
crash potentials associated with the target road network on different
spatial scales. It can be used to estimate the normal level of safety as a
means for examining regions that have greater-than-expected levels,
and as such, region-level safety interventions could be implemented
effectively. Furthermore, it allows cross-sectional comparisons
between regions as well as examination of variations over time of
safety effects associated with certain factors.

Second, road safety is increasingly considered a necessary com-
ponent in the transportation planning process. In the United States,
the Transportation Equity Act for the 21st Century (TEA-21) and the
more recent SAFETEA-LU (2) create a positive agenda for increased
safety on the highways and mandate the agencies of transportation
planning—metropolitan planning organizations and state departments
of transportation—to engage in proactive safety planning. As such,
safety-conscious planning is under rapid development. Of vital
importance in incorporating safety into planning is a reliable tool
to forecast safety at the regional planning scale. This calculation
requires the forecast of crash potentials for alternative transportation
planning schemes given a number of zone-level characteristics.

In response to those needs, there are a good number of studies on
developing zone-level safety analysis models. However, as reviewed
in the next section, several inadequacies are identified, among which
confusion on exposure variables and risk factors is the most noticeable.
Without explicitly differentiating these variables, most of the existing
studies alternate the use of crash frequency, crash rate, and crash risk
to interpret parameter coefficients. This method may have resulted
in the inconsistent findings in relevant studies, as discussed later.
The current study proposes a Bayesian spatial model to account for
county-level variations of crash risk by explicitly controlling for
exposure variables. Safety effects are investigated by using data from
the Florida state-maintained road network for various socioeconomic
factors, demographic characteristics, and aggregate features of
different types of road elements.

LITERATURE REVIEW

The unit of analysis in previous spatially disaggregate studies varies
extensively, ranging from states (3), counties (4–9), traffic analysis
zones (1, 10–12), census wards (13–15), local health areas (16), and
grid-based structures (17 ). In most of these studies, aggregate crash
prediction models were developed to relate the road crashes to a
variety of explanatory factors including road network composition
(disaggregated mileages of different road types, road density, inter-
section density, etc.), traffic patterns [posted speed, vehicle miles
traveled (VMT), inflow and outflow from subject zones, volume-to-
capacity ratios, etc.], and area-level demographic and socioeconomic
characteristics (area, population, households, age cohorts, land
use, employment, income, deprivation, improvement of medical
technology, etc.).
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An increasing research effort has been made on spatially disaggregated
safety analysis models to meet the needs of region-level safety inspec-
tion and recently emerging transportation safety planning techniques.
However, without explicitly differentiating exposure variables and risk
factors, most existing studies alternate the use of crash frequency, crash
rate, and crash risk to interpret model coefficients. This procedure may
have resulted in the inconsistent findings in relevant studies. This study
proposes a Bayesian spatial model to account for county-level variations
of crash risk in Florida by explicitly controlling for exposure variables of
daily vehicle miles traveled and population. A conditional autoregressive
prior is specified to accommodate for the spatial autocorrelations of
adjacent counties. The results show no significant difference in safety
effects of risk factors on all crashes and severe crashes. Counties with
higher traffic intensity and population density and a higher level of
urbanization are associated with higher crash risk. Unlike arterials,
freeways seem to be safer with respect to crash risk given either vehicle
miles traveled or population. Increase in truck traffic volume tends to
result in more severe crashes. The average travel time to work is nega-
tively correlated with all types of crash risk. Regarding the population
age cohort, the results suggest that young drivers tend to be involved in
more crashes, whereas the increase in elderly population leads to fewer
casualties. Finally, it is confirmed that the safety status is worse for more
deprived areas with lower income and educational level and higher
unemployment rate in comparison with relatively affluent areas.

In the past two decades, crash prediction models have been widely
applied to examine the safety effect associated with road elements of
different types such as highway segments and intersections. Recently,
an increasing research effort is being shifted to a higher aggregated
level of crash analyses. Specifically, traffic crashes are aggregated
by a certain specific spatial scale to relate safety with zone-level
factors such as socioeconomic status, demographic characteristics,
land use, and traffic pattern. Although the exploration of this topic
is still in its infancy, two essential incentives may ensure its further
development in the near future: estimation and forecasting of regional
road safety.

First, there is a need for state agencies to regularly monitor region-
level safety and provide incentives to reduce the number of traffic
casualties in a region’s safety program (1). Therefore, a reliable
assessment of safety is indispensable by estimating the aggregating
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The effects of various factors associated with road and traffic
characteristics have been investigated to understand safety at different
levels of spatial zones. An early study (13) at a small geographical-
area level in Honolulu, Hawaii, found that more road mileage was
associated with more crashes. Tarko et al. (5) examined the effects of
VMT and found that higher VMT, especially on urban roads, is
associated with an increased number of crashes. These results are
consistent with a number of subsequent studies (1, 6, 9, 11, 12, 15).
Furthermore, traffic congestion has been examined by means of proxy
measures such as level of urbanization (14) and ratio of volume to
capacity (11). The results seemingly show that more congested
urban areas would be less likely to result in fatalities. This finding
implies that policies of reducing congestion in urbanized areas may
have unanticipated safety consequences (18).

