-Aty and
bdelwahab, 2003, 2004a,b; Abdelwahab and Abdel-Aty, 2004).

Approaches have been proposed to simultaneously model CW
nd CA. Wenzel and Ross (2005) studied a ‘combined risk’ associ-
ted with each vehicle model by summing up the risk-to-drivers
n all kinds of crashes and the risk-to-drivers-of-other-vehicles in
wo-vehicle crashes. Toy and Hammitt (2003) and Fredette et al.
2008) proposed binary logistic regression to estimate the effects
f vehicle incompatibility on the risk of death and/or severe injuries
n two-vehicle crashes. While most of the existing studies focused
n specific vehicle types or makes, there is a need to establish
systematic approach for general vehicle safety inspection with

tate-of-the-art modeling techniques.
Developing from previous studies, this paper presents a system-

tic crash-based approach to examine CW and CA of various types
f vehicles. This approach deviates from existing methods in three
spects: (a) an explicit definition and specification in the model
or CW and CA; (b) Bayesian hierarchical analysis to account for the
wo-level data structure, or simply speaking, severity correlation of
ehicles in a same crash is accommodated; (c) a five-level ordinal
odel to explicitly consider all levels of crash severity. Although

he model is applicable to safety evaluation for any vehicle type,
ake, model or other properties, in this paper we only illustrate

he method by an example evaluating general vehicle types.

. Developing Crash Worthiness Index and Crash
ggressivity Index

A crash with major harmful event as “collision between two
oving vehicles” is supposed to be the most similar case to lab-

ratory vehicle-to-vehicle collision experiments. Let i[m] (m = 1,
) denote two vehicles involved in the crash i (i = 1, . . . I), with

njury severity levels ISi[m]. The injury severity levels are commonly
efined as five ordered categories:

Category 1 (C1): no injury/property damage only (PDO),
Category 2 (C2): possible injury,
Category 3 (C3): non-incapacitating injury,
Category 4 (C4): incapacitating injury, and
Category 5 (C5): fatality.

For this ordered outcome of severity, an ordinal model could be
pecified to examine the effects of various risk factors. Moreover,
uang et al. (2008) found significant severity correlations between
ehicles involved in the same crashes and thus recommended a
ierarchical approach to account for the crash-specific effects given
he multilevel data (Huang and Abdel-Aty, 2010). Hence, a two-
evel specification, i.e. crash level and vehicle level, is developed
or ordered logistic model (OL), called hierarchical ordered logistic

odel (HOL) in this study.
In an ordinal response model, a series of latent thresholds are

enerally formulated. Specifically, the real line is divided into five
ntervals by four thresholds (� ik, k = 1, 2, 3, 4), corresponding to the
ve ordered categories (C1–5). It is noted that differing from OL
odel, the HOL model accounts for the cross-crash heterogeneities
y specifying a set of variable thresholds for individual crashes.
he thresholds define the boundaries between the intervals cor-
esponding to observed severity outcomes. The latent response
ariable is denoted by IS∗

i[m] and the observed categorical variable
revention 43 (2011) 1364–1370 1365

ISi[m] is related to IS∗
i[m] by the “threshold” model defined as,

ISi[m] =

⎧⎨
⎩

1 if − ∞ < IS∗
i[m] ≤ �i1

k if �i(k−1) < IS∗
i[m] ≤ �ik, k = 2, 3, 4

5 if �i4 < IS∗
i[m] < +∞

The ordinal models can be written as

IS∗
i[m] = �i[m] + εi[m]

in which �i[m] is the linear predictor for covariates and εi[m] is the
disturbance term, which is assumed a logistic distribution with F
as the cumulative density function. Thus, the cumulative response
probabilities for the five categories of the ordinal outcome could be
denoted as,

Pi[m],k = Pr(ISi[m] ≤ k) = F(�ik − �i[m]) = exp(�ik − �i[m])
1 + exp(�ik − �i[m])

,

k = 1, 2, 3, 4

The idea of cumulative probabilities leads naturally to the cumu-
lative logistic model

logit(Pi[m],k) = log

[
Pi[m],k

1 − Pi[m],k

]
= log

[
Pr(ISi[m] ≤ k)
Pr(ISi[m] > k)

]

= �ik − �i[m], k = 1, 2, 3, 4.

