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ABSTRACT

In this paper, we establish the theory of global convergence for a spectral conjugate gra-

dient algorithm recently developed by Z. Wan etc. An assumption, that the inequalities

0 < gTk gk−1 ≤ 2‖gk‖2 are satisfied for any k, is first investigated by numerical experiments.

It is shown that such assumption holds only for k large enough in solving some benchmark

problems, not for all ones. Another contribution of this paper is to obtain the same conver-

gence result under some weaker assumptions.

Keywords: unconstrained optimization, conjugate gradient, global convergence

2010 Mathematics Subject Classification: 90C25, 90C30

1 Introduction

Consider the following unconstrained optimization problem:

min f(x), x ∈ Rn, (1.1)

where f : Rn → R is continuously differentiable such that its gradient is available. Let g(x)

denote the gradient of f at x.

Due to the features of low memory requirement and simple computation, the conjugate gradient

method is popular to be employed for solving problem (1.1). By this method, starting from an

initial point x0 ∈ Rn, a sequence of solutions xk, k ≥ 1, is generated by

xk+1 = xk + αkdk,

where αk is a stepsize obtained by some line search rule and dk is a search direction given by

dk =

{
−gk, if k = 0,

−gk + βkdk−1, if k > 0.
(1.2)
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In (1.2), βk is a fundamental algorithmic parameter. With different value of βk, the correspond-

ing algorithm has distinct numerical behavior (see, for example, [5], [8], [10], [11], [12], [16],

[22] and the references therein). One of the most popular choices is the formula given by the

Polak-Ribière-Polyak conjugate gradient method, it reads

βPRP
k =

gTk (gk − gk−1)

‖gk−1‖2 . (1.3)

Very recently, in [15], a new spectral PRP conjugate gradient algorithm is developed. The

search direction dk is determined by

dk =

{
−gk, if k = 0,

−θkgk + βPRP
k dk−1, if k > 0,

(1.4)

where

θk =
dTk−1yk−1

‖gk−1‖2 − dTk−1gkg
T
k gk−1

‖gk‖2‖gk−1‖2 . (1.5)

The stepsize in the algorithm is obtained by the following modified Wolf-type line search rule:{
f(xk)− f(xk + αkdk) ≥ ρα2

k‖dk‖2,
g(xk + αkdk)

Tdk ≥ −2σαk‖dk‖2.
(1.6)

Thus, the framework of the algorithm is described as follows.

Algorithm 1. (Modified Spectral PRP Conjugate Gradient Algorithm)

Step 0 Given constants 0 < ρ < σ < 1,ε > 0. Choose an initial point x0 ∈ Rn. Set k := 0.

Step 1 If ‖gk‖ ≤ ε, then the algorithm stops. Otherwise, compute dk by (1.4) and (1.5), and go

to Step 2.

Step 2 Determine a steplength αk > 0 such that (1.6) is satisfied.

Step 3 Set xk+1 := xk + αkdk, and k := k + 1. Return to Step 1.

In [15], it has been demonstrated by numerical experiment that Algorithm 1 is powerful to solve

the benchmark test problems from [9]. However, in [15], the establishment of global convergence

needs the following assumption

0 < gTk gk−1 ≤ 2gTk gk. (1.7)

To observe whether the inequalities (1.7) hold or not, we implement Algorithm 1 to solve some

test problems from [9], with choices of ρ = 0.5, σ = 0.75 and ε = 10−7. In Table 1, the results

are reported, which indicate that (1.7) must not hold in some cases.

Table 1: Results of testing assumption

Function x0 total times 0 < gTk gk−1 ≤ 2gTk gk

Rosenbrock (-1.2,1) 90 None

Helical valley (-1,0,0) 103 None

Box three-dimensional (0,10,20) 6867 k ≥ 6866

Biggs EXP6 (1,2,1,1,1,1) 57560 k ≥ 57552

The numerical experiments show that the probability that (1.7) is satisfied reduces in the case

that the number of iterations is small, but for a large number of iterations, it is often that the

inequalities (1.7) hold.
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Motivated by the above observation, we are going to establish the global convergence of Al-

gorithm 1 without Assumption (1.7), but the same convergence result as that in [15] is to be

obtained.

This paper is organized as follows. In the next section, the main results will be presented.

Section 3 will be devoted to prove the main results. Some final remarks are given in the last

section.

2 Main results

Assumption 1. The level set Ω = {x ∈ Rn | f(x) ≤ f(x0)} is bounded.

Assumption 2. In some neighborhood N of Ω, f is continuously differentiable and its gradient

is Lipschitz continuous, namely, there exists a constant L > 0 such that

‖g(x)− g(y)‖ ≤ L‖x− y‖, ∀x, y ∈ N. (2.1)

Lemma 2.1. Suppose that dk is given by (1.3)-(1.5). Then, the following result

gTk dk = −‖gk‖2 (2.2)

holds for any k ≥ 0.