A series of studies by Noland and his colleagues (3, 8, 14)
extensively investigated the effect of various infrastructure changes
on traffic-related fatalities and crashes at different levels of dis-
aggregate spatial units, specifically, 50 states in the United States,
102 counties in Illinois, and 8,414 census wards in England. In
general, they found that some improvements in road infrastructure
have actually led to increased crashes and fatalities.

In contrast, a number of demographic and socioeconomic factors
have been confirmed to be important predictors to account for zonal
crash variations while controlling for road and traffic factors. Among
a variety of relevant factors, of vital importance are land use, popu-
lation density, age cohorts, income, deprivation, and employment.
Specifically, it was found that there are more crashes in areas with
higher population density (1, 5, 11, 13). However, Noland and
Quddus (14) reported a conflicting result: that lower population
density experiences relatively more casualties in England. However,
employment density was found to have a positive effect on the
likelihood of casualties in their study. Therefore, they explained that
traffic within commercial areas may increase the risk of casualties,
whereas those areas with high residential population density have
relatively fewer casualties. In addition, it was found that total
employment may be positively associated with crashes (1, 15) and
different types of employment may result in different effects on crash
patterns (13).

Although population age cohort is well known as an important
risk factor of casualties, inconsistent results have been reported in
previous literature. Noland and Quddus (14) and Aguero-Valverde
and Jovanis (9) found a positive effect for younger population
(under 16 and 15 years of age, respectively), but a negative effect was
identified by Guevara et al. (1) for fatalities (under 18 years of age).
With regard to the adolescent age cohort encompassing young drivers
(generally 18 to 25 years of age), Noland (3) found that the percent
of the population between 15 and 24 years of age significantly
increases both fatalities and injuries, which conforms with the find-
ings by Aguero-Valverde and Jovanis (9). But Noland and Oh (8)
failed to confirm the significant association between age cohort
variables and fatalities and crashes at the county-level analysis for
the state of Illinois. Further, it was reported (8, 15) that an increase
in the percent of the population over age 75 leads to fewer fatalities
and injuries. However, conflicting results were found by Noland and
Quddus (14) and Aguero-Valverde and Jovanis (9), in which higher
percentages of elderly population are associated with higher traffic
casualties.

Another safety predictor that has been generally studied in prior
research is area-level socioeconomic deprivation. This factor has
been measured by several different forms or proxy variables such as
indexes of deprivation (14, 19, 20), percentage of households with
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no cars (15); per capita income (3, 8), and unemployment rate (21).
In general, higher casualty rates were found to be associated with
more deprived areas in comparison with relatively affluent areas
(14, 15, 19, 20). However, in the highly aggregate analysis of 50 of
the United States, Noland (3) identified a large statistically signifi-
cant positive effect of per capita income on fatalities and injuries.
Most important, the way to explain how deprivation affects safety
remains unclear. It would be generally expected that wealthier areas
seek to avoid riskier activities and thus are associated with a better
safety situation. A significant positive correlation between pedestrian
casualties and areawide deprivation was reported by Graham and
Glaister (20). Since most pedestrian casualties normally occur in
areas where they live, this fact sheds light on the understanding of a
higher casualty rate in more deprived areas. Noland and Quddus (14)
also examined the potential influence of unmeasured differences in
road characteristics between more deprived and less deprived areas,
but no significant pattern was found.

As discussed earlier, inconsistencies exist as to what factors could
be used in predicting area-level safety, and their effects on traffic
casualties remain indeterminate. This situation is most probably due
to the variable accuracy and extent in measurement of the data under
investigation in the literature. Moreover, inconsistent definitions of
many relevant factors are also noticeable, especially when it comes
to their total amount and density, for example, total road length and
road density (road length/area), population and population density
(population/area), and total employment and density of employment
(total employment/area). This sort of problem is also related to a lack
of explicit discrimination between crash risk and crash frequency,
which essentially reflect different aspects of safety. Particularly
in the context of spatial disaggregate analysis, crash risk refers to
the crash potential given a unit of traffic exposure, whereas crash
frequency is an aggregate crash count associated with the unit of
analysis during a particular time period. As indicated by Quddus
(15), the ideal exposure variable would be annual VMT in each area
of analysis, by which the estimated crash risk would reflect the crash
potential given vehicle mileage traveled. Unfortunately, because of
data unavailability, only a few studies have appropriately considered
the exposure by using some proxy variables. For example, in the
work by Quddus (15), a gravity model was constructed to measure
the exposure to risk of a census ward by use of total number of
registered cars in each ward.

