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By adopting Adomian decomposition method, the fractional-order simplified Lorenz system is
solved and implemented on a digital signal processor (DSP). The Lyapunov exponent (LE)
spectra of the system is calculated based on QR-factorization, and it accords well with the cor-
responding bifurcation diagrams. We analyze the influence of the parameter and the fractional
derivative order on the system characteristics by color maximum LE (LEmax) and chaos dia-
grams. It is found that the smaller the order is, the larger the LEmax is. The iteration step size
also affects the lowest order at which the chaos exists. Further, we implement the fractional-order
simplified Lorenz system on a DSP platform. The phase portraits generated on DSP are consis-
tent with the results that were obtained by computer simulations. It lays a good foundation for
applications of the fractional-order chaotic systems.

Keywords : Fractional calculus; simplified Lorenz system; Adomian decomposition method; Lya-
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1. Introduction

Numerical solution method is one of the criti-
cal problems in theoretical research and in the
applications of fractional-order chaotic systems. At
present, three methods were mainly used in the
previous literature: frequency domain approxima-
tion [Sun et al., 1984], predictor-corrector method
(PCM) [Diethelm, 1997], and Adomian decompo-
sition method (ADM) [Adomian, 1984]. The step
size of order for frequency domain approximation is
too large, and its precision is limited. Whether this
method accurately reflects the chaos characteristics

of a fractional-order nonlinear system was ques-
tioned in some literature [Tavazoei & Haeri, 2007,
2008]. For PCM, one can obtain more accurate
results, and it is used to analyze the dynamical
characteristics of a fractional-order system when
the order changes continuously. But the calcula-
tion speed is very slow, and it consumes too much
computer resources. Thus, it is unsuitable for engi-
neering practice. Compared with the two solution
approaches, ADM is capable of dealing with linear
and nonlinear problems in time domain [Cafagna &
Grassi, 2008, 2009]. He et al. [2014] concluded the
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characteristics of this method, such as high accu-
racy, fast convergence and less computer resources
consumption, so ADM becomes one of the best can-
didate methods for solving fractional-order chaotic
system at present.

The Lyapunov exponent (LE) spectrum is one
of the effective methods in researching dynamical
characteristics of nonlinear systems, but calculating
the LE spectrum of a fractional-order chaotic sys-
tem is a challenging problem. Caponetto and Fazz-
ino [2013] employed ADM to simulate and analyze
fractional-order chaotic systems, but it only calcu-
lated its LE spectra with several different orders.
In fact, maximum LE (LEmax) diagram [Stegemann
et al., 2011; Xavier & Rech, 2010] and chaos dia-
gram [Salau & Ajide, 2012; Tao & Ue, 2014] are
better choices for analyzing the dynamical behav-
iors of chaotic systems by varying two parameters
simultaneously. In [Sun et al., 2010a], the dynami-
cal characteristics of the fractional-order simplified
Lorenz system were analyzed by adopting PCM. For
comparison, we solve and analyze the same system
by adopting ADM.

Fractional-order chaotic system applications
have been investigated in many fields, such as
nuclear magnetic resonance [Bhalekar et al., 2012],
cellular neural network [Çelik & Demir, 2010] and
secure communication [Kiani-B et al., 2009], and
some good results were obtained. Their realizations
depend on the software and hardware technologies
of signal processing. Digital signal processor (DSP)
is popularized in engineering because of its perfor-
mance and convenience in signal processing. So DSP
implementations of fractional-order chaotic systems
are very useful for their applications. To our knowl-
edge, fractional-order differentiators and integra-
tors were experimented on DSP by using frequency
domain approximation [Krishna, 2011], and integer-
order chaotic systems were realized and applied on
DSP in many fields [Rhouma & Belghith, 2011;
Hermassi et al., 2013]. However, DSP implementa-
tions of fractional-order chaotic systems were rarely
reported.

In this paper, we focus on solving and ana-
lyzing the fractional-order simplified Lorenz system
by adopting ADM and its implementation on DSP.
The paper is organized as follows. In Sec. 2, ADM
is introduced briefly, and the iterative algorithm of
the fractional-order simplified Lorenz system is pre-
sented. In Sec. 3, the dynamical characteristics of
this system are analyzed by LE spectra, bifurcation

diagrams and 0–1 test. Also, the color LEmax dia-
gram and chaos diagram are constructed. In Sec. 4,
the fractional-order chaotic system is realized on
DSP. Finally, we summarize the results and indi-
cate future directions.

