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a b s t r a c t

Background: Traditional crash prediction models, such as generalized linear regression model, are inca-
pable of taking into account multilevel data structure. Therefore they suffer from a common underlying
limitation that each observation (e.g. a crash or a vehicle involvement) in the estimation procedure
corresponds to an individual situation in which the residuals exhibit independence.
Problem: However, this “independence” assumption may often not hold true since multilevel data struc-
tures exist extensively because of the traffic data collection and clustering process. Disregarding the
possible within-group correlations may lead to production of models with unreliable parameter estimates
and statistical inferences.
Proposed theory: In this paper, a 5 × ST-level hierarchy is proposed to represent the general framework of
multilevel data structures in traffic safety, i.e. [Geographic region level − Traffic site level − Traffic crash
level − Driver-vehicle unit level − Occupant level] × Spatiotemporal level. The involvement and emphasis
for different sub-groups of these levels depend on different research purposes and also rely on the het-
erogeneity examination on crash data employed. To properly accommodate the potential cross-group

heterogeneity and spatiotemporal correlation due to the multilevel data structure, a Bayesian hierar-
chical approach that explicitly specifies multilevel structure and reliably yields parameter estimates is
introduced and recommended.
Case studies: Using Bayesian hierarchical models, the results from several case studies are highlighted
to show the improvements on model fitting and predictive performance over traditional models by

for t
appropriately accounting

. Introduction

Road safety is a socio-economic concern, resulting in tremen-
ous life and property loss. To improve safety, it is challenging
o obtain a comprehensive understanding of traffic system safety
ecause road traffic is such a complicated system, which may be
ffected by a diversity of risk factors representing environmental,
oad geometric, traffic, and driver-vehicle characteristics. More-
ver, the understanding of traffic system safety may be further
bscured since crash occurrences are necessarily discrete, often
poradic and random events. Hence, obtaining unbiased and rel-
tively accurate estimation and prediction of traffic system safety
as become a central concern in road safety management.
Crash prediction model (also called safety performance func-
ion) is one of the most important techniques in investigating the
elationship between crash occurrence and risk factors associated
ith various traffic entities. These risk factors are assumed to pro-
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vide information on the behavior of crash occurrence, which is
commonly measured by crash frequency with various degrees of
crash severity (Hauer, 1992). Appropriate probabilistic forms and
statistically significant factors are identified based on the examina-
tion of crash occurrence mechanism and model fitting performance
to the historical crash data. Hence, the safety variability associated
with traffic entities is modeled by risk factors identified and dis-
turbance/error terms used to account for hidden or unobserved
safety-related features. Generally, the better the underlying dis-
turbances are accounted for, the better the model performance
and consequently the better the safety estimation and prediction.
As a result, apart from scrutinizing risk factors, to address model
disturbance is a major challenge for safety modelers.

In terms of disturbance source, two sorts of disturbances could
be defined, i.e. unstructured and structured. In this sense, model
performance is subject to (a) an adequate understanding and
accommodation of structured disturbance; and (b) a rational selec-
tion of probabilistic distributions to account for unstructured

disturbance. Unfortunately in current road safety research, while
considerable research has been made on the latter, effort is signif-
icantly insufficient towards a better understanding on structured
disturbances. These structured disturbances are closely related to
specific safety data structure. Among these, the most typical is

http://www.sciencedirect.com/science/journal/00014575
http://www.elsevier.com/locate/aap
mailto:huanghelai@alumni.nus.edu.sg
mailto:mabdel@mail.ucf.edu
dx.doi.org/10.1016/j.aap.2010.03.013
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ierarchically and spatiotemporally structured safety data, i.e. mul-
ilevel data structure.

This paper aims at a comprehensive inspection of typical struc-
ured data used in traffic safety evaluation, so as to raise the
wareness of safety analysts and stimulate the necessary concern
n structured safety data. Specifically, a conceptual model with a
× ST-level hierarchy is proposed as an innovative approach to rep-

esent the general framework of multilevel data structures in traffic
afety. To properly model the potential cross-group and/or spa-
iotemporal heterogeneities due to the multilevel data structure,
ayesian hierarchical approach that explicitly specifies multilevel
tructure and reliably yields parameter estimates is introduced and
ecommended. Finally, several recently accomplished studies by
he current authors and their colleagues are summarized as case
tudy to illustrate the proposed methodology with empirical eval-
ation.

. Review on crash prediction models

The typical structure of crash prediction model could be
xpressed as a general form as follows:

Y |�∼Dist(�)
with � = f (X, ˇ, ε)

(1)

here Y: dependent variable(s) of interest, e.g. crash frequency or
everity; Dist(�): adapted distribution for Y|� and its parameter(s);
: covariates representing various exposure/risk factors to crash
ccurrence; �: coefficients, i.e. factor effects of X on Y; f(·): link
unction relating X and Y; �: disturbance/error terms in the model.

The dependent variable Y is assumed to follow some distribution
ith parameter(s) �, which is further modeled as a link function

(X, �, �). The selection of the distribution depends on the nature
f crash features of interest. Particularly, in predicting crash fre-
uency, Poisson distribution is traditionally employed to model the
ount data (e.g. Jovanis and Chang, 1986; Joshua and Garber, 1990;
ones et al., 1991; Miaou and Lum, 1993). In contrast, when crash
everity is concerned, discrete outcome distributions are generally
sed, such as those in nominal models (e.g. Mannering and Grodsky,
995; Shankar and Mannering, 1996; Mercier et al., 1997; Simoncic,
001; Al-Ghamdi, 2002) or ordered discrete models (O’Donnell and
onnor, 1996; Quddus et al., 2002; Rifaat and Chin, 2005; Abdel-Aty
nd Keller, 2005). The distribution parameters (�) are then related
o the risk factors using a link function which, in a conceptual sense,
onsists of three components:

(i) a suitable transformation function for � based on the nature
of data type, for example, a logistic function for binary data or
exponential function for count data;

(ii) an expression combining X and �, typically assuming a linear
combination of X or their transforms, i.e. X�, and

iii) the term � to represent various disturbance/error terms
assumed in the model.