Furthermore, some prior studies are limited in their scope 
in handling data of spatiotemporal context where unmeasured
confounders and spatiotemporal autocorrelation are evident (16).
The negative binomial model as generally used is not able to
account for any spatial correlation and structured heterogeneities
between adjacent units of analysis. By use of spatial lag models,
Levine et al. (13) examined spatial variations in crashes at a small 
geographical area level and found that spatial autocorrelation sig-
nificantly exists; that is, crashes tend to be more clustered by
block group than what would be expected by a random distribu-
tion. Recently, Bayesian hierarchical models have been success-
fully developed by several studies to systematically account for
the spatial autocorrelation in aggregate crash prediction models 
(9, 15, 22).

With the aforementioned issues revealed by prior research in mind,
this study attempts to conduct a reliable spatial aggregate analysis
of relative crash risk associated with all 67 counties in the state of
Florida. The spatial autocorrelation is accommodated by adopting a
Bayesian spatial model. Moreover, instead of the prediction of crash
frequency, an innovative model formation is specified to directly



examine the crash risk by controlling for aggregate average daily
VMT (DVMT) and population. The proposed model is calibrated
with a 5-year data set (2003 to 2007).

METHODOLOGY

Explanatory Analysis

A preliminary analysis is first conducted to find out whether observed
crashes are spatially correlated among adjacent counties by use of
Moran’s I, which takes the following form:

where

n = total number of observations,
Yi, Yj = respective number of crash rates in counties i and j,

Y
– = average crash rate of all observations in analysis, and

ωij = entries of proximity matrix �, which generally reflects
spatial association of two units.

In the current study, binary specification is employed; that is, if
counties i and j share a common border, they are considered neighbors
and as such ωij equals 1; otherwise it would be 0 (23). Apparently the
Moran’s I range from −1 to +1. A positive value of Moran’s I indi-
cates positive spatial correlation, or clustering, within the study area.
If the value is negative, it indicates negative spatial autocorrelation,
or dispersion.

If there is no spatial correlation among Yi’s, that is, they are
independent and identically distributed (iid), I is asymptotically
normally distributed with a mean of −1/(n − 1) and a standard
deviation S(I ):

where

and

Thus, the significance of the I-value could be evaluated by a 
Z score:

Values of Z greater than +1.68 or less than −1.68 indicate significant
positive and negative spatial autocorrelation, respectively, at the
10% level.
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Bayesian Spatial Analysis

As shown earlier, the Moran’s I is asymptotically normally distrib-
uted and as such it is limited to a continuous approximation for the
crash count in the current study. Hence, it may be thought of as just
an initial indication of spatial correlation. Furthermore, although
the Moran’s I statistic provides an exploratory measure of spatial
autocorrelation, it is not able to estimate and test its magnitude and
significance by controlling for a variety of observable county-specific
risk factors (23). In this study, a Bayesian spatial model is developed
to relate various county-level socioeconomic and traffic-related
factors to crash occurrence while accounting for the possible spatial
autocorrelation among adjacent counties.

The yearly crash rate for each county is treated as an observation
unit for analysis. It is assumed that Yit is the observed number of
crashes at county i in year t, i = 1, . . . , I, and t = 1, . . . , T; Xit denotes
various covariates having parameter coefficients �. The spatial
autocorrelation is realized by specifying a conditional autoregressive
prior (CAR) model to the residual term of the link function in an
ordinary Poisson regression:

where μit is the parameter of the Poisson model, whereas Eit is the
expected number of crashes at county i in year t, calculated as follows:

where expoit is the traffic exposures associated with the target county,
specifically DVMT or population in the current study. Thus it is clear
that the Rit reflects the relative crash risk of county i in year t given
a unit of exposure; that is, >1, higher risk; = 1, average; and <1,
lower risk. θi is a county-specific random effect, which is assumed
as iid among different counties. In this study, this statewide hetero-
geneity component θi is specified via an ordinary, exchangeable
normal prior:

where τh is a precision term (reciprocal of the variance) that controls
the magnitude of the θi. These county-specific random effects capture
extra-Poisson variability in the log-relative risk that varies globally,
that is, over the entire state. Moreover, φi is the spatial correlation
residual, or in other words, the correlated heterogeneity. That is, it
models extra-Poisson variability in the log-relative risk that varies
locally, so that nearby counties will have more similar rates. In this
study, φi is assigned a CAR prior as recommended by Besag (24):

where ωij is the binary entries of the proximity matrix as described
earlier and τc is the precision parameter in the CAR prior. Clearly,
the values of τh and τc control the amount of extra-Poisson variability
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allocated to statewide heterogeneity and clustering effects among
adjacent counties. Thus, it may also be interesting to estimate the
proportion of variability in the random effects that is due to spatial
clustering as follows:

where sd is the empirical marginal standard deviation function.
Likewise, 1 − α is the proportion of extra-Poisson variability
accounted for by the statewide heterogeneity.