2. Numerical Solution of
Fractional-Order Simplified
Lorenz System

2.1. Adomian decomposition
method

For a given fractional-order differential equation

∗Dq
t0x(t) = f(x(t)),

here x(t) = [x1(t), x2(t), . . . , xn(t)]T are variables,
and ∗Dq

t0 is the Caputo derivative operator of order
q(m − 1 < q ≤ m,m ∈ N) [Gorenflo & Mainardi,
1997]. To obtain the following initial value problem,
f(x(t)) is separated into three terms [Momani & Al-
Khaled, 2005; Daftardar-Gejji & Jafari, 2005],




∗Dq
t0x(t) = Lx(t) + Nx(t) + g(t)

x(k)(t+0 ) = bk, k = 0, . . . ,m − 1.
(1)

Here, L and N represent linear and nonlinear opera-
tors, respectively, and g(t)= [g1(t), g2(t), . . . , gn(t)]T

are constants for autonomous systems, and bk is a
specified constant. By applying the operator J q

t0
to both sides of Eq. (1), the following equation is
obtained [Shawagfeh, 2002]:

x = Jq
t0Lx + Jq

t0Nx + Jq
t0g

+
m−1∑
k=0

bk
(t − t0)k

k!
. (2)

Jq
t0 is Riemann–Liouville fractional integral opera-

tor of order q. For t ∈ [t0, t1], q ≥ 0, r ≥ 0, γ > −1
and real constant C, the fundamental properties of
the integral operator Jq

t0 are described as follows
[Gorenflo & Mainardi, 1997]:

Jq
t0(t − t0)γ =

Γ(γ + 1)
Γ(γ + 1 + q)

(t − t0)
γ+q, (3)

Jq
t0C =

C

Γ(q + 1)
(t − t0)

q, (4)

J q
t0J

r
t0x(t) = Jq+r

t0 x(t). (5)
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Based on ADM, the nonlinear terms of Eq. (2) are decomposed according to


Ai
j =

1
i!

[
di

dλi
N(νi

j(λ))
]

λ=0

νi
j(λ) =

i∑
k=0

(λ)kxk
j ,

(6)

where i = 0, 1, . . . ,∞; j = 1, . . . , n. Then the nonlinear terms are expressed as

Nx =
∞∑
i=0

Ai(x0,x1, . . . ,xi). (7)

So the solution of Eq. (1), x =
∑∞

i=0 xi is derived from


x0 = Jq
t0g +

m−1∑
k=0

bk
(t − t0)k

k!

x1 = Jq
t0Lx0 + Jq

t0A
0(x0)

x2 = Jq
t0Lx1 + Jq

t0A
1(x0,x1)

...

xi = Jq
t0Lxi−1 + Jq

t0A
i−1(x0,x1, . . . ,xi−1)

...

. (8)

2.2. Solution of the fractional-order simplified Lorenz system

The equation of the fractional-order simplified Lorenz system is


∗Dq
t0x = 10(y − x)

∗Dq
t0y = (24 − 4c)x − xz + cy

∗Dq
t0z = xy − 8

3
z,

(9)

where x, y, z are the state variables, and q(0 < q ≤ 1) is the order of fractional-order differential equation,
and c is the system parameter. According to Eqs. (3)–(5) and (8), the discrete iterative formula of the
system (9) is presented by



xm+1 = xm + 10(ym − xm)
hq

Γ(q + 1)
+ 10[(24 − 4c)xm + cym − 10(ym − xm)]

h2q

Γ(2q + 1)
+ · · ·

ym+1 = ym + [(24 − 4c)xm + cym − xmzm]
hq

Γ(q + 1)

+ {10(24 − 4c)(ym − xm) + c[(24 − 4c)xm + cym − xmzm] + · · ·} h2q

Γ(2q + 1)
+ · · ·

zm+1 = zm +
(

xmym − 8
3
zm

)
hq

Γ(q + 1)
+

{
−8

3

[
−8

3
zm + xmym

]
+ 10ym(ym − xm) + · · ·

}

× h2q

Γ(2q + 1)
+ · · · ,

(10)
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where h is iteration step size. Γ(·) is Gamma function. Considering the fast convergence of this method
[Abbaoui & Cherruault, 1994], we truncate the first seven terms of Eq. (10) in this paper. For the computer
simulation and DSP implementation, the iteration is expressed as Eqs. (11)–(18).