Lemma 2.1 shows that the direction dk in Algorithm 1 is always sufficiently descent at each

iteration.

Lemma 2.2. With Assumption 2, there exists αk > 0 satisfying (1.6).

In the following lemma, it is stated that the Zoutendijk condition holds, which is useful to prove

the global convergence of conjugate gradient method (see [24] and [18]).

Lemma 2.3. Under Assumptions 1 and 2, it holds that

∞∑
k=0

‖gk‖4
‖dk‖2 < ∞.

The following property of the algorithm plays an important role in the proof of the main

theorem.

Lemma 2.4. Let {αk } and { dk } be the step size and the search direction sequences generated

by Algorithm 1, respectively. Then,

lim
k→∞

α2
k‖dk‖2 = 0.

With Lemmas 2.1, 2.2, 2.3 and 2.4, we can prove the global convergence.

Theorem 2.5. Let { gk } be the gradient sequence generated by Algorithm 1. Under Assumptions

1 and 2, the following result

lim
k→∞

inf‖gk‖ = 0. (2.3)

holds.
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3 Proof of main results

In this section, we present the proofs for the main results in this paper.

Since Lemmas 2.1, 2.2 and 2.3 are directly from the corresponding conclusions in [15] under the

same conditions, we here needs to prove Lemma 2.4 and Theorem 2.5.

The proof of Lemma 2.4:

From the line search strategy (1.6), we know

f(xk)− f(xk+1) ≥ ρα2
k‖dk‖2.

Thus, it is obtained that

n∑
k=1

(f(xk)− f(xk+1)) ≥ ρ
n∑

k=1

α2
k‖dk‖2.

Since f is bounded in the level set Ω, there exists a positive constant scalar M such that

2M ≥ f(x1)− f(xn+1) ≥ ρ
n∑

k=1

α2
k‖dk‖2.

It follows that the series ∞∑
k=1

α2
k‖dk‖2

is convergent. Thus,

lim
k→∞

α2
k‖dk‖2 = 0. (3.1)

The desired result is proved.

The proof of Theorem 1:

If the result (2.3) does not hold, then there exists a positive ε > 0 such that for all k, ‖gk‖ ≥ ε.

From (1.4), it follows that

‖dk‖2 = dTk dk

= (−θkg
T
k + βPRP

k dTk−1)(−θkgk + βPRP
k dk−1)

= θ2k‖gk‖2 − 2θkβ
PRP
k dTk−1gk + (βPRP

k )2‖dk−1‖2

= θ2k‖gk‖2 − 2θkd
T
k gk − 2θ2k‖gk‖2 + (βPRP

k )2‖dk−1‖2

= (βPRP
k )2‖dk−1‖2 − 2θkd

T
k gk − θ2k‖gk‖2.
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Dividing by ‖gk‖4 on the both sides of this equality, we obtain

‖dk‖2
‖gk‖4 =

(βPRP
k )2‖dk−1‖2 − 2θkd

T
k gk − θ2k‖gk‖2

‖gk‖4

=
(gTk (gk − gk−1))

2

‖gk−1‖4
‖dk−1‖2
‖gk‖4 − (θk − 1)2

‖gk‖2 +
1

‖gk‖2

=
(gTk (gk − gk−1))

2

‖gk‖4
‖dk−1‖2
‖gk−1‖4 − (θk − 1)2

‖gk‖2 +
1

‖gk‖2

≤ ‖gk − gk−1‖2
‖gk‖2

‖dk−1‖2
‖gk−1‖4 +

1

‖gk‖2

≤ L2α2
k−1‖dk−1‖2

ε2
‖dk−1‖2
‖gk−1‖4 +

1

‖gk‖2 .

From Lemma 2.4, it is clear that there exists an integer number k0 ≥ 0 such that for k ≥ k0,

we have

0 ≤ α2
k−1‖dk−1‖2 < ε2

L2
.

Thus,
‖dk‖2
‖gk‖4 <

‖dk−1‖2
‖gk−1‖4 +

1

‖gk‖2

≤ . . . ≤ ‖dk0‖2
‖gk0‖4

+
k∑

i=k0+1

1

‖gi‖2

≤ C0

ε2
+

k − k0
ε2

=
C0 + (k − k0)

ε2
,

where

C0 = ε2
‖dk0‖2
‖gk0‖4

> 0

is a constant. Therefore, it is obtained that

∑
k≥1

‖gk‖4
‖dk‖2 ≥

∑
k>k0

‖gk‖4
‖dk‖2 > ε2

∑
k>k0

1

C0 + (k − k0)
= ∞,

which contradicts the result of Lemma 2.4. This shows that the desired conclusion holds.

4 Final Remarks

In this paper, we have established the theory of global convergence for a class of spectral

conjugate gradient methods. Different from the existing results available in the literature, we

have obtained the same conclusion under more weaker assumption conditions.
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