At the crash level, � ik could be specified as random effects,

�ik = �k + bi, k = 1, 2, 3, 4.

where the intercept �k represents a constant component for thresh-
olds for all crashes. bi is the random effect to accommodate for
the cross-crash heterogeneities, which is normally distributed with
mean of zero and variance �2.

In the model specification, of most interest is to define �i[m],
the predictor for injury severity of the individual vehicle involved
in a two-vehicle crash. Ideally, given all other factors equal, the
injury severity is dependent on the difference between defensive
ability of struck vehicle and attacking impact of striking vehicle.
This defines the two key vehicle-safety-performance indices: Crash
Worthiness Index (CWI) and Crash Aggressivity Index (CAI). Most of
the previous concerns for vehicle safety in practice are only focused
on CW, i.e. how a vehicle can protect its own occupants. However,
very little attention has been paid to CA, i.e. how hazardous the
vehicle could injure the occupants in the counterpart vehicle in the
same crash. Accordingly, we define the �i[m] as,

�i[1]∼CAIi[2] − CWIi[1] + control variable

�i[2]∼CAIi[1] − CWIi[2] + control variables

Using this model, we will be able to establish both CWI and CAI
for any vehicle with its historic crash data. This could, of course, be
used to analyze results from collision experiments to test the safety
performance of different vehicle designs.

The selection for control variables is very important as they are
presumably able to filter external effects apart from vehicle config-
urations on injury severity. For example, since elderly may be more
vulnerable than the youth to sustain an injury from collision of the
same level, driver age should be controlled. Collision type and col-
lision relative speed may also be controlled as different type and

speed of collision may lead to different injury levels for occupants
in even the same vehicle type. It should be noted that the selection
of control variables could be case-specific and also depends on data
availability. Following sections of this paper illustrate the method
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Table 1
Description of control variables.

Variable Description Descriptive statistics

Driver age <25 (=1) (reference case) <25: 22.1%
Between 25 and 65 (=2) Between 25 and 65: 69%
>65, (=3) >65: 8.9%

Driver gender Male = 0 (reference case), Male: 55.3%
Female = 1 Female: 44.7%

POI Point of impact, has 21 categories and are further grouped into 4 levels (see Fig. 2); Level 1 as reference case Level 1–4: 61.5%, 37%, 1.43%, 0.12%
Relative speed Head-on collision: sum of the estimated speeds of the colliding vehicles Mean = 21.5 mph

Rear end collision: absolute value of the difference between the estimated speeds of the colliding vehicles Std. deviation = 18.2 mph
Angle collision: estimated speed of the hitting vehicle

Posted speed Posted speed limit of the roadway facility Mean = 39.7 mph
Std. deviation = 13.9 mph

Ejected If the driver was ejected from the vehicle at collision Yes: 1.79%
1 = yes, 0 = no (reference case) No: 98.21%
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with different symbol patterns. POIs with ranks 1–8 were catego-
rized as Level 1 which constitutes least injury severity to the driver
of a vehicle in a crash. As shown in Fig. 2, Level 1 comprises mainly

Table 2
Effect of point of impacts on injury severity.

