
Tuning the Aggressive TCP Behavior for Highly
Concurrent HTTP Connections in Data Center

Jiawei Huang, Jianxin Wang, Tao Zhang
School of Information Science and Engineering

Central South University

ChangSha, China

Emails: {jiaweihuang, jxwang, taozhang}@csu.edu.cn

Jianer Chen
Dept. of Computer Science

Texas A&M University

College Station, USA

Email: chen@cse.tamu.edu

Yi Pan
Dept. of Computer Science

Georgia State University

Atlanta, USA

Email: yipan@gsu.edu

Abstract—Modern data centers host diverse HTTP-based ser-
vices, which employ persistent TCP connections to send HTTP
requests and responses. However, the ON/OFF pattern of HTTP
traffic disturbs the increase of TCP congestion window, poten-
tially triggering packet loss at the beginning of ON period.
Furthermore, the transmission performance becomes worse due
to severe congestion in the concurrent transfer of HTTP re-
sponse. In this work, we first reveal that the TCP’s aggressive
behavior in increasing congestion window causes TCP timeouts
and throughput collapse. We further present the design and
implementation of TCP-TRIM, which employs probe packets to
smooth the aggressive increase of congestion window in persistent
TCP connection, and leverages congestion detection and control
at end-host to limit the growth of switch queue length under
highly concurrent TCP connections. The experimental results of
at-scale simulations and real implementations show that TCP-
TRIM reduces the completion time of HTTP response by up to
80%, while introducing little deployment overhead only at the
end hosts.

Index Terms—data center; HTTP; TCP;

I. INTRODUCTION

Nowadays, a significant number of online service providers

employ the data centers to offer Internet-facing applications,

such as web searching, accessing content, e-retailing, and

advertisement [1], [2]. Since the application performances di-

rectly impact the enterprise revenue, the network operators try

their best to shorten the service response time thus providing

end-users with good experiences [3]. For the consideration

of equipment cost, however, network oversubscription is very

common in existing infrastructures, which do not provide

enough network capacity between the servers [4]. Thus, the

network transfer becomes a bottleneck for the application

performance. For example, in cluster computing applications

like MapReduce and Dryad, data transfer accounts for more

than 50% of job completion time [5].

On the other hand, due to its wide usage in past 20

years, Hyper Text Transfer Protocol (HTTP) is foundation of

the Internet-facing applications in modern data center. After

receiving an HTTP request message from end-user, the web

server in data center, which provides resources such as HTML

files and other content, or performs other functions on behalf

of the client, returns HTTP response to the end-user [6].

To achieve fast response and high reliability, the web server

usually utilizes highly concurrent HTTP connections to fetch

the response data across a large number of compute and

storage servers [7]. Previous research has reported that, HTTP

contributes to nearly 85% and 50% of traffic in data centers

of private enterprise and university campus, respectively [1].

Naturally, HTTP employs TCP as its underlying transport-

level protocol, and generally maintains persistent TCP connec-

tions on which requests and responses are allowed to multiplex

to reduce the unnecessary overhead caused by frequent three-

way handshakes (SYN and FIN) [8], [9]. However, there are

two key factors together impair the performance of highly

concurrent HTTP connections on TCP flows in data centers.

First, the nature of HTTP request/response style, coupled

with the unpredictable and uncontrollable user’s behavior,

shapes the ON/OFF traffic pattern on the persistent TCP

connection [9], [10]. This pattern, however, disturbs the

self-clocking mechanism of TCP’s control loop. Specifically,

ON/OFF HTTP traffic makes the data transfer on the persistent

TCP connection become non-successive. When waiting for the

user request or server response, the TCP connection becomes

idle, but is kept alive. Once the connection restarts after the

idle time, it begins transmission with the congestion window

(CW) inherited from the previous ON period, resulting in the

aggressive increase in sending rate and potential congestion.

Second, inside the data center, multiple servers and their

unique invoker constitute the many-to-one communication

pattern [7]. For example, in order to respond to a user

request of web search, hundreds, even thousands of web and

database servers are involved in the compute and commu-

nication process across the data center network (DCN) [3].

Such many-to-one traffic patterns, joint with the droptail queue

management of switch buffer, brings about frequent buffer

overflow and packet losses. Furthermore, when incorrectly

inheriting congestion window from the previous ON period,

the concurrent TCP connections which transport the HTTP

traffic get substantially worse performances.

Existing data center network TCPs have developed miscel-

laneous schemes to alleviate congestion of concurrent TCP

flows. When transferring HTTP traffic, however, they share a

same feature: inheriting congestion window from the previous

ON period. Based on our empirical results in Section II, the

TCP protocol cannot cope with the situation of concurrent

HTTP connections. Under such a situation, the switch buffer

2016 IEEE 36th International Conference on Distributed Computing Systems

1063-6927/16 $31.00 © 2016 IEEE

DOI 10.1109/ICDCS.2016.72

98

easily suffers frequent overflows, resulting in TCP timeout and

throughput collapse.
In this work, based on the typical ON/OFF HTTP workload,

we emphatically study the transmission performance of per-

sistent TCP connections. We reveal that the TCP’s aggressive

behavior in increasing congestion window causes TCP time-

out and throughput collapse for the highly concurrent HTTP

traffic. This is because TCP blindly inherits the congestion

window from the previous ON period, even the congestion

state has significantly changed during the OFF period.
Specifically, to solve this problem, we design a novel win-

dow inheritance mechanism, in which the congestion window

size in the pervious ON period is conditionally reused to

control the risk of heavy congestion. To smooth the switch

queue leap caused by the concurrent response transfers, our

design also regulates the congestion window size according to

the end-to-end delay. The contributions are as follows:
• We provide the first extensive study to exploit the root

cause of performance degradation of highly concurrent HTTP

connections. We reveal the impact of HTTP’s ON/OFF style

on TCP protocol and demonstrate experimentally why the

congestion window of the persistent TCP flow should be

elaborately controlled at the beginning of ON period.
• We propose a new transport protocol, TCP-TRIM, which

employs probe packets to detect congestion state and smooth

the aggressive increasing of congestion window at end hosts.