Considerable efforts have been made to establish the suitabil-
ty of various crash prediction models for both crash frequency
nd severity. Traditionally, generalized linear regression models
GLMs), such as Poisson model, Logit or Probit Models are broadly
pplied to build probabilistic formulations on the relationship of
he crash occurrence with a variety of possible covariates. In most of
hese classical models, the disturbance term � is inherently deter-
ined by the adapted distribution, resulting in some constraints
or the mean and the variance of the model, e.g., ‘variance = mean’
n Poisson model, or ‘variance = mean × (1 − mean)’ in Binomial
ogit model. Hence, they may not be adequate to account for some
ver-dispersed data, which are commonly found in crash data. To
nd Prevention 42 (2010) 1556–1565 1557

overcome the over-dispersion problem in count data, some over-
dispersed Poisson models have proved to be useful by relaxing the
condition of ‘variance = mean’ in standard Poisson model. An addi-
tional stochastic component ε is introduced to the link function. By
respectively assuming exp(ε) a Gamma distribution or a Lognormal
distribution, Poisson-Gamma model (also called Negative Bino-
mial model, NB) (e.g. Miaou, 1994; Kulmala, 1995; Shankar et al.,
1995; Poch and Mannering, 1996; Abdel-Aty and Radwan, 2000) or
Poisson-Lognormal distribution (Lord and Miranda-Moreno, 2008;
Huang et al., 2009; Haque et al., 2010) is typically employed. It
is worth noting that the source of over-dispersion has not been
explicitly distinguished in these models. In other words, the model
disturbance is modeled unstructuredly.

Furthermore, these GLMs suffer from a common underlying lim-
itation that each observation (e.g. a crash or a vehicle involvement)
in the estimation procedure corresponds to an individual situa-
tion. Hence, the residuals from the model exhibit independence.
However, this “independence” assumption may often not hold true
since multilevel data structures especially spatiotemporal struc-
tures exist extensively because of the traffic data collection and
clustering process. Disregarding the possible cross-group hetero-
geneities or spatiotemporal correlations may lead to production of
models with unreliable parameter estimates and statistical infer-
ences.

In recent years, several advanced statistical techniques have
been explored to more appropriately represent the nature of
crash data. For example, a number of studies have employed
zero-inflated models to take into account the excess zero obser-
vations in crash data (e.g., Miaou, 1994; Lee et al., 2002; Lee
and Mannering, 2002; Shankar et al., 2003; Wang et al., 2003;
Kumara and Chin, 2003; Qin et al., 2004; Lord et al., 2005, 2007),
whereas Lord et al. (2005, 2007) have questioned the validity of
the basic zero-state assumption in these models. In this regard,
Markov switching models (Malyshkina et al., 2009; Malyshkina and
Mannering, 2009, 2010) and finite mixture models (Park and Lord,
2009) have been newly tested. Especially, the Markov switching
models allow specific road entities to switch between multiple
crash states over time. Furthermore, the use of variable disper-
sion parameters in negative binomial models have been reported
useful to improve the model-fitting (Heydecker and Wu, 2001;
Miaou and Lord, 2003; Miranda-Moreno et al., 2005; El-Basyouny
and Sayed, 2006; Mitra and Washington, 2007; Lord and Park,
2008). Multivariate count models have also been applied to jointly
model crash frequency at different levels of injury severity (Park
and Lord, 2007; Ma et al., 2008; Ye et al., 2009; Aguero-Valverde
and Jovanis, 2009; El-Basyouny and Sayed, 2009). More recently,
a more flexible random parameter modeling approach, includ-
ing random intercept and/or random slope, is emerging in the
literature, in which model parameters are allowed to vary from
site to site (Li et al., 2008; Anastasopoulos and Mannering, 2009;
Huang et al., 2008, 2009; El-Basyouny and Sayed, 2009; Huang
and Chin, in press). The surge of aggregate crash prediction mod-
els in response to the safety conscious planning has boosted the
exploration of spatiotemporal models to account for the unmea-
sured confounders and spatiotemporal autocorrelations among
adjacent geographic units (e.g., counties, TAZs) (Miaou et al., 2003;
Aguero-Valverde and Jovanis, 2006; Quddus, 2008; Huang et al.,
in press). It is noted that most of these models have been accom-
plished in the methodological framework of Bayesian hierarchical
approach.

Clearly, these recent advancements have significantly improved

the analytical capability over traditional crash prediction models.
However, till now, there is no systematic and consistent examina-
tion found in the literature on the multilevel data characteristics
in general traffic safety research. This issue is comprehensively
examined in the next section.
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Fig. 1. Possible relationship betw

. Multilevel data structure in traffic safety

.1. A common neglect in existing models: cross-group
eterogeneity

To clearly explain the underlying limitation of ‘independence’
ssumption in GLMs, we take an example of a simple regression
elationship between crash frequency and crash exposure. The
rash exposure is defined as the amount of opportunities for crashes
f a certain type which drivers or the traffic system experience. In
his example, the crash exposure is assumed to have a linear rela-
ionship with the logarithm of the mean crash count (log �): higher
xposure is associated with more crashes. A standard GLM may
enerate the relationship as shown in Case (a) of Fig. 1. Given the
rash exposure (x), the variation between different observations
y) is restricted by distribution adapted (Dist(�)). Put it in another
ay, the only stochastic component of variation is introduced by
ist(�).

