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bstract

Most crash severity studies ignored severity correlations between driver–vehicle units involved in the same crashes. Models without accounting
or these within-crash correlations will result in biased estimates in the factor effects. This study developed a Bayesian hierarchical binomial logistic
odel to identify the significant factors affecting the severity level of driver injury and vehicle damage in traffic crashes at signalized intersections.
rash data in Singapore were employed to calibrate the model. Model fitness assessment and comparison using intra-class correlation coefficient

ICC) and deviance information criterion (DIC) ensured the suitability of introducing the crash-level random effects. Crashes occurring in peak

ime and in good street-lighting condition as well as those involving pedestrian injuries tend to be less severe. But crashes that occur in night time,
t T/Y type intersections, and on right-most lane, as well as those that occur in intersections where red light cameras are installed tend to be more
evere. Moreover, heavy vehicles have a better resistance on severe crash and thus induce less severe injuries, while crashes involving two-wheel
ehicles, young or aged drivers, and the involvement of offending party are more likely to result in severe injuries.

2007 Elsevier Ltd. All rights reserved.

; Bay

f
q
l
t
t
a
i
t
p
s
c

eywords: Driver severity; Signalized intersection; Hierarchical logistic model

. Introduction

Signalized intersection is a hazardous location type on the
oad, which accounts for a substantial portion of traffic crashes.
n order to develop cost-effective safety countermeasures, crash
requency and severity are two major concerns in understanding
he relationship of crash occurrences and various risk factors.
n the one hand, a large number of studies have focused on

rash prediction models in examining the crash frequencies at
ntersections for different crash types (e.g. Kim and Washington,
006; Kim et al., 2006). On the other hand, crash severity is
lso a safety concern of the traffic system. Before developing

nd implementing the traffic safety treatments, it would be very
seful if a comprehensive understanding of the effects of risk
actors on crash severity is available.
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esian analysis

Analysis of crash severity can be conducted in different ways
or various purposes. Some studies focused on the crash fre-
uencies at specific traffic sites associated with different severity
evels (e.g. fatal, serious, slight) to investigate how geometric,
raffic, and environmental factors affect the crash severity. While
his kind of studies normally take each crash as the subject unit,
nalysis can also be undertaken based on the driver–vehicle units
nvolved in crashes to examine individual severity. Compared to
he crash-based severity studies, individual severity analysis is
romising and may yield a disaggregate understanding about
everity levels of different driver–vehicle groups. This is espe-
ially useful when the severity levels of driver–vehicle units with
ifferent characteristics are desired (Hauer, 2006). This study
ocuses on examining the severity of driver injury and vehicle
amage in traffic crashes at urban intersections.

Categorical data analysis techniques have generally been
mployed in most previous severity studies. While some

Hilakivi et al., 1989; Mannering and Grodsky, 1995; James
nd Kim, 1996; Shankar and Mannering, 1996; Mercier et al.,
997; Al-Ghamdi, 2002) have used binomial/multinomial logis-
ic model to explore the significance of the risk factors by taking
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rash severity as a nominal, others (O’Donnell and Connor,
996; Quddus et al., 2002; Rifaat and Chin, 2005; Abdel-Aty
nd Keller, 2005) have employed ordered logit/probit models to
ccount for the ordered nature of severity levels.

However, since the techniques used in most past studies
ssumed independence between different observations, these
echniques may not be adequate in modeling individual severity
f driver injury and vehicle damage in the presence of potential
orrelations between those involved in the same multi-vehicle
rashes. Actually, this correlation between samples has already
een identified in some earlier studies; for example, Evans
1992, 1993) found that in a multiple vehicle crash, the risk
f fatality was dependent on the characteristics of the other
ehicles. Hence, the models without considering the covari-
nce between individuals in the same crashes, especially when
he covariance is significant, will result in inaccurate or biased
stimates of factor effects.

A statistical modeling technique that allows hierarchical data
tructures to be easily specified and estimated is hierarchical
odels (see Snijders and Bosker, 2000; Goldstein, 2003). While

everal different terms have been used in the literature such
s “multilevel models” and “random coefficient models”, we
se “hierarchical models” throughout this paper. Although the
asic theories of hierarchical models have been developed and
iscussed for many years, it is only recently that many prac-
ical limitations on the use of hierarchical analysis have been
vercome. A good number of applications of this modeling tech-
ique have been found in sociological research disciplines. In
raffic safety research, Jones and Jorgensen (2003) presented

good exploration and discussion on the potential applica-
ions of the hierarchical models. Since then, the hierarchical
odeling technique has been gaining an increasing amount of

ttention in accounting for the hierarchical data structure in
oad crash frequency and severity studies. For example, Jones
nd Jorgensen (2003) and Lenguerrand et al. (2006) devel-
ped hierarchical models to identify factors affecting crash
everity, while Kim et al. (2007) employed the hierarchical
rash prediction models for different crash types at rural inter-
ections.

In the investigation of individual severity in crashes at sig-
alized intersections in Singapore, a within-crash correlation
as preliminarily identified, which will be shown in detail in
ection 4 of model calibration and validation. Motivated by this
orrelation and inspired by the existing studies with hierarchical
odels, we proposed the use of a hierarchical binomial logistic

HBL) model to examine the significant risk factors related to
everity of driver injury and vehicle damage in traffic crashes. In
articular, crash was considered as cluster and there were a num-
er of sub-clusters per cluster, i.e. driver–vehicle units involved
n a crash. A full Bayesian method using Markov chain Monte
arlo (MCMC) algorithm was employed for model calibration

o explicitly model the two-level data structure, i.e. crash-level
nd individual-level. Using the intra-class correlation coefficient

ICC) and deviance information criterion (DIC) in model assess-
ent and comparison, the use of random effects on crash level

n the model was further validated to be effective in this study
n accounting for the within-crash correlation.