By selectively inheriting the window size and maintaining

the queue delay near a target value, TCP-TRIM avoids the

TCP timeout and throughput collapse. Based on the theoretical

analysis of steady state behavior, we also give a guideline for

choosing the threshold to reduce congestion window in TCP-

TRIM.
• We evaluate the performance of TCP-TRIM by using

at-scale NS2 [11] simulations, and also on a small-scale

testbed. The results show that, under highly concurrent HTTP

connections, TCP-TRIM effectively avoids the TCP timeout

and brings remarkable revenue (i.e., up to 80%) in reducing

the average completion time of HTTP response.
The remainder of the paper is organized as follows. The

design motivation of TCP-TRIM is presented in Section II. In

Section III, we describe the details of TCP-TRIM and present

the model analysis. We evaluate the performance of TCP-

TRIM on NS2 and real testbed in Section IV. The related

works are discussed in Section V. At last, we make conclusion

in Section VI.

II. MOTIVATION

In this section, we present empirical studies to demonstrate

the ON/OFF pattern of HTTP traffic, and show it is very

common in the modern data centers with highly concurrent

HTTP connections. Then, we analyze the root reason why

current TCP protocol fails to provide satisfactory performance.

Finally, we present the design objectives.

A. ON/OFF Pattern in HTTP Traffic
To provide high-quality HTTP service, data center hosts

plenty of servers that play different roles in generating objects,

such as images, news, videos, and advertisements. When the

end users send their requests to an assigned server (i.e., front-

end server) [8], it parses the requests and invokes the back-

end servers to generate the responses. Then these responses

are returned to the front-end server and finally shown in front

of the end user [3], [7].

For comprehensively understanding the characteristic of

HTTP traffic, we recorded the real workload of data center

hosted in university campus. From the 2 TB trace data, we

find that the HTTP traffic presents the ON/OFF pattern, which

is exactly consistent with the statements in [1]. To describe the

ON/OFF pattern more clearly, we define a packet train (PT)

as a burst of packets on a HTTP connection from the identical

source to the identical destination. If the time interval between

two packets exceeds an inter-train gap, they belong to different

trains [12].

Fig. 1. Understand the ”Packet Train”.

(a) PT size (KB) (b) PT interval (μs)

Fig. 2. CDFs of PT size and interval.

We trace the HTTP traffic data generated by a selected

web server and plot the packet sequence number in Fig. 1.

It is shown that different sizes of packet trains are sent

by the web server intermittently. Since the packets of long

packet train (LPT) are transferred almost in a stream way,

it contributes much more to the increase of packet sequence

number compared to short packet train (SPT). On the contrary,

SPT often shows the behaviors of burst and intermittence.

Moreover, the number of packets in each SPT varies from a

few to dozens, while LPT carries nearly one hundred packets

or more. We also measure the data size and inter-train gap of

all PTs in the traffic trace. As shown in Fig. 2(a), the data

size of PT varies from 0.5 KB to 256 KB, and about 70% is

between 4 KB to 128 KB. The proportion of tiny PTs (i.e., �
4 KB) is lower than 20%, while 10% is larger than 128 KB.

On the other hand, as shown in Fig. 2(b), the inter-train gap

lasts from hundreds of microseconds to several milliseconds.

B. Performance Impairments

HTTP connection builds up persistent TCP flow to reduce

the overhead from frequent three-way handshakes. However,

99

this delicate configuration combined with the concurrent data

transfer potentially impairs the transmission performance. We

give the detailed description as following.

1) Congestion Window of Persistent TCP Connection: con-

sidering the frequent request/response interactions of HTTP,

if it has to build a new TCP connection for each response,

the massive operation for connection setup and teardown will

waste the network bandwidth and system resources. Thus, the

prevalent versions, such as HTTP 1.0 and 1.1, all build up

single persistent TCP flow and enable multiple requests and

responses to share such single flow [9]. Although the transfer

efficiency is improved, there also comes another issue: since

in HTTP each PT starts with the window size inherited from

the previous PT, once a PT with plenty of packets arrives

with inheriting a large congestion window, massive packets

will be instantaneously injected into the bottleneck link thus

potentially generating heavy congestion.

�
�
�
�
�
�
�	
�
�

�
	�
�
�
�

�
�
�
�
�
��

�	��

�

�

�
�
�
��

�
�
�

�
�

�

�
�
�
�

�

�� �����

�

�

�

�

�
����	���
������

�
�������
������

 !"�

 !"#

(a) Single connection

�

�
�
�
��

�
�
�

�

�
�
�
�

��
�
�

������		�
������

��
�����
������

�	���� �����

�

�

�

�

�
�
�
�
�
�
�	
�
�
��
	�

�
�
��
�
�
�

�
��

 !"�

 !"#

(b) Multiple connections

Fig. 3. Transferring PTs on persistent TCP connections.

This issue is visually described in Fig. 3. Wherein ”ON”

means HTTP connection is active, while there is no traffic

during OFF period. AB (measured in packets) indicates the

current available bandwidth. If the total number of flying

packets is larger than AB, packet loss will happen. Fig. 3(a)

shows the window evolution of connection 1 on the bottleneck

link. During the first ON period of connection 1, no congestion

happens because its congestion window, w1, is never more

than AB. Thus, at the end of the first ON period, w1 expands

from 5 to 6 and is maintained until the second ON period

starts. However, during the OFF period of connection 1, some

incoming traffic from other new connections (are not shown

in Fig. 3(a)) takes up some available bandwidth so that AB
decreases to 3. Unfortunately, this situation is not perceived by

connection 1, thereby at the beginning of its second ON period,

3 packets are dropped. When it comes to the case of multiple

connections, this impairment becomes severer. As shown in

Fig. 3(b), two coexisting connections cause all the packets in

the congestion window of connection 2 are dropped, resulting

in TCP timeout [13].