In particular, standard Poisson model assumes a fixed variance
or different observations given �, which exactly equals to �. Hence
he variation of y is only determined through observed heterogene-
ty, i.e. crash exposure in this example. In over-dispersed Poisson

odels, by adding an additional disturbance (ε) to relax the con-
traint of ‘variance = mean’, the new mean crash count (�̃) is subject

oth to the deterministic variation associated with crash exposure
ut also to the unobserved heterogeneity introduced by ε. For a
iven crash exposure (x), there is a distribution of �̃’s rather than
single value for the mean crash count �. Nevertheless, over-

ispersed Poisson models only take an overall same distribution
rash occurrence and risk factors.

on the disturbance among individual observations. Hence different
observations are still independent with each other. The potential
structural improvement of an over-dispersed Poisson model over a
standard Poisson model is only the capability to account for unob-
served cross-individual heterogeneity in addition to the observed
variations.

However, the “independence” assumption may often not hold
true since multilevel data structure exists extensively, either intrin-
sically in traffic data or extrinsically resulting from the manner data
are collected or clustered. For example, to study the relationship
of crash count and exposure, a number of selected road segments
may be nested in several areas of interest (e.g. cities). Moreover,
for each selected road segment, there may be several observations
from different time periods. In this case, some cross-group hetero-
geneities, either observed or unobserved, may exist due to spatial
and temporal effects of crash data. Indeed, some characteristic vari-
ations may necessarily exist between different areas or between
road segments.

For instance, suppose the data in the above example are col-
lected from four different areas, in each of which a number of
road segments are involved in the study. The Cases (b)–(f) in Fig. 1
illustrate various potential relationships between crash count and
exposure. As discussed previously, if a standard GLM model is
used on the aggregate dataset (Case (a)), the area-level context

in which the road segments belong to is completely ignored: the
same single straight line relationship is held to exist everywhere.
In effect the model has explained “everything in general and noth-
ing in particular”. However, given the different features among the
areas such as the socio-economic, demographic and transportation
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acility characteristics, there may be varying crash count/exposure
elationships. Also, traffic enforcement may actually play a role,
ince different police departments might be reporting crashes dif-
erently, e.g., ignoring minor crashes. One possible result shown in
he Case (b) of Fig. 1, is the varying-intercept pattern. Here each
f four areas (line nos. 1–4) has their own crash count/exposure
elation represented by a separate line. The single thicker line rep-
esents the general relationship across all four areas. The parallel
ines imply that, while the crash count/exposure relation in each
rea is the same, some areas have uniformly higher crash frequency
han others. In Cases (c) and (d), the situations are more compli-
ated as the steepness of the lines varies from area to area. In Case
c), the pattern is such that areas make very little difference for the
elatively low exposure roads but there is a high degree of between-
rea variation in crash count for higher exposure roads. In contrast,
ase (d) shows large area-specific differentials exist for the road
egment with lower exposure. In Case (e), there is a complex inter-
ction between crash count and exposure. In some areas it is the
ower exposure roads which have relatively high crash frequency,

hereas in others it is the higher exposure roads. While the final
lot, Case (f), is unlikely to occur in terms of the current example,

t can be expected for some other risk factors. Across all the areas
here is no relationship between the crash count and the risk fac-
or (the single thicker line is horizontal) but in specific areas there
re distinctive relationships. This situation is similar to Case (c) but
ere the differences result from some areas having high crash fre-
uency for high value of the risk factor, while in others they have
he lowest frequency.

The cross-area variations of slopes and intercepts could be
aused by various area-specific heterogeneities. For those observ-
ble heterogeneities, it is theoretically possible to factorize and
hen account for them by using some classical techniques such
s GLM with consideration of interactions, ANOVA, or ANOCOVA.
ut traffic crash is a complex event with a large number of fac-
ors involved. Ideally, all of the relevant factors in different levels
e.g. road segment level and area level) should be considered in
he model. In practice, however, some of the factors may not be
vailable or even uncollectable for study. A model may only con-
ider the most important factors and omit the others. It assumes
hat similar groups (i.e. with same selected observable factors)
ave the same pattern of crash occurrence. In the real world, how-
ver, similar groups (e.g. area) may be different in omitted factors
nd thus may have different means. These unobservable or omit-
ed heterogeneities introduce additional variance to the data and
ause the over-dispersion. Consequently, without appropriately
ccounting for the cross-group heterogeneities, the estimates of
he standard error in the regression coefficients may be underes-
imated. Moreover, in the presence of spatiotemporal correlation,
he accommodation of these specific data features would be valued.

The patterns shown in the above example exist almost every-
here in traffic safety studies since most crash datasets are

ollected with an inherent hierarchical and spatiotemporal struc-
ure. For example, in predicting crash severities, it is reasonable to
ssume that the characteristics of the vehicles within which casu-
lties are traveling will affect their probability of survival. If this
s the case, then casualties within the same vehicle would tend
o have more similar severity than casualties in different vehi-
les, rendering the assumption of residual independence invalid.
he same argument may be extended to encompass the effect of
imilarities between different crashes, traffic sites, or geographical
egions.
.2. A 5 × ST-level hierarchy in traffic safety data

For the purpose of systematic inspection, a 5 × ST-level hier-
rchy, as shown in Fig. 2, is proposed to represent the general
Fig. 2. A 5 × ST-level hierarchy in traffic safety data.

framework of multilevel data structures in traffic safety. Along
the vertical of this triangular prism is a five-level hierarchy
representing various traffic entity with spatial distribution includ-
ing from macroscopic to the microscopic levels, Geographic
region level–Traffic site level–Traffic crash level–Driver-vehicle
unit level–Occupant level. All these traffic entity levels are
structured along a horizontal time axis, defined as Time level,
thus resulting in a “5 × ST”-level hierarchy, i.e. 5 entity lev-
els × SpatioTemporal level. The involvement and emphasis for
different sub-groups of these levels depend on different research
purposes and also rely on the heterogeneity examination on the
crash data employed. Generally, macro-analysis focus on the top
three levels, i.e. Geographic region level, Traffic site level, and Traffic
crash level, while micro-analysis concern the bottom three lev-
els, i.e. Traffic crash level, Driver-vehicle unit level, and Occupant
level.