In this study, it should be noted that the longitudinal observations
for a specific county share the same variation in terms of θi and φi.
Nevertheless, temporal effects could also be introduced in the
model via either fixed effects or random effects (globally iid or some
county-specific autoregressive structure). However, no temporal
effect appeared to be statistically significant for the data used in this
study. This finding may be because of the high aggregation of crash
data, and as such the time variation pattern is not obvious for the
relatively short-term period (5 years only). Hence, for brevity, spec-
ification of temporal effects will not be elaborated on. For explicit
model specification methods of temporal effects, interested readers
are referred to work by Banerjee et al. (23), Aguero-Valverde and
Jovanis (9), and Quddus (15).

DATA

Data Collection

In this county-level analysis, four different data sets were collected
for all state-maintained roadways in Florida’s 67 counties during a
period of 5 years (2003 to 2007). These data sets include crash data,
road and traffic characteristics, demographic and socioeconomic
factors, and spatial features reflecting the geographic proximity of
those counties.

Crash data were obtained from the Florida Department of Trans-
portation (FDOT) Crash Analysis Reporting System. For this study,
the most important information provided by the crash data is the county
in which the crash occurred and its injury severity levels 1 through 5:
1, no injury; 2, possible injury; 3, nonincapacitating injury; 
4, incapacitating injury; and 5, traffic fatality.

Traffic-related data were collected mainly from two sources:
FDOT’s Roadway Characteristics Inventory and geographic infor-
mation system maps with Florida road characteristics. All these data
were aggregated into the county level:

1. Roadway length: total centerline miles of roads per county;
2. Highway classification: centerline miles of roads for each type

of highway functional classification per county (urban: principal
arterial, minor arterial, urban collector, and local; rural: principal
arterial, minor arterial, collector, and local); the fractional percent
of each road class within a given county was calculated;

3. DVMT: calculated by multiplying each road section’s average
daily traffic (ADT) by its centerline mile length and then summing
all DVMT values for each county;

4. Interchanges: number of interchanges per county;
5. Intersection: number of intersections per county;
6. Truck annual ADT (AADT): ADT of trucks per county;
7. Traffic-monitoring site: number of traffic-monitoring sites per

county; and
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8. Travel time to work: average travel time to work for residents
in a county.

Besides the traffic-related data, a variety of demographic and socio-
economic factors were investigated, which were obtained from
the U.S. Census Bureau. These include geographical area of each
county, population segregated by gender and age cohort, income
(yearly median income per household), poverty level (percent of
people living below the poverty line), bachelor’s degree ratio
(percent of people older than 25 with a bachelor’s degree or higher),
and unemployment rate.

Finally, the proximity matrix representing the geographic neigh-
boring structure of counties was automatically generated by using
the GeoBUGS software.

Data Parameterization

To appropriately reflect the effects of various factors on crash risk, the
raw data were carefully rescaled and parameterized. For simplicity,
all the variables used in the analysis and the descriptive statistics
are given in Table 1. Specifically, all crashes and severe crashes
associated with the counties were investigated separately. Crashes
with Severity Levels 4 (incapacitating injury) and 5 (traffic fatality)
were considered severe crashes. DVMT was utilized as the exposure
variable as suggested by many studies (9). In addition, the popula-
tion was considered as an alternative exposure variable. Therefore,
all coefficients later estimated from the models reflect the effects of
covariates on crash risk by accounting for DVMT or population. It
is rational to expect that both DVMT and population represent a
good estimation of travel activities and crash exposure on the road
network. By controlling for the exposure variables, a number of
factors potentially affecting crash risk could be constructed. It is
important to note that all the factors considered here are rationally
supposed to be effective on crash risk given a unit of exposure.

As shown in Table 1, several road traffic variables were coded in
the analysis. In particular, aggregate road density and road densities
segregated by road functions were considered potential factors
influencing crash risk. Further, the ratio of DVMT to overall road
length was constructed to reflect the traffic intensity on those road
networks. It is well known that intersections are generally associ-
ated with more traffic conflicts, and as such the intersection density
(no. of intersections/road length) was investigated to understand the
variation of crash risk across different counties. Since truck-related
safety problems are continuously of concern as one of the top prior-
ities in safety campaigns, the proportion of truck AADT over the
total AADT was related to explain the varying crash risk. Moreover,
the average travel time to work was also investigated since past studies
revealed that the travel distance from the residence is correlated with
crash occurrence (19). Although the travel time to work is the only
proxy variable available in the current study, it should be noted that
travel time to work alone may not be a good indicator of travel dis-
tance when one takes into account the use of different transportation
means and traffic congestion.

Various demographic and socioeconomic variables were also
properly constructed to account for variations in crash risk. Popula-
tion density was the first important demographic factor considered
in the analysis as demonstrated by many prior studies. Moreover,
several interesting age cohorts were considered: the proportion of
the population under 5, under 18, between 15 and 24 (surrogate for
young drivers), and 65 years or older (surrogate for senior drivers).



To reflect area deprivation level, three surrogate indicators were
employed: median household income, percent of population below
poverty line, and unemployment rate. The percent of white popula-
tion and population above age 25 with a bachelor’s degree were
also considered to reflect the race composition and education level,
respectively.