For further elaborating this impairment, we install the

synthetic traffic derived from our real trace data on a many-to-

one scenario built by NS2. Specifically, five servers connect

to a front-end server via a switch with 100 packets buffer

through five 1 Gbps links with 50 μs latency. Each server first

receives 200 requests, and then returns 200 responses from

0.1 s. Each response has the data size ranging from 2 KB to

10 KB, and the interval between two neighboring responses

is randomly generated based on 1 ms mean. After that, each

server sends a LPT with more than 128 KB data at 0.5 s.

All the connections run on TCP Reno and packet size is set

as 1460 bytes. Meanwhile, we keep the 5 TCP connections

throughout the whole transmission.

(a) Throughput (b) Congestion window

Fig. 4. Throughput and window size of connection 5.

We trace the test results and find that most of the connec-

tions involve the occurrence of TCP timeouts. To be specific,

except connection 1, the numbers of timeouts in connection

2, 3, 4, and 5 are 1, 2, 2, and 2, respectively. For simplicity,

we just select connection 5 to make a concrete analysis

of throughput and congestion window. From Fig. 4(a), we

observe that two TCP timeouts happen at about 0.5 s and 0.7 s,

hence the network efficiency is greatly degraded. For making

it clear whether the blind window inheritance is the culprit

of performance degradation, we plot the window evolution of

connection 5 in Fig. 4(b). Wherein the window size is close to

900 at 0.3 s, and kept until 0.5 s, which is the start time of LPT

transmission. Meanwhile, in our trace the inherited window

sizes in connection 1, 2, 3, and 4 all exceed 850 packets.

Obviously, such huge windows bring heavy congestion to the

bottleneck link, where the allowed number of flight packets is

at most 118 (the summation of bandwidth-delay product and

switch buffer size) in this scenario.

In essence, the data size of each response is too small to

generate packet losses, so the sender mistakenly believes that

the current congestion window is still small and will not bring

about congestion, thus continuously expanding its congestion

window. Once LPT arrives, the sender spontaneously inherits

the congestion window in the last ON period and sends

as much packets as possible in one RTT, thereby inducing

heavy congestion. In general, TCP sender immediately sends

a new packet once receiving a desired ACK. However, if this

consecutive process is broken by HTTP ON/OFF pattern, there

is no reason that the sender can still directly send data based

on the congestion window in the previous ON period.

2) Performance Impairment on Concurrent HTTP Connec-
tions: in commodity data centers, the communication pattern

of Partition/Aggregation is prevalent and plays an important

role for providing HTTP-based services. In this pattern, a

user request is first distributed to hundreds, even thousands

of servers to calculate responses, called Partition. Then these

responses are sent back to the aggregation servers at nearly the

same time, which is the Aggregation [3]. In the aggregation

100

phase, the response traffic is unpredictable and often bursts

in many-to-one way, potentially leading to abundant packet

losses and TCP timeouts.

For further illustrating this issue, we rebuild the previous

many-to-one scenario, and respectively start 0, 1 and 2 LPTs

from 0.1 s to the end. The other web servers concurrently burst

SPTs (each with 10 packets) at 0.3 s. The switch buffer size

is set to 100 packets, and the retransmission timeout (RTO)

is 200 milliseconds. We gradually change the number of SPT

servers, and use the average completion time (ACT) of PTs

as the performance metric.

(a) ACTs of concurrent SPTs (b) Min. & max. completion times

Fig. 5. Concurrency impairment.

Fig. 5(a) shows that the average completion time of SPTs

becomes larger with the increasing number of LPTs. Especial-

ly in the cases of 2 LPTs, ACTs become unacceptably high.

We record the minimum and maximum completion times as

shown in Fig. 5(b). It is clear that the maximum completion

time of SPT becomes higher as the number of concurrent

SPTs increases. Additionally, from the trace, we also find the

SPT with the maximum completion time experiences two TCP

timeouts when the number of SPTs exceeds 6.

C. Summary

The observation leads us to conclude that (i) the ON/OFF

pattern of HTTP traffic disturbs the increasing of TCP’s

congestion window, potentially triggering packet loss at the

beginning of ON period, and (ii) the transmission perfor-

mance becomes worse due to severe congestion in the highly

concurrent transfer of HTTP responses. These conclusions

motivated us to investigate a novel approach smoothing the

aggressive increasing of congestion window on persistent TCP

connection. In the rest of this paper, we present our TCP-TRIM

as well as a reference implementation in real testbed system.

III. TCP-TRIM

In this section, we firstly describe the design detail of

TCP-TRIM. Then, based on the theoretical analysis of the

steady state behavior, we give a guideline for determining the

threshold that is used for reducing congestion window in TCP-

TRIM.

A. Design Details

The design goal of TCP-TRIM is to tune the aggressive

TCP behavior for highly concurrent HTTP connections in data

center. To achieve this goal, however, TCP-TRIM faces three

key challenges that (i) TCP-TRIM should obtain the accurate

congestion level when HTTP enters into the ON period, (ii)

TCP-TRIM should smooth the expansion of the congestion

window, while ensuring high utilization of bottleneck link,

and (iii) be easy to be deployed without hardware refresh on

switch, because the current trend is to use cheap, Commercial

Off-the-Shelf (COTS) switches to construct large-scale data

center networks. In the following, we describe the design detail

of TCP-TRIM.
1) Detecting Inter-train Gap: when packet loss does not

happen, the arrival of an ACK immediately triggers the send-

ing of next data packet. Hence the time interval between any

two neighboring packets in a PT is supposed to be less than the

round trip time. Based on this consideration, TCP-TRIM needs

to sense RTT for each packet, and considers the smoothed

RTT, which is calculated in Algorithm 2, as the inter-train gap.

As described in Algorithm 1, before sending a new packet, the

TCP-TRIM sender calculates the time interval ti between the

current time and the sending time of last packet. If ti is larger

than the smoothed RTT, the sender begins to detect congestion

and smooth the sending rate. Specifically, the sender records

the current size of congestion window cwnd and sets it to 2.

Then, only two packets are sent out in the current window and

are used as probe packets. Meanwhile, the sender pauses the

data transfer, waiting for ACKs of the two packets.