Specifically, the Geographic regional level could be a number
of regions, countries, states, counties or cities, etc. Inter-regional
studies generally include the traffic data collected from the regions
of interest. This level is normally associated with a number of
contextual factors potentially affecting the traffic safety situation
such as driving regulations, road density, spatial features, popula-
tion and other socio-economic features. Nested under Geographic
regional level is Traffic site level, which is of greatest interest
in many traffic safety studies. It consists of what constitute the
basic road network, namely road segments (link) and road junc-
tions (node). A corridor could also be considered as within Traffic
site level in case that the safety situation of a whole corridor is
of concern. Various collective or comparative safety studies are
conducted regarding road design, operation and assessment. Next,
while traffic sites necessarily reside in some geographic region, traf-
fic crashes of various types occur at different traffic sites. Traffic
crash level has been the most direct and thus most used criterion
in monitoring the safety situation for traffic sites. It is intuitively
reasonable that characteristics of crashes occurring at a same site
should be correlated due to the same context in terms of geo-
metric, traffic, and regulatory control factors. Measures such as
crash severity, collision type and possible crash causes are used
to characterize the traffic crashes. Driver-vehicle unit level is the
most concerned entity in traffic safety as it directly relates to the
driver behavior and vehicle maneuver leading to crashes as well
as overall vehicle crash worthiness. Individual severity of driver

injury or vehicle damage may potentially show a strong correla-
tion between those involved in the same multi-vehicle crashes.
Various driver and vehicle characteristics are factors distinguish-
ing different involved units in this level. The lowest level in the
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ierarchy is vehicle occupants involved in crashes, which refer to
oth drivers and passengers. This level is commonly concerned in
tudies on body injury worthiness related to age and gender, as
ell as in-vehicle protection measures for different seats. Finally,

raffic data in any entity level are necessarily marked by a time
cale (horizontal axis in the prism), with which the interest of
tudies may be on the time serial correlations of traffic safety situ-
tion.

In the proposed conceptual model, it seems a bit confusing for
hat drivers are included in both Driver-vehicle unit level and Occu-
ant level. Note that drivers in Driver-vehicle unit level represent
he persons who control the vehicle and as such the emphasis is on
heir driving behavior related characteristics. Whereas, drivers in
ccupant level are seen as one of the vehicle occupants in which

heir body injury worthiness and in-vehicle protection facilities are
f most concern.

Following the framework, typical data-clustering designs in
raffic safety research could vary depending on the research pur-
oses. For example, in some inter-regional studies, with Geographic
egion level as the higher level, study subjects in the lower level
ould be safety performance of various traffic sites, drivers or
ehicles. In these cases, two-entity-level design could be used
o explicitly examine the safety effects of risk factors in both
ndividual and contextual levels. The two-entity-level design can
e naturally extended to reflect three-entity-level data struc-
ure, for example, Geographic region level–Traffic site level–Traffic
rash level. It is also worth noting that for the levels of geo-
raphic region and/or traffic site, spatial effects could be present
mong adjacent entities of analysis. The geographic distribution
f the regions or sites should be taken into account as closer
raffic entities may have certain similarity in crash occurrence.

oreover, when time series are considered, panel data design
r repeated cross-sectional design could be used. In panel data
esign, a set of sites within regions are pre-selected on which
epeated measures along time are conducted, whereas repeated
ross-sectional design consider a number of time periods, in each
f which selected sites may be different. In the scope of micro-
nalysis, crash risk and severity are mostly concerned for the
river-vehicle unit level and Occupant level. By controlling for
ovariates at Traffic crash level, taking Driver-vehicle units as
bservation unit may reveal crash propensity variation among
ifferent drivers and vehicles. For the Occupant level, research
ould be conducted to investigate the injury severity variation
mong different seats by taking each individual occupant as an
bservation unit, whereas covariates at the upper levels such as
river-vehicle unit level and Traffic crash level could be controlled

or.

. Bayesian hierarchical method on multilevel crash data

The previous sections show that an appropriate method is
eeded to account for the multilevel data structure in the traffic
afety discipline. In this section, a methodological framework using
ayesian hierarchical modeling is established to properly model
he potential heterogeneities due to the multilevel data structure.

number of advantages of this method ensure its great potential
f extensive applications in traffic safety analysis.

.1. Hierarchical model
To model the multilevel data structure, several potential solu-
ions have been found in the literature. For example, some
esearchers have employed the artificial intelligent models (AI) in
rash prediction such as the most widely used neural networks
NN) and Bayesian NN (Mussone et al., 1999; Abdelwahab and
nd Prevention 42 (2010) 1556–1565

Abdel-Aty, 2001; Riviere et al., 2006; Xie et al., 2007). But the
NN has been criticized for being black boxes incapable of generat-
ing explicit functional relationships and statistically interpretable
results. Another useful technique in accounting for correlated data
is the generalized estimating equations (GEE), which is regarded
as an extension of GLM (Lord and Persaud, 2000; Abdel-Aty and
Abdalla, 2004; Wang and Abdel-Aty, 2006). GEE is also called as
‘marginal’ model, as distinguished from ‘subject specific’ model,
such as hierarchical model in this paper. When dealing with multi-
level data structure, GEE aims to provide estimates with acceptable
properties only for the fixed parameters in the model, while
treating the existence of any random parameters as a necessary
‘nuisance’. Hence, the GEE may merely be superior in the case where
the exact form of the multilevel data structure is unknown.