RESULTS AND DISCUSSION

Crashes and Exposure Variables

As shown in Figure 1, the overall state-road crash frequencies during
the 5-year period (2003 to 2007) in 67 Florida counties range from
150 in Lafayette County to as high as 154,694 in Miami–Dade County
with a standard deviation of 24,199. Within these, 68,151 crashes
resulted in incapacitating injuries and fatalities, ranging from 31
to 7,514, with a standard deviation of 1,523. Results in Figure 1 also
imply that the overall crash distribution is spatially consistent with
the severe-crash distribution. Crashes are more concentrated in the
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southeast and central regions, whereas Duval County peaks in north
Florida. Most central regions in north Florida are associated with the
least crashes.

As expected, the crash spatial distribution is naturally associated
with land use features, which are relevant to varying population
density and subsequent travel activities, partially reflected by trans-
portation infrastructure such as highway density. Thus, an illustra-
tion of crash rate by controlling for traffic exposure is helpful to
understanding crash risk associated with different regions.

Figure 2a, b shows the yearly rate of crashes by million DVMT
and Figure 2c, d by population. Apparently the former represents the
crash risk for travelers on road networks residing in different zones,
whereas the latter reveals the average risk that residents in a target
zone will be involved in road crashes. Specifically, by controlling
for DVMT, Holmes and Clay Counties are associated with the highest
risk, and Miami–Dade and Escambia Counties with the lowest for
the all-crash rate and the severe-crash rate, respectively.

Overall, with the average risk of 358 crashes and 47 severe crashes
per million DVMT, the standard deviations amount to 186 and 16,
respectively. Moreover, in terms of crash risk given population,

TABLE 1 Summary of Variables and Descriptive Statistics

Variable Description Min. Max. Mean SD

Crash Response Variables

All crash Frequency of all types of crashes (per year) 25 32,810 2,352.50 4,821.47

Severe crash Frequency of severe crashes (per year) 3 1,617 203.44 304.45

Exposure Variables

DVMT Daily vehicle miles traveled (in thousands) 159 31,098.4 4,491.97 6,198.62

Population Population (in thousands) 7.4 2,427.02 264.42 423.21

Road and Traffic-Related Factors

Road density Road length by area �100 5.6 96 25.23 13.52

Traffic intensity DVMT/road length 1.9 56.7 16.59 12.22

Urban over rural Urban road length/rural road length 0 268.82 5.28 31.14

FW density Freeway length/area �100 0.01 18 3.47 4.01

PA density Principal arterial length/area �100 0.02 51.55 14.18 9.97

MA density Minor arterial length/area �100 0.01 35.55 8.06 5.54

CR density Collector road length/area �100 0.01 12.11 2.71 2.75

Intersection density No. of intersections/road length 0.08 27.25 10.97 5.01

Truck AADT Truck AADT/total AADT �100 3.98 40.22 11.16 5.62

TTTW Avg. travel time to work (min) 18.4 35.5 26.55 3.67

TMS density No. of traffic monitoring sites/road length 0 2.45 0.55 0.38

Demographic and Socioeconomic Factors

Area Area 240.29 2,025.34 804.87 385.67

Population density Population/area 8.86 3,304.17 316.47 501.71

Five Percent of age group under 5 3.7 8.6 5.87 1.05

Eighteen Percent of age group under 18 15.6 28.9 21.27 2.78

Young Percent of population between 15 and 24 13 36.8 19.70 4.18

Sixty-five Percent of population of 65 and older 8 31.2 16.93 5.78

Female Percent of female population 34.4 52.5 48.71 3.65

White Percent of white population 42.7 94.5 82.32 9.57

MIC Median household income (in thousands) 26.41 55.71 37.19 6.88

Poverty Percent of population below poverty line 7.1 20.9 12.79 3.39

Bachelor Percent of population above 25 with bachelor’s degree 6.8 41.7 16.73 8.03

UE rate Unemployment rate 2.1 6.2 3.30 0.63



Collier and Clay Counties are identified as the safest, and Alachua
and Madison Counties are the most dangerous for all-crash risk and
severe-crash risk. On average, 71 crashes and 10 severe crashes
per 10,000 population occurred yearly with standard deviations of
27 and 4, respectively. As can be seen in Figure 2, crash risk is more
moderately distributed across different counties in comparison with
the overall crash distribution. Nevertheless, it is still surprising to
find substantial variation with regard to crash risk across different
counties. These variations significantly negate the hypothesis of a
linear relationship between crash frequencies and exposure variables,
which would be expected if crash risk were approximately equal
across different regions.

With the variation in crash risk in mind, an exploratory analysis
was conducted to fit crash frequencies to exposure variables with a
variety of potential nonlinear regression assumptions. Fortunately,
good-fitting models were obtained by taking the natural logarithm
to the variables, as shown in Figure 3. Specifically, four equations
are obtained as follows:

Judging by the coefficients, it seems that, in general, the increases in
DVMT and population result in a higher increasing rate of all-crash
frequencies but a lower increasing rate of severe-crash frequencies.
In essence, the nonlinear relationships of crash rate and exposure are
anticipated since different counties are associated with different
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features in terms of socioeconomic and demographic characteristics,
road infrastructure, as well as traffic patterns. Hence, for the purpose
of safety monitoring and improvement in safety-conscious planning,
it is necessary to understand the effects of a variety of zone-level
factors potentially affecting crash risk.