Algorithm 1 Inter-train gap detection

1: Before sending a new packet :

(not a retransmission packet)

2: if ti > smooth RTT then
3: Saving the accumulated window size;

4: cwnd ← 2;

5: Sending the probe packets in current window;

6: Suspending the packet transfer;

7: end if
8: Call Algorithm 2;

Note that we do not claim that our method can identify

whether a packet that will be sent belongs to a new PT. In

effect, TCP-TRIM determines if the probe packets should

be sent from the viewpoint of packet level. The reason is

that larger RTT may occur between two neighboring packets

that belong to one PT. However, if ti exceeds the smoothed

RTT during one packet train’s transfer, it indicates that the

connection is experiencing congestion. Under this situation, it

is still necessary to redetect congestion and smooth sending

rate.
2) Tuning Congestion Window: for each arriving ACK,

TCP-TRIM measures the current RTT, and updates three

variables by the following operations: (i) updating min RTT ,

which is the link latency without switch queuing, (ii) deter-

mining the RTT threshold K based on min RTT , and (iii)

calculating smooth RTT , which is a smooth value of the

current RTT. These variables are kept by the TCP connection

hosted by the sender. TCP-TRIM works as following two

cases, which is shown in Algorithm 2.

If the current ACK belongs to the probe packet, the sender

begins to smooth the increasing of congestion window. If any

ACK of probe packet does not come back in a smoothed RTT,

101

Algorithm 2 ACK action

1: For each arriving ACK :

2: smooth RTT ← (1− α)smooth RTT + αRTT ;

3: if RTT < min RTT then
4: min RTT ← RTT ;

5: Update K;

6: end if
7: if the current ACK belongs to the probe packet then
8: if it arrives in a smooth RTT then
9: cwnd ← s cwnd(1− probe RTT−min RTT

min RTT);
10: Resume packet transfer;

11: else
12: cwnd ← 2;

13: Resume packet transfer;

14: end if
15: else
16: if RTT � K then
17: ep ← RTT−K

RTT ;

18: cwnd ← cwnd(1− ep
2);

19: end if
20: end if

the sender immediately sets the window size to 2, which is

the default value of minimum congestion window in TCP.

Otherwise, the sender tunes the current window size by

cwnd = s cwnd(1− probe RTT −min RTT

min RTT
), (1)

where s cwnd is the saved window size and probe RTT is

the average value of the probe packets. After this operation, the

sender restarts the transfer of remained packets based on the

tuned window size. Some previous works, such as [13], just

send the new PT with congestion window size 2 to minimizes

the congestion possibility. However, this conservative method

may underutilize the bottleneck link if the network has enough

capacity to accommodate a large window size.

If the arriving ACK does not belong to the probe pack-

ets, the sender enters the queuing control phase. TCP-TRIM

measures the current RTT to monitor the real-time congestion

level. In our design, when the RTT exceeds the predefined

threshold K, it is convinced that packets have been buffered

in the switch queue. The proportion (denoted by ep) of the

exceeded part to the current RTT represents the congestion

level, which is calculated by

ep =
RTT −K

RTT
. (2)

And then we approximately deduce that in the current

congestion window there are ep×cwnd packets that should not

be ejected into the bottleneck link. However, in the high speed

DCN where only a small number of flows share the switch

buffer [3], directly using (1 − ep) × cwnd to shrink window

size may cause a large mismatch between the input rate to the

link and the available capacity, resulting in buffer underflows

and loss of throughput. Based on this consideration, we borrow

the idea from DCTCP [3] and stipulate that the window

reduction of TCP-TRIM can not be more aggressive than that

of the legacy TCP. Hence, when the sender finds its RTT is

larger than a predefined threshold K, its congestion window

is adjusted to

cwnd = cwnd(1− ep

2
). (3)

B. Guideline for Choosing K

TCP-TRIM uses threshold K to calculate the sending rate

and then controls the queue length on switch buffer. It is a

challenge to achieve both the high unitization of bottleneck

link and minimum queue length on switch buffer. In this

subsection, we introduce how to determine the threshold K
by analyzing the steady state behavior of TCP-TRIM.

Suppose that N persistent TCP connections are totally

synchronized, and maintained between N web servers and a

single front-end server. Each web server sends a single LPT

with infinite packets via the bottleneck link with capacity C
(in packets per second). The round trip time without queueing

between a server and the front-end host is D (measured in

seconds), and K is the RTT threshold for window back-off,

thus K −D represents the allowed queueing latency, then we

get the desired switch queue length Q by

Q = C(K −D). (4)

In the meantime, the number of packets that can be allowed

to stay in the network is CK, and for each synchronized PT

the allowed maximum value of window size is CK/N .

Assume that at time t, the switch queue length is just equal

to Q, and at the same time each PT is in the ith round’s

transfer, then we get the window size of each PT in the ith
round by

W(i) =
CK

N
. (5)

Since the switch queue length does not exceed Q at the ith
round, all PTs increase their congestion window in the (i+1)st

round to

W(i+1) =
CK

N
+ 1. (6)

However, the queue length will exceed Q in the (i + 1)st

RTT, with the result that each connection perceives the (i+1)st

RTT is greater than K and starts to decrease the sending rate.

Then the maximum queue length Qmax is

Qmax = C(K −D) +N. (7)

When the queue length reaches Qmax in the (i+1)st RTT,

we calculate the RTT value of the jth PT as

RTT(i+1)(j) = K +
j

C
. (8)

From Equations (2) and (3), we also get the current con-

gestion level by

ep(i+1)(j) =
j

CK + j
. (9)

Thus the total sum of window decrement Δcwnd(i+1)(j)

for all the PTs before the (i+ 2)nd round’s transfer is

102

N∑
j=1

Δcwnd(i+1)(j) =

(
CK +N

2N

) N∑
j=1

j

CK + j
. (10)

For guaranteeing the 100% utilization of bottleneck link,

the switch queue length should never be less than 0, then we

have

Qmax −
N∑
j=1

Δcwnd(i+1)(j) > 0. (11)

By substituting Equations (7) into (11), we get

C (K −D) +N −
(
CK +N

2N

) N∑
j=1

j

CK + j
> 0. (12)

Wherein
∑N

j=1 j/(CK + j) could be approximately con-

sidered as∫ N

1

j

CK + j
dj =N − 1 + CK ln

CK + 1

CK +N
. (13)

With Equation (13) and Equation (12), we get

C (K −D) +N >(
CK +N

2N

)(
N − 1 + CK ln

CK + 1

CK +N

)
.