Another way to distinctly address the multilevel data struc-
ture is to use hierarchical models (also called as multilevel model,
random effect model or random parameter model). Hierarchical
modeling is a statistical technique that allows multilevel data struc-
tures to be properly specified and estimated (see Gelman and Hill,
2007). Although the basic theories of hierarchical model have been
developed and discussed for many years, it is only recent that many
practical limitations on the use of hierarchical analysis have been
overcome. Currently, hierarchical models have become common-
place in research in a variety of other disciplines such as sociology,
education, political science, and public health. In employing the
hierarchical model in the first application in a traffic crash study,
Shankar et al. (1998) showed that the inclusion of site-specific ran-
dom effects and time indicators into the NB regression model can
significantly improve the explanatory power of crash models. Jones
and Jorgensen (2003) presented a good exploration and discussion
on the potential applications of the hierarchical models. Since then,
the hierarchical modeling technique has been gaining an increasing
amount of attention in accounting for the multilevel data structure
in crash prediction. For example, while some researchers (Mitra
and Washington, 2007; Chin and Quddus, 2003; Yang and MacNab,
2003; Kim et al., 2007; Li et al., 2008; Quddus, 2008; Huang et
al., 2009; Haque et al., 2010) employed the hierarchical models
for predicting crash frequency, others (Jones and Jorgensen, 2003;
Lenguerrand et al., 2006; Huang et al., 2008) developed hierarchical
models to identify factors affecting crash severity.

As defined by Gelman and Hill (2007), a multilevel/hierarchical
model is a regression (a linear or generalized linear model) in which
the parameters – the regression coefficients – are given a probabil-
ity model. Hence, this higher level model has parameters of its own
– the hyperparameters of the model – which are also estimated
from the data. In the context of GLM, the hierarchical modeling
(also called hierarchical GLMs) is mainly working on the link func-
tion: disturbance terms are added to the model corresponding to
different sources of variation in the multilevel data.

Specifically, recall the general expression of statistical modeling
in Eq. (1), while the first part of the expression (Dist(�)) remains to
represent different characteristics of the crash features of interest,
it is the disturbance term � which differs the hierarchical modeling
to classical statistical models. It should be noted that here the �
represents a general concept for the disturbances. In fact, it could
consist of many components, with some of which working on the
intercept, others on the slopes in the link function.

A two-level hierarchical model is used to mathematically inter-
pret how the method works on the multilevel data. As with most
practices, a basic linear combination of X and � is assumed to
simplify the interpretation. Furthermore, the covariate vector X is

divided into three components, c(1, XL1, XL2), to respectively repre-
sent the factors associated with intercept, individual level (level 1)
and group level (level 2). Correspondingly, � and � are also divided
into different components to serve different functions with the
bold symbol representing vector or matrix. Hence, the link function
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ecomes the combination of models in terms of two levels,

Level 1 model : f −1(�) = ˇL1
0 + XL1ˇL1 + εL1

Level 2 model : ˇL1
0 = ˇL2

00 + XL2ˇL2
0 + εL2

0
ˇL1 = ˇL2

01 + XL2ˇL2
1 + εL2

1

(2)

The combined model is obtained by substituting the level 2
odel into level 1 model,

−1(�) = (ˇL2
00 + XL1ˇL2

01 + XL2ˇL2
0 + XL1XL2ˇL2

1 )

+ (εL1 + εL2
0 + XL1εL2

1 ) (3)

It is clear that now the link function consists of two parts:
xed part and random part. The fixed part means a determinis-
ic relationship fully depending on covariate X, while random part
s stochastically determined by a number of disturbance terms. The
omponents in both the two parts are interpreted as follows.

Fixed part:

1) ˇL2
00: The intercept, which is the main effect with all covariates

equal zero. By centering all covariates on their mean, this term
represents the main effect on the average values of covariates.

2) XL1ˇL2
01: ˇL2

01 is the mean of the main-effect coefficient of level 1
covariates XL1 on the dependent variable.

3) XL2ˇL2
0 : ˇL2

0 is the main-effect coefficient of level 2 covariates
XL2 on the dependent variable.

4) XL1XL2ˇL2
1 : ˇL2

1 is the interactive-effect coefficient of XL1 and
XL2. This component make it possible to in-depth understand-
ing of how contextual factor (level 2 covariates) could affect the
individual factor (level 1 covariates).

Random part:

1) εL1: The disturbance term associated with level 1 analysis. Nor-
mally, it is assumed to be identical independent distributed
(IID) among individuals with mean zero and variance to be
estimated. The associated unknown variance structure of this
term facilitates the estimation of unobservable or omitted
between-individual heterogeneity. The additional disturbance
in over-dispersed Poisson models is a typical example, in which
with Gamma distribution assumption on exp(ε) resulting in
Poisson-Gamma model, and Lognormal distribution assump-
tion in Poisson-Lognormal model.

2) εL2
0 : The disturbance term associated with level 2 analysis. It

is also common to assume IID among groups (level 2) with
mean zero and variance to be estimated. With this term,
those individuals (level 1) belonging to a same group (level
2) share a same variance component, thus resulting in a
within-group covariance. As a result, the model intercept now
consists of three parts: ˇL2

00 + εL1 + εL2
0 and is hence variable by

between-individual (or within-group) variation εL1 as well as
between-group variation εL2

0 .
3) XL1εL2

1 : εL2
1 is the disturbance vector on the slope of level 1

covariates XL1 associated with level 2. εL2
1 makes the slope of

XL1 variable according to the data clustering. In other words,
individuals in a same group share with a same variance on the
slope. As a result, the slope of XL1 consists of two parts: ˇL2

01 +
εL2

1 and is hence variable by between-group variation εL2
1 . Note

that while XL1 has varying main-effect slope, the main-effect
slope for XL2 is fixed. A higher level analysis, for example in a

three-level model, could make this level 2 slope varying.

It is clear that εL2
0 and εL2

1 are the unique features of hierar-
hical models while all of the rest components could be included
nd estimated in classical models. It is just these two stochastic
nd Prevention 42 (2010) 1556–1565 1561

terms making it possible to account for the unobservable or omitted
heterogeneity in level 2 model.