C10 = xm

C20 = ym

C30 = zm,

(11)




C11 = 10(C20 − C10)

C21 = (24 − 4c)C10 + cC20 − C10C30

C31 = −8
3
C30 + C10C20,

(12)




C12 = 10(C21 − C11)

C22 = (24 − 4c)C11 + cC21 − C11C30 − C10C31

C32 = −8
3
C31 + C11C20 + C10C21,

(13)




C13 = 10(C22 − C12)

C23 = (24 − 4c)C12 + cC22 − C12C30 − C11C31
Γ(2q + 1)
Γ2(q + 1)

− C10C32

C33 = −8
3
C32 + C12C20 + C11C21

Γ(2q + 1)
Γ2(q + 1)

+ C10C22,

(14)




C14 = 10(C23 − C13)

C24 = (24 − 4c)C13 + cC23 − C13C30 − (C12C31 + C11C32)

× Γ(3q + 1)
Γ(q + 1)Γ(2q + 1)

− C10C33

C34 = −8
3
C33 + C13C20 + (C12C21 + C11C22)

Γ(3q + 1)
Γ(q + 1)Γ(2q + 1)

+ C10C23,

(15)




C15 = 10(C24 − C14)

C25 = (24 − 4c)C14 + cC24 − C14C30 − (C13C31 + C11C33)
Γ(4q + 1)

Γ(q + 1)Γ(3q + 1)

−C12C32
Γ(4q + 1)
Γ2(2q + 1)

− C10C34

C35 = −8
3
C34 + C14C20 + (C13C21 + C11C23)

Γ(4q + 1)
Γ(q + 1)Γ(3q + 1)

+ C12C22
Γ(4q + 1)
Γ2(2q + 1)

+ C10C24,

(16)
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C16 = 10(C25 − C15)

C26 = (24 − 4c)C15 + cC25 − C15C30 − (C14C31 + C11C34)
Γ(5q + 1)

Γ(q + 1)Γ(4q + 1)

− (C13C32 + C12C33)
Γ(5q + 1)

Γ(2q + 1)Γ(3q + 1)
− C10C35

C36 = −8
3
C35 + C15C20 + (C14C21 + C11C24)

Γ(5q + 1)
Γ(q + 1)Γ(4q + 1)

+ (C13C22 + C12C23)
Γ(5q + 1)

Γ(2q + 1)Γ(3q + 1)
+ C10C25,

(17)




xm+1

ym+1

zm+1


 =




C10 C11 C12 C13 C14 C15 C16

C20 C21 C22 C23 C24 C25 C26

C30 C31 C32 C33 C34 C35 C36




×
[
1

hq

Γ(q + 1)
h2q

Γ(2q + 1)
h3q

Γ(3q + 1)
h4q

Γ(4q + 1)
h5q

Γ(5q + 1)
h6q

Γ(6q + 1)

]T

. (18)

According to Eqs. (11)–(18), the chaotic
sequences of the fractional-order simplified Lorenz
system are obtained with initial values, h, q and
appropriate parameters. Then we can analyze the
dynamical characteristics of the system by using the
chaotic sequences.

3. Analysis of Dynamical
Characteristics

3.1. Lyapunov exponent spectra

Based on the iteration formula, we design the LE
spectra calculation algorithm of the fractional-order
chaotic system by employing QR-factorization. In
this algorithm, QR-factorization is described as
[Von Bremen et al., 1997]

qr[JmJm−1 · · · J1]

= qr[JmJm−1 · · ·J2(J1Q0)]

= qr[JmJm−1 · · ·J3(J2Q1)][R1]

= · · ·
= qr[JmJm−1 · · · (JiQi−1)][Ri−1Ri−2 · · ·R2R1]

= · · ·
= Qm[Rm · · ·R2R1]

= QmR. (19)

Here, qr[·] denotes the QR-factorization process.
J is Jacobian matrix, and the subscript m repre-
sents the number of iterations. Then we obtain LE
spectra by