(14)

Since ln(CK+1)/(CK+N) < 0, Equation (13) is smaller

than N − 1. Then we just need to let

C (K −D) +N >

(
CK +N

2N

)
(N − 1) . (15)

Meanwhile, we simplify it and get

K >
2ND

N + 1
− N

C
. (16)

By analyzing the right part of Equation (16), we could create

a function about N (N > 0) by

F (N) =
2ND

N + 1
− N

C
, (17)

where D and C are two constants, and N is the independent

variable. It is intuitively plausible that 2ND/(N +1) has the

function limit 2D and the limit of N/C is +∞, hence F (N)
should has an upper bounder and be a convex function. Then

we get

dF (N)

dN
=

2D − N2

C − 2N
C − 1

C

(N + 1)
2 . (18)

To judge whether F (N) has a stationary point, we also get

N2

C
+

2N

C
+

1

C
− 2D = 0. (19)

Since 8D/C > 0, Equation (19) has a positive solution and

F (N) has a stationary point. Next, the second derivative of

F (N) can be represented by

d(dF (N))

dN
=

−4D
(N + 1)3

. (20)

Thereby F (N) has a maximum value for the reason that

Equation (20) is less than 0. Therefore, through solving

Equation (19), we obtain the maximum value of F (N) and

get

F (N) �

(√
2CD − 1

)2

C
. (21)

Clearly, if 100% bottleneck link utilization is supposed to

be guaranteed at any time, K should be higher than F (N).
Meanwhile, K should also be larger than or equal to D.

Therefore, we get K as

K � max

⎛
⎜⎝
(√

2CD − 1
)2

C
,D

⎞
⎟⎠ . (22)

C. Implementation

We implement the design of TCP-TRIM which controls the

congestion window at endpoint through RTT measurement.

There are three key steps in our design. The first one is RTT

measurement, which requires server to provide high-resolution

timer (i.e., up to microsecond level) at high-speed and low-

latency data center network. Fortunately, the option of high-

resolution timer has been provided in the Linux kernel 2.6 and

later version. We simply use this timer to obtain accurate RTT.

The second one is the calculated window size will be very

small or even negative if the measured RTT is very large, i.e.,

larger than 2×min RTT . In TCP-TRIM, we set the minimum

value of congestion window to 2, as the same value of that in

legacy TCP protocols.

The third issue is the newly arrived PT may be extreme

small, i.e., one or two packets. In our implementation, if the

outgoing PT has only 1 packet or 2 packets, the TCP-TRIM

sender will still send it or them to detect congestion and make

the congestion window regulation based on Equation (1).

IV. PERFORMANCE EVALUATION

In this section, we first run simulation tests to explain how

TCP-TRIM avoids the performance impairments described in

Section 2.2. Then we examine the basic properties of the TCP-

TRIM algorithm, such as switch queue length, throughput,

convergence, and fairness. Next, we make performance com-

parison between TCP-TRIM and two data center transport

protocols, DCTCP and L2DCT. Finally, the implementations

on the real testbed are given to evaluate the TCP-TRIM

performance in the real web service scenario. Unless otherwise

noted, K is set according to Equation (22), and α, the weight

for the new RTT sample during the smoothing process, is set

to 0.25 throughout all the tests.

A. Impairments Test

1) Window Smoothing on HTTP Connections: in this sec-

tion, we examine the modified bandwidth detection behaviour

of TCP-TRIM. The detailed scenario has been described in

section II.B.

From Fig. 6(a), we observe that there is only one spike

and the throughput of bottleneck link rapidly reaches about

800 Mbps at 0.5 s. None of HTTP connections experiences

TCP timeouts, and they all finish before 0.6 s. Our trace also

103

(a) Total throughput (b) Window evolution

Fig. 6. TCP-TRIM’s impairment test.

confirms this because the recorded queue length never exceeds

20 packets, which is much less than the 100 packet switch

buffer, thus no packet is dropped. Additionally, the window

evolution shown in Fig. 6(b) also helps us understand why

TCP-TRIM performs better in controlling the HTTP traffic.

Specifically, TCP-TRIM strictly limits the window increase

during the 200 response transfers so that the window size

of each connection never exceeds 20 packets before 0.5 s.

When the LPT arrives, packet probing starts to work, and

each window size suddenly plummets to a very low value (2

packets). After that, the arriving ACKs of probe packets bring

the current congestion extent back to the senders, then they

tune their inherited window size to an appropriate value and

resume their remained data transfers.

Fig. 7. ACTs of SPTs with 2 LPTs.

2) Handling the Concurrent HTTP Connections: we repeat

the test in Fig. 5(a) to test the performance of TCP-TRIM

under concurrent HTTP connections. From Fig. 7, we observe

that the increase of the number of concurrent PTs does not

seriously impact the TCP-TRIM performance. The average

completion time (ACT) in each case is only several millisec-

onds, while TCP’s ACT is up to two orders of magnitude

except the case of single SPT. The reason is that TCP-TRIM

employs delay-based congestion detection to make back-off

timely, thus taking up small footprint in the switch buffer and

remaining sufficient unused buffer space to absorb the data

burst that comes from the high concurrency. Consequently,

packet loss and TCP timeout are greatly alleviated, thus

helping PTs to obtain less completion times.
Next, to test TCP-TRIM’s performance under large-scale

HTTP concurrency, we create a simulated network topology

as shown in Fig 8(a). Wherein each switch links to 42 servers,

and a single front-end server connects with these switches

via a fabric switch. All the links have 1 Gbps bandwidth

and 20 μs latency, while the cable nearest the front-end has

10 Gbps and 10 μs latency. Within each switch, there are 2

servers maintain two LPTs running throughout the test, and the

remained servers transfer the SPTs in the 0.5 s time interval

with the uniform and exponential distribution respectively.