In the framework of hierarchical modeling, the two-level model
shown in Eq. (3) is also called as varying-intercept and varying-
slope model. Obviously, this full-version model could be simplified
by taking account of either varying intercept or varying slope,
resulting in varying-intercept model and varying-slope model.

Varying-intercept model:

f −1(�) = (ˇL2
00 + XL1ˇL2

01 + XL2ˇL2
0 + XL1XL2ˇL2

1 ) + (εL1 + εL2
0 ) (4)

Varying-slope model:

f −1(�) = (ˇL2
00 + XL1ˇL2

01 + XL2ˇL2
0 + XL1XL2ˇL2

1 ) + (εL1 + XL1εL2
1 )

(5)

Clearly, all these models could be expanded to accord with
more complicated designs. The above derivative also shows that
the hierarchical modeling provides a rather flexible technique to
account for various study purposes and different extent of model
complexity such as within-level or between-level interactions,
varying intercept, and varying slopes. Moreover, spatiotemporal
effects could also be incorporated into the hierarchical models by
specifying the hypothesized features on the εL2

0 and εL2
1 , such as spa-

tial or temporal autoregressive models (see Banerjee et al., 2003).
Recently, several safety studies have successfully applied the spa-
tial models (Miaou et al., 2003; Aguero-Valverde and Jovanis, 2006;
Quddus, 2008; Huang et al., in press).

Fitting hierarchical models, as well as displaying, checking, ana-
lyzing the model results necessarily get much more complicated
than classical models. Given the increased ‘costs’ of using hier-
archical models, a number of major advantages are identified in
the traffic safety research context. First, hierarchical modeling pro-
vides a coherent model that simultaneously incorporates both
individual-level and group-level models. Second, it is more efficient
in inference for parameters. Compared to complete pooling across
all groups and no-pooling, the modeling paradigm of hierarchical
analysis represents a preferred partial pooling, i.e. a compromise
between the two extremes. Moreover, as hierarchical modeling
combines information from multilevel variations, it is feasible to
use all the data to perform inference for groups with small sample
size. The last but not the least, is the capability to provide more
efficient crash prediction for new observation or unit.

4.2. Bayesian inference

Bayesian approach is a prevailing way to explicitly model the
hierarchical structure. With the recent development of comput-
ing capacity and Bayesian analysis techniques, a good number
of researchers have been working on estimating the models in a
Bayesian framework. Bayesian inference (BI) is the process of fit-
ting a probability model to a set of data and summarizing the result
by a probability distribution on the parameters of the model and
on unobserved quantities such as predictions for new observations.
Instead of giving “maximum likelihood” estimates for the stud-
ied unknowns totally based on the sample data in MLE inference,
the essential characteristic of Bayesian methods is its explicit use
of probability for quantifying uncertainty in inferences based on
statistical data analysis. Specifically, the ultimate aim of Bayesian
data analysis is to obtain the marginal posterior distribution of all
unknowns, and then integrate this distribution over the unknowns

that are not of immediate interest to obtain the desired marginal
distribution.

As indicated from a large number of theoretical studies and
applications, BI shows numerous theoretical and practical advan-
tages over the “classical” likelihood-based inference methods (also
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Table 1
Model comparison: hierarchical model vs. GLM model.

Deviance information criterion (DIC) Mean absolute deviance (MAD) Mean squared predictive error (MSPE)

Negative Binomial 7661 0.84 1.42
Poisson-Lognormal 7655 0.82 1.34
Hierarchical Poisson 7344 0.63 1.12
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ote: results retrieved from Table 1 in Huang et al. (2009).
a Serial correlation coefficient = 0.775, Bayesian credible interval (0.72, 0.80).

alled frequentist methods). Several major advantages in the traffic
afety context are identified as follows.

1) Crash data is difficult to collect and gradually available, e.g. year
by year. There is also possible variation for crash prediction
models as the outcome of changes of some influential factors,
e.g. the installation of red light camera, or the adjustment of
amber interval time. The Bayesian algorithm provides a quite
flexible and reliable measure to realize the updating require-
ment. In Bayesian context, the previous model, any engineering
experiences or justified previous findings could be used as the
prior knowledge of the updated model.

2) Missing data occur very commonly in crash records. In Bayesian
method, missing data are automatically modeled as latent vari-
ables in a manner that takes into account the information
contained in other observed data.

3) Bayesian posterior distributions for parameters are perfectly
valid for any size of sample. One of the most important strengths
of BI is the capability to handle small size data. The extensive
application of empirical Bayesian approach in observational
before-after study of safety treatment evaluation is a good sup-
portive example of this statement (Hauer, 1997).

4) Regarding model comparison, frequentist hypothesis tests
require that only two models are compared, and these models
must be nested. In a Bayesian setting, any number of non-nested
models may be compared.

The well-known computing approach for BI is Markov chain
onte Carlo (MCMC) methods (Gelman et al., 2003). MCMC is
general method based on drawing values of unknowns from

pproximate distributions and then correcting those draws to bet-
er approximate the target posterior distribution. Gibbs sampler
nd the Metropolis–Hastings algorithm are the most widely used
imulation algorithms in MCMC. In complex hierarchical mod-
ls where parameters may outnumber observations, the recently
eveloped deviance information criterion (DIC), a Bayesian gener-
lization of AIC, could be used to measure the model complexity
nd fit (Speigelhalter et al., 2003a). Gelman–Rubin convergence
tatistics (Brooks and Gelman, 1998) could be employed to monitor
he convergence of MCMC simulation chains. BUGS modeling lan-
uage (Bayesian Inference using Gibbs Sampling) is a prevailed tool
o allow the computation using MCMC algorithms for all sorts of
ayesian models, including most of the hierarchical models applied.
inBUGS package (Spiegelhalter et al., 2003b) provides a flexible

nd simplified platform to modeling with the BUGS programs. In
articular, since specification of the full conditional densities is not
ecessary in WinBUGS, small changes in program code can achieve
wide variation in modeling options and thus facilitating sensitiv-

ty analysis and prior assumptions.
. Illustrative examples

In this section, several studies recently accomplished by the
urrent authors and their colleagues are deliberately selected
o exemplify the proposed conceptual model of the 5 × ST-level
0.51 1.03

hierarchy with Bayesian hierarchical estimation approach. Levels
covered in these examples vary from levels of Geographic region,
traffic site, traffic crash, driver-vehicle unit to spatial and tempo-
ral levels. While Examples 1–3 address crash frequency analysis,
Examples 4–5 deal with crash severity analysis.