λk =
1

mh

m∑
i=1

ln|Ri(k, k)|, (20)

where k is the system dimension.
Setting h = 0.01, Fig. 1 shows the LE spec-

tra and bifurcation diagrams of system (9) based
on Eqs. (19) and (20). In the case of q = 0.9 and
c varying, the system enters into chaotic state at
c = −1.1 as shown in Fig. 1(a). The LEmax gradu-
ally decreases as the increases of c, and the system
enters into the quasiperiodic state at c = 7.2. It is
consistent with the corresponding bifurcation dia-
gram as shown in Fig. 1(b). Similarly, Figs. 1(c)
and 1(d) are in good agreement, too. In the case of
c = 5 and q varying, the system enters into chaotic
state at q = 0.595. Although the LEmax also grad-
ually decreases with the increase of q, it is chaotic
except for a small periodic window at q = 0.88. So,
the LE spectra calculation algorithm is reliable.

Keeping h = 0.01, we plot the LEmax for differ-
ent q versus c as shown in Fig. 2. For any q, with the
increase of c, the LEmax decreases gradually to zero,
and at last becomes negative. Namely, the system
becomes convergent from chaotic through periodic.
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(a) (b)

(c) (d)

Fig. 1. Lyapunov exponent spectra and bifurcation diagrams for the fractional-order simplified Lorenz system: (a) Lyapunov
exponent spectrum, q = 0.9; (b) bifurcation diagram, q = 0.9; (c) Lyapunov exponent spectrum, c = 5 and (d) bifurcation
diagram, c = 5.

Fig. 2. Maximum Lyapunov exponent with different q
versus parameter c.

In addition, the larger q is, the wider is the chaos
range. For parameter c, when the system is chaotic,
the smaller q is, the larger the LEmax is. The mag-
nitude of LEmax also indicates the complexity of
a chaotic system. So we come to the conclusion
that the fractional-order simplified Lorenz system
is more complex than its integer-order counterpart,
and it indicates that the fractional-order chaotic
system has broader applications.

3.2. Maximum Lyapunov exponent
diagram and chaos diagram

According to the LE spectra calculation algo-
rithm, we let h = 0.01, and the LEmax diagram
of the fractional-order simplified Lorenz system by

1550085-6
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Fig. 3. Maximum Lyapunov exponent diagram for the
fractional-order simplified Lorenz system.

changing q and c simultaneously as shown in Fig. 3.
It indicates the magnitude of LEmax for system (9)
versus c ∈ [−2, 8] with the step size of 0.1 and q ∈
[0.5, 1] with the step size of 0.005. The LEmax dia-
gram can help us to choose the parameters if a more
complex chaotic system is needed in the practical
application. In Fig. 3, when c = 5.3 and q = 0.585,
the largest LEmax is 4.443. It is worthwhile to note
that there is a boundary where LEmax changes sud-
denly in Fig. 3. On the upside of the boundary along
the direction of both q and c increasing, LEmax

decreases gradually, and tends to zero finally. In the
opposite direction, LEmax becomes negative quickly.
Namely, the system immediately becomes conver-
gent from chaotic in this direction. To choose larger
LEmax, the parameters which are near upper part
of the boundary should be selected. The parameters
just on the boundary should be avoided, because
the system becomes convergent easily for any small
unstable factors. In addition, in Fig. 3, the lowest
order at which the chaos exists is 3 (the dimension
of the system) × q = 1.605 when c ∈ [6.7, 7.2] and
q = 0.535.

To show the state of the fractional-order chaotic
system with different q and c more clearly, in partic-
ular period state, the chaos diagram is also plotted
on the basis of the magnitude of LEmax. Consider-
ing the influence of calculation error and data inter-
ception, it has been verified by experiments that
the system becomes approximate periodically when
LEmax = 0.03. So we determine that the system (9)
is chaotic when LEmax > 0.03, and periodic when
0 ≤ LEmax ≤ 0.03, and convergent when LEmax <
0. The chaos diagram is presented in Fig. 4. Red,

blue, black and white represent chaotic, periodic,
convergent and emanative, respectively. It is obvi-
ous that most regions are chaotic in Fig. 4. The sys-
tem is convergent for most of q except a small part
of periodic when c is small. It indicates that the
system enters into chaotic state through periodic
when c is small and q is large. It is consistent with
that shown in Fig. 2. The chaotic region becomes
larger with the increase of c. Periodic region begins
to appear partly when c ∈ [6.1, 7.7]. The system
becomes convergent when c is larger.