The destination of all the packets is the front-end server, and

the size of PT is determined from the proportion shown in

Fig. 2(a). We focus on the overall performance of SPTs since

the throughput collapse of LPTs is alleviated by setting a

smaller TCP timeout value (20 ms in our tests) as default.

During the test, the number of switches at the second level

varies from 5 to 25, hence the total number of servers varies

from 210 to 1050 accordingly. Each test case is repeated for

100 times to calculate the ACT of SPTs.

��������	

�����

�����

�����

�������

�������

�����

(a) Large scale test topology (b) ACTs of SPTs.

Fig. 8. Large scale scenario.

In Fig 8(b), although both protocols obtain small ACT

when the number of web servers is less than 630, TCP-TRIM

still reduces the ACT of TCP by up to 80%. Under high

concurrency, ACT becomes larger. However, even when the

number of web servers exceeds 840, the revenue coming from

TCP-TRIM is still about 50%.

B. TCP-TRIM Properties

For evaluating the particular aspects of TCP-TRIM perfor-

mance, we set up a simulation scenario as following. Multiple

servers connect to a front-end server via a switch with 100

packet buffer. All the links are 1 Gbps with 50 μs latency.

The servers are the senders, while the front-end server is the

receiver. The switch operates in standard drop-tail mode.

Queue length: to find out whether TCP-TRIM can effec-

tively control the switch queue length, five servers respectively

establish 5 persistent connections to the front-end server from

0.1 s to 0.9 s.

From Fig. 9(a), we observe that the saw-tooth behavior of

queue length is obvious. The TCP queue frequently touches the

upper boundary of switch buffer, which implies some packets

are dropped and TCP timeouts may come together as well.

In contrast, TCP-TRIM maintains the stable and small queue

length.

Fig. 9(b) shows the average queue length (AQL) under

different number of concurrent PTs. To avoid the impact of

TCP timeout, we set RTO at 1 ms to reduce the pause time.

From the results, we observe that AQLs of both TCP and TCP-

TRIM show a rising trend as the number of concurrent PTs

increases.

However, AQL of TCP is much higher than that of TCP-

TRIM throughout all the cases. To illustrate the revenue from

TCP-TRIM in controlling packet loss, we also record the num-

ber of dropped packets, as shown in Fig. 9(c). Overall, the drop

104

amount of TCP becomes larger as the number of concurrent

PTs increases, while TCP-TRIM does not experience packet

loss and TCP timeout at all.

Goodput of the bottleneck link: from Fig. 9(d), we observe

that TCP-TRIM achieves higher goodput than that of TCP

for almost all the cases, and bottleneck link utilization is

nearly 98% as well. Meanwhile, the almost full bottleneck

link utilization in turn testifies the analysis of K configuration

described in Section III.B.

(a) Switch queue with 5 LPTs (b) Average queue length

(c) Dropped packet number (d) Goodput of the bottleneck link

Fig. 9. TCP-TRIM properties.

Fairness and convergence: in order to test if TCP-TRIM

can quickly converge to the fair share, six servers are linked to

a switch with 100 packet buffer. The link between the receiver

(a selected server acts as the front-end) and the switch is with

1 Gbps capacity and 50 μs latency, while the remained links

are with 1.1 Gbps and the same latency. In addition, 5 TCP

connections are set up before the data transmission happens,

and they are kept throughout the whole test. From 0.1 s, we

start to send a LPT and then sequentially begin to send other

4 LPTs with 2 s time interval. From 12.1 s, we stop these

LPTs one by one using the same interval. The throughputs of

connections are depicted in Fig. 10.

(a) TCP (b) TCP-TRIM

Fig. 10. Convergence test (”c1, c2...” means ”connection 1, connection 2...”).

From the results, we can observe that TCP-TRIM benefits

a lot from its better queue control. Altering the intensity of

input traffic does not greatly disorganize the bandwidth share

of TCP-TRIM. Consequently, each of the five connections

converges to their fair share quickly. For TCP, although their

throughputs are approximately fair on average, the conver-

gence process shows large variation.

Multi-hop networks: to evaluate TCP-TRIM’s performance

in a multi-hop, multi-bottleneck environment, we build up a

simulated network whose topology is shown in Fig. 11(a).

Both group A and B have 10 senders, and they all send LPTs

to the front-end server. Meanwhile, each sender in group C

also sends a LPT to an receiver selected from the group D.

There are two bottlenecks in this topology: both the 10 Gbps

link between switch 1 and switch 2 and the 10 Gbps link

between switch 2 and the front-end server are oversubscribed.

Except the 2 bottleneck links, the other links are with 1

Gbps bandwidth. The PTs from group A go through all the

bottlenecks.

The results are shown in Fig. 11(b). With TCP-TRIM, each

server in group A obtains 342.7 Mbps and group B obtains 638

Mbps throughput, while each group C sender gets about 318

Mbps on average. On the contrary, TCP performs a little worse

(259 Mbps, 471 Mbps, and 233 Mbps, respectively), frequent

buffer overflows cause plenty of drops and TCP timeouts for

some of the TCP connections, which finally leads to the lower

throughputs.

��������	

�����

���������

	
�������

���������

	
�������

���������

�
�������
���������

�
����������

	
����� 	�����

�
�
��
�
�
�	 ��������

(a) Multi-hop topology (b) Throughput of each sender

Fig. 11. Multi-hop scenario.

C. Comparing with the State-of-art Data Center Protocols

To further understand the performance of TCP-TRIM in

typical data center scenario, we set up the popular fat-tree

topology network [14], and select the recently proposed well-

known transport protocols in data center network, DCTCP and

L2DCT, to make the comprehensive performance comparison.