Point of
Impact

Level Rank Estimatesa Credible
interval

2.5% 97.5%

1 1 7 1.669 1.4 1.938
2 1 5 1.492 1.22 1.764
3 2 10 1.843 1.562 2.123
4 3 14 2.1 1.821 2.38
5 1 6 1.602 1.312 1.892
6 1 3 1.367 1.075 1.659
7 1 2 1.301 1.017 1.584
8 2 13 1.917 1.647 2.186
9 1 1 1.296 1.014 1.577

10 1 4 1.388 1.094 1.682
11 2 9 1.816 1.528 2.105
12 3 17 2.457 2.179 2.735
13 3 15 2.14 1.861 2.419
14 1 8 1.669 1.398 1.941
15 2 12 1.913 1.451 2.376
16 4 19 2.837 2.022 3.652
17 2 11 1.868 1.277 2.46
18 3 16 2.176 1.672 2.68
19 4 20 3.912 3.518 4.306
Crash type Head-on = 1 (reference case), rear end = 2
Angle = 3

y an evaluation of CWI and CAI on typical vehicle types using the
lorida crash data.

. Model specification

.1. Data

Records for crashes occurred in 2007 were obtained from the
lorida Department of Highway Safety and Motor Vehicle (DHSMV).
hree criteria were used to generate the dataset for analysis. First,
nly two-vehicle crashes were filtered. Second, only head-on, rear-
nd and angle type crashes were selected. Other collision types such
s side-swipe and collision with parked car were excluded as we
urmise that injury severities in these three categories of crashes
ould to most extent be solely due to the impact among colliding

ehicles. Therefore, we assume that no other major impacts, like
itting roadside objects, were imposed upon the colliding vehicles
nd thereby on the driver’s injury severity. Third, both vehicles in a
rash were made between 2000 and 2007 in indexing. It can be rea-
onably assumed that the vehicles which are relatively new would
ave similar basic safety features such as airbag installation and
nergy absorbing devices.

The final dataset contained 44,712 crash observations which are
bout 66% of the total two vehicle crashes that occurred in 2007,
s shown in Fig. 1a. The distribution of five-level ordered injury
everities in the final dataset is shown in Fig. 1b. It is noted that the
ccupant information and possible injury data in most of the crash
ecords were missing. Hence, in this analysis, we only considered
he driver injury to be the dependent variable.

.2. Independent variables

CWI and CAI were developed for ten major vehicle categories,
ncluding Automobile, Van, Light Truck, Medium Truck (4 rear
ires), Heavy Truck (2 or more rear axles), Truck Tractor (Cab-
obtail), Motor Home (RV), Bus-I (driver + seats for 9–15), Bus-II
driver + seats for over 15), Motorcycle. Automobile is considered
s the reference case. Florida DHSMV classifies 15 distinct vehicle
ategories among which bicycle, moped, all terrain vehicle, train
nd low speed vehicles were excluded in the analysis due to their
ow presence in the crash population and unique characteristics.

Control variables used in the analysis are enlisted in Table 1.
rivers’ ages were grouped into <25, between 25–65 and >65, with

oung aged (<25) as reference group. The literature shows dif-
erent risk to severity between male and female (Ulfarsson and

annering, 2004). Therefore, gender was included in the model.
he relative speed of the vehicles in collision was thought to be
Head-on: 5.25%
Rear end: 48.59%
Angle: 46.16%

very important as driver severity is highly correlated with speed. In
addition, posted speed indicating highway facility functional clas-
sification was inserted in the model. Florida crash report requires
information regarding whether the driver was ejected or thrown
out of the vehicle upon a collision. This variable was particularly
thought important to be considered in analyzing drivers’ injury
level.

Florida traffic crash report also allows indicating point of
impacts (POIs) in a crash in 21 different locations. These locations
are shown in Fig. 2. A preliminary analysis was conducted to relate
the POIs to injury severity. Specifically, an OL model was developed
in which the five ordered categories of injury severity (C1–5) is the
dependent variable with the POIs of a vehicle in collision as inde-
pendent variable. The model results are shown in Table 2. The POIs
were ranked based on their estimates. As the estimated values of
POIs increase, the severities of driver injury increase.