3.3. 0–1 test

To confirm the lowest order of system (9), we imple-
ment the 0–1 test method. 0–1 test is a novel test
approach to determine whether a given determinis-
tic nonlinear dynamic system is chaotic. It was pro-
posed by Gottwald and Melbourne [2004], and has
already been successfully tested for integer-order
chaotic systems [Sun et al., 2010b] and fractional-
order chaotic systems [Cafagna & Grassi, 2010;
Xin & Li, 2013]. For a fractional-order system, if a
set of discrete data φ(n) (n = 1, 2, 3, . . .) represents
a one-dimensional observable data set obtained
from the iterative, then the following two real-
valued functions are defined [Cafagna & Grassi,
2008]: 



p(n) =
n∑

j=1

φ(j) cos(θ(j))

s(n) =
n∑

j=1

φ(j) sin(θ(j)),

(21)

Fig. 4. Chaos diagram for the fractional-order simplified
Lorenz system.
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(a) (b)

Fig. 5. For h = 0.01 and c = 7, the (p, s)-plane for the fractional-order simplified Lorenz system, (a) q = 0.535 and
(b) q = 0.53.

where

θ(j) = jϕ +
j∑

i=1

φ(i), (22)

and a random number ϕ ∈ [π5 , 4π
5 ]. Plotting the

trajectories in the (p, s)-plane, the bounded tra-
jectories imply the underlying dynamics is regular
(i.e. periodic or quasiperiodic), while Brownian-
like (unbounded) trajectories imply the underlying
dynamics is chaotic.

For system (9), we set h = 0.01 and the initial
values [x0, y0, z0] = [0.1, 0.2, 0.3]. After abandon-
ing 40 000 data, choosing x-dimensional observable
data n = 100, its trajectories in the (p, s)-plane are

plotted when q ∈ [0.5, 0.6] and c = 7. We find that
the trajectories are Brownian-like when q ≥ 0.535,
but the trajectories are bounded when q ≤ 0.53.
Figure 5 shows the trajectories in the (p, s) plane
when q = 0.535 and q = 0.53. So, for h = 0.01, it
verifies that the lowest order is 3 × q = 1.605 when
q = 0.535 and c = 7, and it coincides with that
shown in Fig. 3.

Similarly, letting h = 0.001, and fixing c = 5,
the lowest order is 1.35 with q = 0.45 as shown in
Fig. 6. It is consistent with the results by adopting
ADM in [He et al., 2014]. However, in Figs. 1(c)–
1(d) and 3, for h = 0.01 and c = 5, the lowest
order is 1.785 with q = 0.595. It indicates that the
lowest order is affected by iterative step size h. It

(a) (b)

Fig. 6. For h = 0.001 and c = 5, the (p, s)-plane for the fractional-order simplified Lorenz system, (a) q = 0.45 and
(b) q = 0.44.
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Table 1. Numerical results and performance comparisons with PCM.

Chaos Range

Solution Method q = 0.9 c = 5 Time Complexity Space Complexity

ADM c ∈ [−1.1, 7.2] q ∈ [0.595, 1] O(n) O(1)

PCM c ∈ [2.6, 7.4] q ∈ [0.93, 1.07] O(n2) O(n)

is an interesting question how step size h affects
the dynamics of chaotic systems, which is worthy
of further study.

3.4. Comparisons with the
predictor–corrector method

To compare ADM with PCM, we list chaos range,
time complexity and space complexity of the two
methods as shown in Table 1. In [Sun et al., 2010a],
chaos and bifurcations with q = 0.9, c varying and
with c = 5, q varying were discussed respectively.
The bifurcation tendency is similar to our present
analysis. However, under the same conditions, the
chaos range by adopting ADM is wider than that
by adopting PCM (the case of q > 1 is not consid-
ered in this paper). Some LEmaxs were calculated
by Wolf algorithm in [Sun et al., 2010a]. But, if one
constructs the LEmax diagram by PCM as in this
paper, it could be challenging because of its worse
time complexity and space complexity [He et al.,
2014].