The parameter settings in DCTCP and L2DCT are in line with

[3] and [16] respectively.

In this scenario, each server totally sends 1 MB data on a

persistent HTTP connection to a randomly selected sink server

which acts as the front-end. The 1 MB data are artificially

divided into some small objectives (from 2 KB to 6 KB) and

a big one (the remained data) in advance. Small objectives start

at 0.1 s, while the big one is sent from 0.5 s. We calculate

the mean of completion times of all the servers and also give

the maximum sample value in different network scale (pod

number is from 4 to 10). The link bandwidth and switch buffer

size are set as 10 Gbps and 350 KB respectively.

Fig. 12 shows that TCP always gets the worst performance

in all cases. As the network scales up and more workload

involves in, the tail completion times of TCP rise sharply.

On the other hand, other schemes perform better, either in

getting small mean completion time or in cutting the tail.

DCTCP employs Explicit Congestion Notification (ECN) to

control the switch queue length thus avoiding packet loss

and TCP timeout. L2DCT still use ECN, and also weights

105

Fig. 12. Mean and maximum completion times in 10 Gbps fat-tree network.

TABLE I
THE NUMBER OF TIMEOUTS IN EACH PROTOCOL.

Pod number TCP DCTCP L2DCT TCP-TRIM

4 13 9 9 8

6 85 75 71 39

8 452 440 274 141

10 1738 859 493 285

flow to further smooth the increase in congestion window.

However, just like TCP, both of the two protocols are unaware

of the problem of window inheritance on persistent HTTP

connection thus failing to actively limit the expansions of

their windows. As a whole, ascribing to the moderate window

inheritance and the timely delay-based queue control, TCP-

TRIM performs the best across all the test cases, and the

revenue is more significant as the number of pod increases.

For further testifying our observations, we also record the total

number of timeouts of each protocol in each test case. In Table

I, TCP still experiences the largest number of timeout events,

and is followed by DCTCP and L2DCT. TCP-TRIM always

gets the least timeouts, especially when pod number is 10, the

improved ratio comparing to TCP is up to 80%.

D. Real Implementation

In this section, we use several DELL OptiPlex 3010 Desktop

machines, which act as the back-end servers, to test the per-

formance of TCP-TRIM. These machines connect to the front-

end server (CPU: Intel XEON E5-2650, MEMORY: 24G) via

a switch with 100 Mbps links and 1 Gbps links, respectively.

The kernel patch for supporting TCP-TRIM is pre-installed

into all the servers. In the first real implementation, we use

100 Mbps links, and let two DELL machines firstly send 2

large files to the front-end persistently. After that, the third one

sends 100 responses to the front-end. The data size of each

response is randomly generated from the same mean size with

10% variation. In addition, we change the mean response size

of each test case from 32 KB to 1 MB. In each test case, we

record the completion time of each response and calculate the

average response completion time (ARCT).

From Fig. 13(a), we observe that the ARCTs in CUBIC and

TCP-TRIM become larger as the mean response size increases.

By contrast, however, the increasing trend of ARCTs in TCP-

TRIM is more gentle, and with the help of TCP-TRIM,

the response transfer finishes more quickly as well. TCP-

TRIM brings revenues to all the cases in different degree.

Furthermore, the larger the response, the larger the revenue.

(a) ARCTs (b) CUBIC

(c) TCP Reno (d) TCP-TRIM

(e) The CDF of response completion time

Fig. 13. The results of real testbed.

Next, we buildup a simple web service scenario, in which

4 DELL machines send altogether 4000 responses to the

front-end server via five 1 Gbps links. The distributions of

response size and time interval are totally in accordance with

the description in Fig. 2. We respectively run the test with

using CUBIC, TCP Reno and TCP-TRIM, and record the

completion time of each response. Then, we pick out the

completion time samples of responses whose sizes are from 64

KB to 256 KB, and show them in Fig. 13(b), Fig. 13(c), and

Fig. 13(d). It is clear that all the samples in TCP-TRIM never

exceed 25 ms, while in the other two protocols, quite a few

samples are higher than 50 ms, and some of them even reach

to 250 ms. This indicates TCP-TRIM could get smaller ARCT.

For further testifying this observation, in Fig. 13(e), we give

the distribution of the completion times of all the responses

for each protocol. Again, since nearly 99% of the response

completion times is below 25 ms, TCP-TRIM performs the

best, thus bringing noticeable improvements in the reductions

of ARCT and tail latency.

106

V. RELATED WORK

The enhanced TCP protocols can be classified into two

categories: pure end-to-end ones and explicit feedback based

ones. The explicit feedback based protocols can provide more

accurate network congestion information, such as [3], [15],

[16], and [17] etc., while at the same time facing the appli-

cability problem. On the other hand, the popular end-to-end

policies in diverse network environments can also be divided

into two categories: delay-based congestion control [20], [21],

[22], and [23] and packet loss-based congestion control. The

latter performs by considering packet loss only, while the

former attempts to avoid congestion based on variations in

RTT.

In the literature of data center transport mechanisms, many

recent schemes try to deal with the highly concurrent commu-

nication. Data Center TCP (DCTCP) [3] leverages Explicit

Congestion Notification (ECN) to keep the switch queue

length around a given threshold thus alleviating the packet

losses and TCP timeouts. However, the practicability is not

satisfactory because its implementation relies on whether the

switch supports ECN. D2TCP [15] is proposed based on

DCTCP. It considers both the congestion control and deadline

requirements by elegantly adjusting the extent of window de-

creasing. When congestion occurs, far-deadline flows release

some bandwidth to near-deadline flows, hence more flows

can meet their deadlines. Nonetheless, just like DCTCP, the

ECN machinery is also necessary. L2DCT [16] still follows the

properties of DCTCP in concurrency control while introduces

the Least Attained Service (LAS) scheduling at the sender.

Besides, in order to solve the incast problem [18], [19], J.