POIs were grouped into four different levels. A higher level indi-
cates a higher risk to driver injury. The levels are illustrated in Fig. 2
20 3 18 2.46 1.68 3.241
21b 1 0 – – –

a Significant at 0.001 level.
b Reference case.
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Fig. 1. Distribution of (a) two vehicle crash type in year 2007 and (b) i

f POIs at front, rear passenger side and two rear corners of the vehi-
le. All of these locations are at farthest distance from the driver’s
eat. ranks 9–13 were grouped as Level 2. These POIs were at rela-
ively closer distance to the driver’s seat compared to Level 1 POIs
nd thereby increasing risk of the driver’s injury severity. Level 3
OIs (ranks 14–18) were even closer to the driver seat imposing
igher risk. The POIs in this level included windshield, front pas-
enger side and front driver side of the vehicle. POIs on top of the
ehicle or overturning were Leveled 4 with the highest risk to driver
njury severity.

. Results and discussion

.1. Model estimation and comparison

The model developed above was estimated by Bayesian infer-
nce using freeware WinBUGS (Lunn et al., 2000). Non-informative
riors were specified for parameters. The model converged very
ell using Brooks, Gelman and Rubin convergence diagnostics.

he posterior parameters are presented in Table 3. It can be seen

hat the hierarchical model specification results in a fair vari-
nce (�2 = 2.27, 95% BCI(2.16,2.38)) for the crash-specific random
ffects. For the purpose of model comparison, an ordinary OL
odel was also fitted by merely removing the random effects for

Fig. 2. Levels of differen
severity among head-on, rear end and angle type two-vehicle crashes.

the HOL. The Bayesian measure for model comparison, Deviance
Information Criteria (DIC) was monitored. Results showed that, to
some extent, the HOL model (DIC = 138590) outperforms OL model
(DIC = 147578).

4.2. CWI and CAI

CWI and CAI of different vehicle types are shown in Fig. 3. The
bold line inside the box represents the mean value of each box plot.
Compared to the reference case Automobile, all the other vehi-
cles, except Motorcycle, are more crash worthy and except Bus
and Motorcycle, all other vehicles have an elevated aggressivity,
as reflected by the CWI and CAI. It has been extensively proven that
the heavier the vehicle, the less risk to its occupants, and the lighter
the vehicle, the less risk to other road users (Evans and Frick, 1992,
1993).

It is also not surprising to observe that crash worthiness con-
sistently increases from Van to Motor Home (RV). Therefore CWI
for Van (0.21) < Light Truck (0.40) < Medium Truck (1.27) < Heavy
Truck (2.14) < Truck Tractor (2.26) < Motor Home (2.58). CAI, in con-

trary, increases from Van (0.32) until Medium Truck (0.48), and
then for Heavy Truck (0.40) and Truck Tractor (0.21) it decreases.
This highlights the road hazardousness associated with the Van,
Light or Medium Trucks. The notorious aggressivity of LTVs have

t point of impacts.
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driver injury severity. The extraordinary vulnerability of motor-
cycles calls for special attention with respect to usage of airbag
jacket and helmet, specific motorcycle road facilities, and speed
restriction enforcement, etc.

Table 3
Estimation of hierarchical ordered logistic model.

Variable Mean Std. deviation Credible interval

2.5% 97.5%

�1 (threshold k = 1) 2.79 0.06 2.68 2.91
�2 (threshold k = 2) 4.41 0.06 4.29 4.54
�3 (threshold k = 3) 6.32 0.07 6.19 6.44
�4 (threshold k = 4) 9.32 0.10 9.11 9.52
�2 (var. of random effects) 2.27 0.05 2.16 2.38