5.1. Example 1: Crash frequency ∼ Intersection level × Time level

To evaluate alternative approaches in identifying crash hotspots,
Huang et al. (2009) developed a set of Bayesian hierarchical mod-
els to predict the expected crash rate for 582 intersections in
Singapore. Crash historical data in 10 years (1997–2006) were
employed to accomplish the analysis. Specifically, a two-level
design was employed to accommodate the site-specific effect
for multiple yearly observations for specific sites, i.e. Crash fre-
quency ∼ Intersection level × Time level. The potential correlation
among multiple observations at a specific site was modeled in two
ways, one with a site-specific random effect, and the other with a
time serial autoregressive lag-1 (AR-1) specification.

Table 1 cites the model comparison results presented in Huang
et al. (2009). The results showed that both the hierarchical models
(Hierarchical Poisson model, HP and Hierarchical Poisson (AR-1)
model, HP(AR-1)) with accommodation for site-specific effect and
serial correlation have better goodness-of-fit than non-hierarchical
models (NB model and Poisson-Lognormal model, PLN). Specifi-
cally, judged by the MAD and MSPE values, the HP and HP(AR-1)
models significantly outperform NB and PLN models with respect to
model-fitting. Likewise, by using DIC, the model comparison shows
that the accommodation of multilevel data structure can substan-
tially improve the model performance. Given the better model
fitting results, it is also not surprising to find that the Bayesian hier-
archical models outperform the results based on traditional crash
prediction models in correctly predicting crash hotspots. The eval-
uation of predictive performance was conducted by using 3-year
data to predict the 10-year average. This study indicates that the
flexibility in model specification of the Bayesian modeling approach
can generate great potentials to improve the crash prediction mod-
els and subsequent applications by explicitly accounting for various
structured heterogeneities in crash data.

5.2. Example 2: Crash frequency ∼ [County level − Corridor
level − Intersection level] × Spatial effect

In an exploratory study of modeling signalized intersection
safety (Guo et al., 2009), a total of 170 four-legged signalized
intersections along 25 principle and minor arterials crossing
two Central Florida counties were investigated. By a preliminary
analysis, a three-level design was formulated to accommo-
date the multilevel data structure as well as the spatial effect,
i.e. Crash frequency ∼ [County level − Corridor level − Intersection

level] × Spatial effect. In the model, as discussed in Guo et al. (2009),
there are potentially three levels of correlation for the crash fre-
quency at an individual intersection during the observation period
(2000–2005), i.e. County level, Corridor level, and Intersection level.
Specifically, crashes that occurred within a same county are pos-
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ibly more “similar” comparing to those in other counties while
ntersections within the same corridor may also be correlated with
ach other due to some omitted corridor-specific characteristics.
n the analysis, the county level was accounted for by fixed effects

ith two dummy variables; and random effect stochastic terms
ere used to specify the potential corridor-specific heterogene-

ty. Moreover, a point-referenced conditional autoregressive (CAR)
rior was also incorporated to test the spatial correlation among

ntersections with varying distance. In other words, intersections
loser to each other were hypothesized to be more similar than
hose far apart.

The Bayesian inference was employed to estimate the proposed
odels. Results showed that the within-corridor correlation is

ubstantial with significant CAR effects in NB CAR model (16.8,
ayesian credible interval, BCI (2.54, 62.77)) and HP CAR model
0.79, BCI (0.58, 1.04)). As reflected by the model-fitting results
nd DIC values, it found that the HP-CAR model (DIC = 1378)
utperformed all the other models including standard Poisson
odel (DIC = 3209), NB model (DIC = 1378), NB mixed effect model

DIC = 1626) and NB CAR model (DIC = 1628). The study implied that
he hierarchical spatial models provide a better representation of
he stochastic processes underneath the observed safety data with

ultilevel structures. This result also confirmed the well-known
act that the NB can be generated by a HP model and implied that HP

odel can be valuable in modeling the safety data with multilevel
ata structure.

.3. Example 3: Crash frequency ∼ County level × Spatial effect

The necessity and capability of spatial model to account for
patial data as shown in Example 2 has also been explored in
n aggregate crash prediction model (Huang et al., in press). In
he study, crash statistics in a 5-year period (2003–2007) were
nvestigated for 67 Florida counties. By using the Moran’s I statis-
ics in a GIS platform, positive spatial correlation was detected
mong adjacent counties with most of the Z scores higher than
.68 which represents a 90% confidence level. Hence, a Bayesian
rea-referenced CAR model was developed to accommodate for the
otential spatial effects. The spatial model was assumed to be able
o account for various confounding factors which are not observed
r unobservable in the analysis. Furthermore, in the context of area-
eferenced CAR model, those confounding factors are supposed to
e spatially correlated among adjacent counties and their effects
n crash risks are homogeneous.

Estimations of the marginal standard deviations of state-wide
eterogeneity and clustering effects among adjacent counties were
sed to calculate the proportion of the variability in the random
ffects that is due to clustering. The results showed that variations
ccounted by spatial clustering are substantial for all the all-crash
nd severe-crash risk models, specifically, 51.7% and 42.4%, respec-
ively for models with daily VMT as exposure, and 25.9% and 26.4%,
espectively for models with population as exposure.