Zhang et al. proposes GIP, which starts the transfer of each

stripe unit in a TCP flow with window size 2 to minimize

packet loss, and also redundantly transmit the last packet of

each stripe unit to further alleviate TCP timeout [13]. However,

we show that the bottleneck link would be underutilized if

the network capacity is actually large enough to accommodate

each flow to start with a large congestion window.

As to the up-to-date delay-based schemes in data center

network, both [22] and [23] have experimentally demonstrated

that measuring simple packet delay at host is an effective

way to obtain the real-time congestion level. Hence they all

proposed their own congestion control methods that exploit

latency-based congestion feedback to keep the delay low while

delivering high throughput.

Overall, to our best knowledge, none of the above works

specially focus on handling the improper congestion window

evolution on concurrent HTTP connections, which is just the

goal of our work.

VI. CONCLUSION

We design and implement TCP-TRIM, a transmission con-

trol protocol for HTTP application scenario. By using probe

packets and delay-based congestion control, TCP-TRIM great-

ly improves the transmission performance of concurrent HTTP

traffic. Besides, TCP-TRIM is able to well control the switch

queue length thus avoiding packet loss and TCP timeout

without any hardware refresh. By using at-scale simulations

and testbed implementations, we show that TCP-TRIM has

better performance (up to 80% reduction in ARCT) than TCP.

Future work is the performance evaluation in a large-scale

testbed.

ACKNOWLEDGMENT

This work is supported by the National Natural Sci-

ence Foundation of China (61572530, 61502539, 61402541,

61462007 and 61420106009).

REFERENCES

[1] T. Benson, A. Akella, and D. Maltz, Network Traffic Characteristics of
Data Centers in the Wild, in Proc. IMC, 2010.

[2] S. Kandula, S. Sengupta, A. Greenberg, P. Patel, and R. Chaiken, The
Nature of Datacenter Traffic: Measurements & Analysis, in Proc. IMC,
2009.

[3] M. Alizadeh, A. Greenberg, D. Maltz, J. Padhye, P. Patel, B. Prabhakar, S.
Sengupta, and M. Sridharan, Data Center TCP (DCTCP), in Proc. ACM
SIGCOMM, 2010.

[4] A. Greenberg, J.R. Hamilton, N. Jain, S. Kandula, C. Kim, P. Lahiri, D.
A. Maltz, P. Patel, and S. Sengupta, VL2: A Scalable and Flexible Data
Center Network, in Proc. ACM SIGCOMM, 2009.

[5] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica, Managing
Data Transfers in Computer Clusters with Orchestra, in Proc. ACM
SIGCOMM, 2011.

[6] C. Joachim, ”HTTP/TCP connection and flow characteristics,” Perfor-
mance Evaluation, vol. 42, no. 2, pp. 149-162, 2000.

[7] D. Ersoz, M. S. Yousif, and C. R. Das, Characterizing network traffic in
a cluster-based, multi-tier data center, in Proc. IEEE ICDCS, 2007.

[8] Y. Chen, R. Mahajan, B. Sridharan, and Z. Zhang, A Provider-side View
of Web Search Response Time, in Proc. ACM SIGCOMM, 2013.

[9] J. J. Lee and M. Gupta, A new traffic model for current user web browsing
behavior, in Proc. Intel corporation, 2007.

[10] H. Choi and J. O. Limb, A behavioral model of web traffic, in Proc.
IEEE ICNP, 1999.

[11] The Network Simulator–ns-2, http://www.isi.edu/nsnam/ns, 2014.
[12] R. Jain and S. Routhier, ”Packet Trains-Measurements and a New

Model for Computer Network Traffic,” IEEE Journal of Selected Areas
in Communications, vol. SAC-4, no. 6, pp. 986-995, Sept. 1986.

[13] J. Zhang, F. Ren, L. Tang and C. Lin, Taming TCP Incast Throughput
Collapse in Data Center Networks, in Proc. IEEE ICNP, 2013.

[14] Y. Zhang, and N. Ansari, On Architecture Design, Congestion No-
tification, TCP Incast and Power Consumption in Data Centers, IEEE
Communications Surveys & Tutorials, vol. 15, no. 1, pp. 39-64, First
quarter 2013.

[15] B. Vamanan, J. Hasan, and T. N. Vijaykumar, Deadline-Aware Datacen-
ter TCP (D2TCP), in Proc. ACM SIGCOMM, 2012,

[16] A. Munir, I. A. Uzmi, A. Mushtaq, S. N. Ismail, M. S. Iqbal, B.
Khan, Minimizing flow completion time in data centers, in Proc. IEEE
INFOCOM, 2013.

[17] T. Zhang, J. Wang, J. Huang, Y. Huang, J. Chen, and Y. Pan, ”Adaptive-
Acceleration Data Center TCP,” IEEE Trans. Comput., vol. 64, no. 6, pp.
1522-1533, June. 2015.

[18] P. Cheng, F. Ren, R. Shu, and C. Lin, Catch the whole lot in an action:
Rapid precise packet loss notification in data centers, in Proc. USENIX
NSDI, 2014.

[19] J. Huang, Y. Huang, J. Wang, and T. He, Packet Slicing for Highly
Concurrent TCPs in Data Center Networks with COTS Switches, in Proc.
IEEE ICNP, 2015.

[20] R. Jain, ”A delay-based approach for congestion avoidance in intercon-
nected heterogeneous computer networks,” ACM Computer Communica-
tion Review, vol. 19, no. 5, pp. 56-71, October. 1989.

[21] L. Brakmo, S. OMalley, and L. Peterson, TCP Vegas: New techniques
for congestion detection and avoidance, in Proc. ACM SIGCOMM, 1994.

[22] R. Mittal, V. T. Lam, N. Dukkipati, E. Blem, H. Wassel, M. Ghobadi,
A. Vahdat, Y. Wang, D. Wetherall, and D. Zats, TIMELY: RTT-based
Congestion Control for the Datacenter, in Proc. ACM SIGCOMM, 2015.

[23] C Lee, C Park, K Jang, S Moon, and D Han, Accurate Latency-based
Congestion Feedback for Datacenters, in Proc. USENIX ATC, 2015.

107