4. Implementation on DSP

We implement the fractional-order simplified
Lorenz system on DSP platform. For hardware
design, the block diagram of the working principle
is shown in Fig. 7. In the experiments, the Texas
Instrument DSP device TMS320F2812 is employed.
TMS320F2812 is a 32-bit DSP running at 150 MHz
with fixed point operation. Such a high-speed clock
rate is considered to be sufficient for our experi-
ments. It can easily interface with a 16-bit dual
channels digital-to-analog converter DAC8552 by
SPI (serial peripheral interface). Phase portraits of
the system are captured randomly by oscilloscope

Fig. 7. Simplified block diagram for DSP implementation of
a fractional-order chaotic system.

(Tektronix MSO 4102B-L). The platform to imple-
ment the chaotic system is shown in Fig. 8.

For software design, based on the discrete iter-
ative Eqs. (11)–(18), the operational procedure is
shown in Fig. 9. After initializing DSP, we set the

Fig. 8. Platform to implement a fractional-order chaotic
system.

Fig. 9. Flow chart for DSP implementation of a fractional-
order chaotic system.
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(a) (b)

(c)

Fig. 10. Phase portraits of attractor for the fractional-order simplified Lorenz system realized on DSP: (a) q = 0.9, c = 5;
(b) q = 0.7, c = 3 and (c) q = 0.65, c = 7.5.

initial values, including h, q, [x0, y0, z0], parameters
and iteration number. To improve the calculation
speed, we calculate all Γ(·) and hnq before iterative
computation. According to Eqs. (11)–(18), some
sequences are negative, and input data of DAC8552
must be integers in [0, 216−1]. Thus, to display the
attractors of the fractional-order chaotic system,
the data processing includes three steps. Firstly, a
positive integer A is added to all sequences. It makes
sure that each data is positive. Secondly, a scaling
process is carried out by multiplying a positive inte-
ger B. Finally, the above results are rounded up.

It is worth mentioning that A and B are different
for the sequences with different c and q. In addi-
tion, by employing the operation of pushing and
popping, the iterative computation is not affected
by data processing.

We set h = 0.01, initial values [x0, y0, z0] = [0.1,
0.2, 0.3], A = 15 and B = 1400. Phase portraits
of the system are captured by the oscilloscope as
shown in Fig. 10. The experimental results qual-
ify the simulation analysis, as shown in Fig. 11. It
indicates that the fractional-order simplified Lorenz
system is realized successfully on DSP platform.
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(a) (b)

(c)

Fig. 11. Phase portraits of attractor for the fractional-order simplified Lorenz system simulated on computer: (a) q = 0.9, c =
5; (b) q = 0.7, c = 3 and (c) q = 0.65, c = 7.5.

In practice, by changing the initial values,
parameter c or order q in DSP program, the dif-
ferent states of the fractional-order system are real-
ized. Moreover, as long as the conditions do not
change, the results realized on DSP platform are
exactly the same. Compared with analog circuit
[Jia et al., 2013; Chen et al., 2008], DSP imple-
mentations of fractional-order chaotic systems have
better flexibility, stability and repeatability, and
these advantages will facilitate the application of
fractional-order chaotic systems.

5. Conclusions

Based on ADM, the iterative formula of the
fractional-order simplified Lorenz system is derived.
By employing QR-factorization, the LE spectra

calculation algorithm of the fractional-order system
is designed. The LEmax diagram is presented with
varying q and c simultaneously. After analyzing
the dynamical characteristics of the fractional-order
simplified Lorenz system with different fractional
derivative orders and parameters, the conclusions
are drawn as follows.

(1) When the system is chaotic, for any q, the
smaller c is, the larger the LEmax is, and for
parameter c, the smaller q is, the larger the
LEmax is, too. The fractional-order simplified
Lorenz system is more complex than its integer-
order counterpart.

(2) For ADM and h = 0.01, the lowest order of
the fractional-order simplified Lorenz system
to generate chaos is 1.605. The iteration step
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size influences on dynamic characteristics of the
fractional-order chaotic system. It is worthy of
further study.

(3) The parameters and orders on the boundary
should be avoided to be chosen in the practi-
cal applications of the fractional-order simpli-
fied Lorenz chaotic system.

(4) The fractional-order simplified Lorenz system
is implemented on DSP, and it lays the foun-
dation for its extensive applications research in
the future.
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