Crash Aggressivity Index (CAI)
Van [2] 0.32 0.04 0.24 0.40
Light Truck [3] 0.39 0.03 0.34 0.45
Medium Truck [4] 0.48 0.08 0.32 0.63
Heavy Truck [5] 0.40 0.09 0.23 0.57
Truck Tractor [6] 0.21 0.09 0.03 0.40
Motor Home [7] 0.90 0.38 0.14 1.66
Bus-I [8] −0.05 0.26 −0.56 0.47
Bus-II [9] −0.64 0.13 −0.89 −0.39
Motorcycle [10] −1.98 0.11 −2.19 −1.77

Crash Worthiness Index (CWI)
Van [2] 0.21 0.04 0.13 0.28
Light Truck [3] 0.40 0.03 0.34 0.45
Medium Truck [4] 1.27 0.10 1.08 1.49
Heavy Truck [5] 2.14 0.14 1.87 2.40
Truck Tractor [6] 2.26 0.14 2.00 2.56
Motor Home (RV) [7] 2.58 0.65 1.39 3.96
Bus-I [8] 1.92 0.36 1.24 2.65
Bus-II [9] 2.60 0.18 2.26 2.96
Motorcycle [10] −3.08 0.09 −3.25 −2.90

Control variables
Driver – between 25 and 65 0.20 0.03 0.13 0.26
Driver – >65 0.39 0.04 0.31 0.48
Female driver 0.73 0.02 0.68 0.77
Rear end Crash −0.84 0.06 −0.95 −0.73
Angle crash −0.04 0.05 −0.14 0.07
POI- Level 2 0.62 0.03 0.55 0.68
POI- Level 3 0.78 0.03 0.73 0.83
Fig. 3. Crash Worthiness Index and

een highlighted by numerous studies and the car-LTV incompat-
bility in mass, vehicle geometry and structure have been widely
iscussed (Wenzel and Ross, 2005; Kahane, 2003; Broyles et al.,
001, 2003; Fredette et al., 2008; Toy and Hammitt, 2003). The
afety of LTVs deserves continuous effort for vehicle manufactur-
rs as well as the traffic management authorities. Comparatively,
eavy trucks and truck tractors are usually driven by commer-
ial drivers. These drivers are expected to be more skilled in
esponding to surprise situations like severe conflicts. This might
lay an important role in reducing the CAIs of Heavy Trucks and
ruck Tractors compared to that of LTVs. Motor Homes were
ound to have highest indices for both CWI and CAI. Typically

Motor Home has higher mass compared to a Heavy Truck
nd not driven by commercial drivers. These might impose a
reater risk to the struck vehicle’s driver injury severity. The
esults present evidence for traffic authorities to enhance the vehi-
le safety inspection and law enforcement for the use of Motor
omes.

We found interesting results for Buses. Mean value of CWI for
us-I (1.92) was less than that of a Heavy Truck (2.14) but greater
han a Medium Truck (1.27). This means crash worthiness of Bus-I
ies between that of a Medium Truck and Heavy Truck. Mean CWI
or Bus-II (2.60) was slightly greater than that of a Motor Home
2.58). Possibly similar structure and mass of Motor Home and
us-II result in similar values of CWIs. Crash aggressivity for buses,

n contrast, was found to be lower than all other motor-vehicles
ncluding Automobile. Apparently it seems surprising. But the pres-
nce of buses in the overall 2007 Florida crash database was only
.96%. The distribution of buses in the dataset used for this anal-
sis was about 1.1%. One reason of this may be due to relatively
ow exposure of buses compared to other modes of transport. It is

orth mentioning that bus as a public transport mode in Florida
s not still very popular. Most of Bus-II that travel on the streets
re school buses. It is well known that school buses drive with
reat caution and precautions are enforced by law. All these fac-
ors might be contributing in lowering CAIs for buses in two vehicle
rashes.