Preliminary Spatial Analysis

As has been proved in prior studies (9, 15, 22), spatial correlation exists
widely across spatial zones and there would be significant impacts
on the accuracy of the estimated effect of crash risk factors without
explicitly taking into account the spatial autocorrelation. In Figures 1
and 2, it can be observed that counties in the northern portion of
Florida share similar low crash rates, whereas the southern ones have
higher rates in terms of overall crashes and crashes given DVMT.

However, by controlling for population, most of the northern
counties turn out to be at higher risk, whereas southern ones tend to
be more moderate. To explore the scope of spatial autocorrelation,
Moran’s I-statistics were calculated by using ArcMap 9.2, as shown
in Table 2. The results indicate that substantial positive spatial
correlation does exist among the counties with all I-values being
positive. Except for crash rate by population, all other Z-scores are
higher than 1.68, which indicates that there is less than 10% chance
that spatial association is due to random chance. Therefore, the results
justify the incorporation of spatial autocorrelation specification into
the following crash risk models.

Model Calibration

To account for the cross-county variations observed in crash risk
given exposure, a variety of zone-level risk factors are investigated
by calibrating the proposed Bayesian models. A CAR prior is used
to model the potential spatial patterns across counties, which are
assumed to be able to account for various spatially correlated factors
that are not observed or are unobservable in the analysis. In the
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FIGURE 1 Crash frequencies by county in Florida (2003–2007): (a) number of all crashes and (b) number of severe crashes.



context of the CAR model, those confounding factors are further
supposed to be spatially correlated among adjacent counties and
their effects on crash risk are homogeneous.

Because of a lack of consistent prior information, uninformative
priors were specified to the model parameters. Diffused normal
distributions are used for priors of regression parameters, β ∼ norm
(0.0, 1.0E-3). However, in the context of the Bayesian approach,
the hyperpriors on τh and τc cannot be arbitrarily vague for θi, and
φi would be unidentifiable as noted by Banerjee et al. (23). In this
study, the fair priors suggested by Best et al. (25) are specified on
τh and τc:

τ τh c∼ ∼gamma E E gamma1 0 3 1 0 3 0 1 0 1. , . . , .− −( ) ( )

The CAR models are very convenient computationally, using a Gibbs
sampler in Bayesian inference, which operates by successively
sampling from the full conditional distribution of each parameter
given the data. The proposed models were estimated by using the
WinBUGS package (26, 27), which provides a flexible and simplified
platform for calibrating Bayesian models with the BUGS programs.
The convergence of multiple Markov chains was evaluated by using
the built-in Brooks–Gelman–Rubin (BGR) diagnostic statistic (28).

Despite the convenience of model calibration, appropriate selec-
tion of variables included in the final models has been challenging.
Some general criteria exist in subset selection, such as statistical
significance of covariate coefficients, overall model goodness of fit,
and model parsimony. Although a number of automatic variable
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selection methods are available, conscious selection is always desir-
able for optimal subsets from a relatively large number of available
variables. This challenge becomes more critical in the current study,
in which risk factors are widely intercorrelated. By exploratory
examination of the data, the multicollinearities mostly arise from
two sources. In particular, some variables are correlated because
they intrinsically reflect identical latent characteristics in nature. For
example, the correlation among median household income (MIC)
and percentage of population below the poverty line is not surprising
since they represent economic deprivation status, although probably
from different aspects. The second source of multicollinearity is
relevant to the nature of land use and transportation planning in
reality. For example, more urbanized zones are generally associated
with higher population density, denser road infrastructure, and most
probably higher traffic intensity.
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To deal with the multicollinearity problem, by use of a scatterplot
matrix and the variance inflation factor, manual logical inspection
was conducted to predetermine the candidate subsets of covari-
ates. Significantly redundant variables were properly transformed
or carefully selected to ensure the robustness of model estimation.
Meanwhile, some variables that seem very useful in explaining the
variation of crash risk are retained although they are to some extent
correlated with other variables in the model. Moreover, the deviance
information criterion (DIC), a Bayesian measure of model complexity
and fit (29), was employed to compare alternative models with dif-
ferent subsets of covariates, and the ones producing the lowest DICs
were selected in the final models.

Interpretation of Model Results

Table 3 presents the final model estimation results for crash risk
controlled by DVMT and by population. The BGR convergence
diagnostics indicated that all final models converge well. Estimation
of the marginal standard deviations of statewide heterogeneity SD(θi)
and clustering effects among adjacent counties SD(φi) is used to
calculate the proportion of the variability in the random effects that
is due to clustering (α). The results show that variations accounted for
by spatial clustering are substantial for all the all-crash and severe-
crash risk models, specifically, 51.7% and 42.4% for models con-
trolled by DVMT and 25.9% and 26.4% for models with population
given. In general, the estimated values for the two models by DVMT
are more significant than those by population, which is consistent
with the preliminary results using Moran’s I spatial diagnostics.