.4. Example 4: Severity of driver injury and vehicle
amage ∼ Traffic crash level − Driver-vehicle unit level

The Examples 1 through 3 have illustrated the application of
ayesian hierarchical models in addressing crash frequency pre-
iction models with multilevel and spatiotemporal data structure.
xamples 4 and 5 will exemplify how to deal with multilevel data
n crash severity analysis.
In Huang et al. (2008), a Bayesian hierarchical binomial logistic
odel was developed to identify the significant factors affecting

he severity level of driver injury and vehicle damage in traffic
rashes at signalized intersections. Crash data in Singapore from
003 to 2005 were used. It was found that in the 4095 signal-
nd Prevention 42 (2010) 1556–1565 1563

ized intersection related crashes, 7840 driver-vehicle units were
involved, resulting in an average involvement rate of 1.91 individ-
uals per crash. A preliminary inspection on the crash severity of
these data revealed a significant correlation between individuals
involved in the same multi-vehicle crashes, which represent 83.5%
of all crashes. Specifically, in a multi-vehicle crash, if a driver and/or
vehicle was injured and/or damaged severely, then the others had
a probability of 31% also to be so. On the other hand, if there was
no severe damage and injury to a driver-vehicle unit, the chance
for the others to be severe is only 12%. This motivated a two-level
hierarchical design of the model, i.e. Crash Severity ∼ Traffic crash
level − Driver-vehicle level, so as to take into account the potential
cross-crash heterogeneity. For the purpose of comparison, standard
logistic model has also been developed to justify the use of the more
‘expensive’ two-level model.

Model estimation results showed that the variance of the crash-
specific random effects is 1.34, which is statistically significant with
BCI (0.56, 2.29). By use of intra-class correlation coefficient (ICC),
this means the proportion of unexplained variations in individual
severity resulted from cross-crash variance is about 28.9%. Thus,
it is not surprising to hypothesize that accounting for the mul-
tilevel data structure in the proposed hierarchical model would
lead to a better model performance. By the model-fitting compo-
nent in DIC, the goodness-of-fit of the proposed two-level model
improved significantly over the standard logistic model in which all
driver-vehicle units were treated independently. After penalized
by the effective number of parameters in the model, the DIC value
for the hierarchical model (DIC = 3067.9) is also considerably less
than that in the standard logistic model (DIC = 6191.9). This further
showed that the use of crash-level random effects in the hierarchi-
cal model can substantially improve the model performance. The
improved model performance is useful to reduce the variability in
estimating the safety effects of risk factors at both crash level and
driver-vehicle unit level.

5.5. Example 5: Crash severity ∼ Road segment level − Traffic
crash level

A study was recently conducted to examine crash injury sever-
ity related to visibility obstruction due to fog/smoke (Huang et al.,
2010). A total of 994 fog/smoke related crashes were identified from
the Florida state-road crash database for the period of 2003–2007.
These crashes are sparsely distributed within the Florida road net-
work. Based on the spatial locations of these crashes, a total of 597
road segments were defined, which have largely uniform road char-
acteristics. The lengths of these segments range from 2 to 5 miles.
A two-level ordered logistic model, i.e. Crash severity ∼ Road seg-
ment level − Traffic crash level, was developed to account for the
five ordered crash severity levels (from no injury to fatality) and the
potential cross-road segment heterogeneity. Specifically, while an
ordinal response model normally takes fixed thresholds to define
the boundary between the intervals corresponding to observed
severity outcomes, the proposed multilevel model specifies a set
of variable thresholds for individual segments. The crash-level
covariates (e.g. ADT, driver age, etc.) were used to explain the dif-
ferent severity outcomes, and the segment-level covariates were
incorporated into the determination of variable threshold values.
Segment-specific random effect has also been utilized to estimate
the omitted confounding factors associated with road segments.
Results showed that the precision parameter of the random effects
(65.82) is significant judged by the BCI (10.06, 145.9). Furthermore,

by using the DIC, the proposed multilevel crash severity predic-
tion model (DIC = 2844.7) was also found to be better comparing to
ordinary ordered models (DIC = 4237.2).

In summary, the studies as presented in this section exem-
plified the potential benefit of accounting for various multilevel
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afety data structures. Compared to conventional models, Bayesian
ierarchical approach can yield more accurate and efficient safety
stimation for entities at different levels. Most importantly, it
hould be emphasized that benefits of these efforts were arisen
rom rational examination on realistic data structures, rather than
blind treatment for disturbance.

. Conclusion and future study

The past decade has witnessed a revolutionary advancement in
tatistical modeling techniques, and multilevel modeling approach
s among the most notable. Given the hierarchically and spatiotem-
orally structured safety data, it is promising to advance traffic
afety modeling by adopting this emerging technique. Towards
his end, this study takes a substantial step to regularize typical
afety data structures and the corresponding analytical approach
elated to the development of crash prediction model. The proposed
× ST-level hierarchy represents a conceptual framework with the
p-to-date understanding on safety data structure. The state-of-
he-art technique, i.e. Bayesian hierarchical approach, has shown
ood potential to explicitly account for the specific multilevel data
tructure as represented in the 5 × ST-level hierarchy.

Although many successes have been reported in the literature,
uch work is still needed toward the wide application of the pro-

osed theory and method in the traffic safety field. The first issue in
eed of future effort is the reliability test of the hierarchical models

n yielding better results in traffic safety. Although these types of
odel have been well coordinated in many other fields such as eco-

omics and sociology, it is only less than 10 years when traffic safety
nalysts first reported relevant results in well-known publications.
specially, while most applications are limited to varying-intercept
odel, varying-slope model deserves more effort because of the

omplexity in model estimation and result interpretation. There is
lso a need to test the applicability, robustness and transferability
f these emerging techniques. Another issue related to applica-
ion concern is the cost-benefit rate. The current methods available
n calibrating hierarchical models especially in a context of the
ayesian approach, are relatively computing and intellectual inten-
ive. The cost-benefit rate for applying those techniques to industry
hould be carefully evaluated.
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