Motorcycles were found to have the significantly least value for
oth CAI (−1.98) and CWI (−3.08). Unlike other vehicles a motor-

yclist does not have an external protection shield. This affects the
rash worthiness of a motorcycle negatively. Additionally, Motor-
ycles have the least mass among the vehicles in the study. This
mposes motorcycle to be at minimum risk to the struck vehicle’s
Aggressivity Index by vehicle type.
POI- Level 4 1.53 0.19 1.14 1.90
Relative speed 0.01 0.00 0.01 0.01
Posted speed 0.02 0.00 0.02 0.03
Ejected (=yes) 1.57 0.09 1.39 1.75
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.3. Control variables

All of the control variables are statistically significant and their
igns conform to previous findings. This confirms the a priori justi-
cations in selecting control variables. Compared to young drivers
<25), we found an increase of severity in positive estimates from
rivers aged between 25–65 and older drivers (>65). This implies
he older age group is more inclined to higher injury severity. Many
revious studies on age effect have identified a U-shape pattern of
rash propensity (e.g. Huang and Chin, 2009), suggesting an ele-
ated risk associated with both young and elderly drivers. While
riticism for young are more associated with risky driving behav-
or, it is well accepted that the deterioration of physical condition

ay lead to the higher severity of injury for elderly drivers. The pre-
ious studies support, rather than refute against, our results as only
rash sustainability, excluding behavior factors, is addressed in the
odel, and moreover, the possible vehicle-selection bias associated
ith different age has been controlled by the factors representing
WI and CAI.

Regarding driver gender, Ulfarsson and Mannering (2004)
eported that there are significant differences between males and
emales with regard to how various LTVs and passenger cars affect
njury severity. Our model indicates that female drivers are more
rone to severe injury than male counterpart. This finding also
ligns with the results found from most of the other studies (Evans,
004; Broyles et al., 2003; Kim et al., 1995).

It is not surprising to find that injury severity greatly increases if
he driver is ejected out of the vehicle. Its coefficient estimate was
he highest (1.57) among the control variables in the model. Fur-
hermore, positive estimates for both posted and relative speeds
ndicate a positive association between drivers’ injury severity and
peed. The finding is consistent with those found by Fredette et al.
2008). Their results showed speed limit as a highly significant fac-
or in estimating drivers’ risk of death. Regarding crash type, both
ear end and angle crashes had negative estimates implying head-
n type crashes, the reference type, to be the most dangerous for
rivers’ injury severity. Again this result is coherent with the find-

ngs from Fredette et al. (2008). Finally, the model also supports the
reliminary results found for POIs with increasing risk from Level
to Level 4.

. Conclusion

Crash worthiness has been a continuous concern for road safety
nd vehicle design. The recently-promoted concept of crash incom-
atibility generates the increasing attention to crash aggressivity.

n other words, not only the capability that a vehicle can protect
ts occupants should be improved, the injury impact on the occu-
ants in counterpart vehicles of a same crash may also need to be
onitored to improve safety.
The current study follows up on this research question by

roposing a model to explicitly index various vehicles on roads for
oth crash worthiness and crash aggressivity. A Bayesian hierarchi-
al ordinal model was developed to account for all levels of injury
everities, various control variables, as well as crash-specific ran-
om effects. The case study on major vehicle types illustrated the
ethod and added to the body of knowledge. Both crash worthi-

ess and crash aggressivity significantly vary by vehicle types, in
hich we identify the dominating effect of vehicle mass, and also
ighlight the extraordinary aggressivity of LTVs, compared to the

ighter and heavier vehicles. While it was not surprising to iden-

ify least CA and CW of motorcycles, buses were unconventionally
ound to be less aggressive than other motor vehicles.

The method proposed in this research is applicable to detailed
rash-based vehicle inspection and evaluation, which would be
revention 43 (2011) 1364–1370 1369

useful for both vehicle-design professionals and for insurance
purposes. Future efforts could be made to refine the model by
examining different control variables so that CW and CA could be
monitored for vehicles with a variety of properties to improve crash
compatibility on our roads. In addition, this study could also be
expanded to include vehicle occupants, rather than drivers only in
current study, to investigate the occupant protection performance
at different seats.
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