Log(All-crash count) = 1.2202Log(DVMT) - 1.2279
R2 = 0.943

Log(All-crash count) = 1.1001Log(Population) + 0.6224
R2 = 0.9547

Log(Severe-crash count) = 0.9665Log(DVMT) - 1.2501
R2 = 0.9223

Log(Severe-crash count) = 0.8606Log(Population) + 0.2369
R2 = 0.9108
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FIGURE 3 Crash frequency and exposure variables: (a) all-crash count versus DVMT, (b) all-crash count versus population, (c) severe-crash
count versus DVMT, and (d ) severe-crash count versus population.

TABLE 2 Results of Moran’s I-Statistics

Global 
Moran’s I Z-Score P-Value

All crashes 0.2 3.12 0.003

Severe crashes 0.29 4.03 0.000

All crashes by DVMT 0.17 2.35 0.025

Severe crashes by DVMT 0.13 1.75 0.086

All crashes by population 0.02 0.43 0.36

Severe crashes by population 0.12 1.62 0.11



A number of covariates were identified as significantly affecting
the crash risk, as shown in Table 3. Most of the effects of those sig-
nificant variables are consistent. This finding implies that, in general,
there is no substantial difference for the risk factors on all crashes
and severe crashes given DVMT and population as exposure.

Traffic intensity (i.e., the ratio of DVMT to overall road length)
has a positive coefficient. Since it is highly correlated with population
density (0.79) and level of urbanization (0.84), only the traffic inten-
sity is included in the model. The results imply that elevated crash
risk is associated with counties with a higher concentration of road
traffic and population, as well as a higher level of urbanization. It is
not surprising that more concentrated traffic leads to more interactions
and conflicts, the increase rate of which should be larger than the
rate of traffic increase. Hence, given a mile of vehicle travel, the
average crash risk would increase because of more conflicts with
other vehicles on the roads. This justification could also be applied
to the cases of population as exposure. This finding means that
compared with sparse population distribution, more-concentrated
population (or a higher level of urbanization) will in general increase
crash risk associated with each resident. However, several previous
studies found traffic congestion level to be negatively related to
crashes (11, 14). This result is most probably due to significant
speed reduction in more congested urban areas as explained in prior
literature. Moreover, the lack of explicit exposure variables and the
multicollinearity examination as in previous studies may have led to
these inconsistent results.

In addition to overall road density, the effects of disaggregate
road densities were calculated for different highway functional
classifications. It is not surprising that roads with different functional
classifications show different effects with regard to safety. Freeways
and principal arterials are designed for movement of large traffic
volumes over relatively long distances and carry many trips not des-
tined for or originating within a county. Unlike freeways, principal
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arterials do provide access management; however, it is controlled to
the maximum extent possible in comparison with minor arterials
and local roads. Minor arterials, in contrast, carry moderate volumes
of traffic and provide an intermediate connection between principal
arterials, collectors, and local roads. The results show that crash risk
is negatively correlated with freeway density but positively correlated
with the densities of principal and minor arterials. This finding could
be attributed to the fact that freeways are generally better designed
and have full access control and low speed variance, whereas arterials
have intersections and experience more traffic congestion, which
increases crash risk. This justification is consistent with the positive
coefficient of intersection density, which implies that more inter-
sections on equal lengths of road increase crash risk. Given the
exposure of DVMT or population, densities of roads or of certain
elements such as intersections rather than road length or element
number such as intersection number should be logically used as the
risk factors. Unfortunately, in many existing studies, the road length
or element number and densities were alternatively used without
explicit differentiation between the exposure variable and the risk
variable. This approach makes the comparison between relevant
studies extremely difficult.

Among the traffic factors, the proportion of truck AADT to
overall AADT is positively correlated with severe-crash risk given
population. This finding is consistent with the well-known fact that
trucks lead to a substantial portion of road casualties. In the United
States, almost 5,000 people are killed each year in truck-related
crashes. Because of their size and often dangerous payloads, com-
mercial truck crashes are devastating to pedestrians and occupants
of other vehicles.

The average travel time to work was negatively correlated with
all types of crash risk. One might think this finding to be somewhat
surprising since it would seem logical that the probability of crash
involvement increases as the average time spent traveling on the

TABLE 3 Model Estimation Results

Risk Factors All-Crash Risk by DVMT All-Crash Risk by Population Severe-Crash Risk by DVMT Severe-Crash Risk by Population

Traffic 0.897 (0.812, 0.981) 0.756 (0.675, 0.837) 0.487 (0.403, 0.571) 0.333 (0.243, 0.424)
intensity

FW density −0.385 (−0.476, −0.295) −0.264 (−0.354, −0.175) −0.223 (−0.312, −0.133) −0.089 (−0.168, −0.010)

PA density 0.270 (0.171, 0.368) 0.216 (0.121, 0.310) 0.264 (0.174, 0.354) 0.205 (0.115, 0.295)

MA density 0.156 (0.098, 0.213) 0.107 (0.052, 0.163) 0.056 (0.004, 0.109) — —

Intersection — — — — — — 0.081 (0.019, 0.142)
density

Truck — — — — — — 0.094 (0.024, 0.163)
AADT

TTTW −0.093 (−0.141, −0.046) −0.128 (−0.176, −0.080) −0.059 (−0.107, −0.011) −0.101 (−0.150, −0.052)

Young 0.170 (0.123, 0.218) 0.091 (0.026, 0.155) — — −0.108 (−0.177, −0.040)

Sixty five — — −0.125 (−0.199, −0.051) −0.128 (−0.207, −0.048) −0.160 (−0.241, −0.079)

MIC — — — — −0.087 (−0.146, −0.028) −0.096 (−0.154, −0.039)

UE rate — — — — 0.057 (0.010, 0.105) — — 

DIC 1,401.3 — 1,359.1 — 1,457.5 — 1,374.2 — 

SD(θi) 0.182 (0.055, 0.281) 0.091 (0.012, 0.153) 0.156 (0.078, 0.235) 0.126 (0.098, 0.281)

SD(φi) 0.17 (0.041, 0.322) 0.260 (0.186, 0.301) 0.212 (0.112, 0.350) 0.351 (0.254, 0.465)

Alpha 0.517 0.259 0.424 0.264

NOTE: Coefficient mean (95% Bayes credible interval). Variables are defined in Table 1.



road increases. Recent research found that most people tend to
live close to their workplace, which would result in lower average
travel times to work (30). Most crashes have been found to occur
within an area close to home. Strillacci (30) attributed this finding
to the fact that people tend to be less attentive when driving short
distances because of a false sense of security that arises from
proximity. This result is also consistent with work by Abdalla 
et al. (19) in which more accidents were found to more likely occur
near home.

Population age cohort has been generally recognized as a signifi-
cant factor in crash occurrence. The results show that the percentage
of young population (age 15 to 24), a surrogate for young drivers,
has significantly positive effects on all-crash risk but is negative on
severe-crash risk given population. Generally, as found in many
prior studies (9, 15), higher risk is expected for young drivers since
the young population tends to have a higher level of mobility, whether
as driver, passenger, cyclist, or pedestrian. They also take more risks
and are aggressive in driving. With respect to the elderly population,
the results conform with those of Noland and Oh (8) and Quddus
(15) that an increase in the percent of elderly population leads to
fewer casualties.

Among the variables indicating area deprivation (i.e., median
household income and percent of population below the poverty line),
the median household income is included in the model because of
a coefficient with higher significance. As shown in Table 3, it has
negative effects for severe-crash risk but is insignificant for all-crash
risk. In addition, the coefficient of unemployment rate for the severe-
crash risk model by DVMT is significant and positive. These findings
imply that counties with higher median household income and lower
unemployment rate are relatively safer in terms of severe-crash risk.
This result confirms most of the prior studies in which higher casualty
rates were found to be associated with more deprived areas in com-
parison with relatively affluent areas (14, 15, 19, 20). The propor-
tion of the population older than 25 years with a bachelor’s degree
was also excluded from the final models, since it is highly correlated
with median household income. The large positive correlation (0.74)
may imply a significant causal relation between educational level
and area deprivation.

CONCLUSION

This study presents a county-level road safety analysis for the state
of Florida. Good-fitting nonlinear relations were obtained to relate
crash rates with exposure variables such as DVMT and population.
Significant spatial correlations in crash occurrence were identified
across adjacent counties. To account for the variations in crash risk
associated with different counties, a variety of aggregate road features,
traffic patterns, and demographic and socioeconomic characteristics
were investigated. The comprehensive literature review and pre-
liminary research show that the development of zone-level safety
prediction models could be challenging in terms of explicit dis-
crimination of crash rate and crash risk, exposure variables and risk
factors with consistent definitions, and accommodation for spatially
structured heterogeneities.

A Bayesian spatial model was successfully applied to investigate
crash risk given the two exposure variables. The results imply that
there is no significant difference in safety effects of risk factors on
all crashes and severe crashes by controlling for DVMT and popu-
lation. Counties with higher traffic intensity and population density
and a higher level of urbanization are associated with higher crash
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risk. As opposed to arterials, freeways seem to be safer with respect
to crash risk given either VMT or population. It was also found that
the increase in truck traffic volume tends to result in more-severe
crashes. The average travel time to work is negatively correlated
with all types of crash risk investigated in this study, which confirms
the prior finding that more crashes occur within an area close to
home. Regarding the population age cohort, the results show that
young drivers tend to be involved in more crashes whereas the increase
in elderly population leads to fewer casualties. Finally, it is confirmed
that safety status is worse for more deprived areas with lower income
and educational level and higher unemployment rate in comparison
with relatively affluent areas.
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