(
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t
b

nd Prevention 40 (2008) 45–54

In the rest of this paper, a description of methodological
ramework, consisting of model development, assessment and
omparison, is given first. Data collection and model calibration
re then summarized to illustrate the proposed methodology and
o understand the significant risk factors on individual sever-
ty. Summary and conclusion of this study, together with two
otential extensions, are presented finally.

. Methodology

.1. Hierarchical binomial logistic model

In the presence of within-crash correlation of individual
everity, models without appropriately considering the hierar-
hical data structure might yield inaccurate or biased parameter
stimations. To account for this within-crash correlation, a HBL
odel with two-level specification was developed to estimate the

ffects of the selected covariates on severity level. Specifically,
n the individual-level model (level 1), the response variable Y
or the ith driver–vehicle unit in jth crash only takes one of two
alues: Yij = 1 in case of high severity, e.g. fatal or severe injury,
hile Yij = 0 in case of low severity, e.g. slight or no injury.
he probability of Yij = 1 is denoted by πij = Pr(Yij = 1), which

ollows a binomial distribution; hence

ogit (πij) = log

(
πij

1 − πij

)
= β0j +

P∑
p=1

βpjXpij (1)

here Xpij is the pth covariate in the individual-level for ith
river–vehicle unit in jth crash, while β0jand βpj are the intercept
nd the regression coefficients. In the context of the hierarchical
odel, the within-crash correlation is specified in the crash-level
odel (level 2) as:

0j = γ00 +
Q∑

q=1

γ0qZqj + u0j (2)

pj = γp0 +
Q∑

q=1

γpqZqj + upj (3)

n Eqs. (2) and (3), both intercept β0j and regression coefficients
pj in Eq. (1) vary with the different crashes. Specifically, two
omponents are combined to decide the coefficient values. First,
inear relationships are assumed for them with the crash-level
ovariates Zqj, which is reasonable since the various crash fea-
ures (e.g. street lighting, road surface condition) may result in
ifferent severity level. Second, besides the fixed parts which
epend on the crash-level covariates Zqj, random effects are
lso included to permit the potential random variations across
he crashes (u0j and upj). These between-crash random effects
ary across the different crashes only but are constant for all
he driver–vehicle units within a same crash. This specification
nables the model to account for the within-crash correlations

Jones and Jorgensen, 2003; Kim et al., 2007). Practically, the
andom effects are used to represent some unobservable varia-
ions between different crashes, which is the major difference
etween ordinary binomial logistic model (OBL) and HBL.
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an OBL model with the same covariates and dataset can also
be estimated to compare with the calibrated HBL model. The
H.L. Huang et al. / Accident Ana

The full model with Eqs. (1–3) is academically named as
andom slope model (Snijders and Bosker, 2000). When the
andom effects are assumed only on the intercept, a simplified
orm can be obtained by dropping the crash-level covariate com-
onent

∑Q
q=1γpqZqjand the random part upj, which is referred

o as random intercept model. The Eq. (3) is thus modified to
e:

pj = γp0 (4)

n this study, to avoid excess complexity as the large set of covari-
tes used, only the random intercept model was investigated.
ence, the combined model is yielded by substituting Eqs. (2)

nd (4) with Eq. (1) and is represented as follows:

ogit(πij) = log

(
πij

1 − πij

)
= γ00 +

P∑
p=1

γp0Xpij

+
Q∑

q=1

γ0qZqj + u0j (5)

he random effects u0j are generally assumed as a normal distri-
ution with mean zero and variance τ2

0 , as suggested by Snijders
nd Bosker (2000). The variance of outcome (Yij) therefore con-
ists of two components: the variance of u0j (τ2

0 ) which captures
he between-crash variability (level 2), and the variance associ-
ted with logistic distribution which captures the within-crash
ariability (level 1).

In interpreting the fixed effect part of coefficient estimation, a
imilar way can be followed as with the OBL, the exponential of
ffect coefficients, i.e. exp(�), can be calculated to obtain odds
atio (O.R.) estimates in HBL model. This provides a basic inter-
retation for the magnitude of γ: if O.R. is less than 1.0, a unit
ncrease in the variable Xpij or Zqj will reduce the odds of being
evere by a multiplicative effect of exp(γ) and vice versa. For
he categorical covariates in the model where dummy variables
re applied, exp(γa–γb) represents the odds ratios between these
wo categorical variables, a and b. In this case, the parameter or
ts estimate makes sense only by comparing one category with
nother.

.2. Bayesian inference

There are several methods available for model calibration
n hierarchical models (see Goldstein, 2003). Instead of using
ikelihood-based estimation, this study employed Bayesian
nference to calibrate the proposed two-level model (Gelman
t al., 2003). Bayesian inference is the process of fitting a prob-
bility model to a set of data and summarizing the result by a
robability distribution on the parameters of the model and on
nobserved quantities such as predictions for new observations.
pecifically, in Bayesian models, given model assumptions and
arameters, the likelihood of the observed data is used to mod-

fy the prior beliefs of the unknowns, resulting in the updated
nowledge summarized in posterior densities. Hence, the dis-
inctions between fixed and random effects disappear since all
ffects are now considered random and the hierarchical structure

O
m
u
t

nd Prevention 40 (2008) 45–54 47

s explicitly accounted for. Several studies have demonstrated
he advantages of Bayesian inference over classical estimation

ethods in philosophical aspect as well in practical aspect in
ransportation applications (e.g. Washington et al., 2005; Mitra
nd Washington, 2007).

In the absence of strong prior information for the model
nknowns, uninformative priors were assumed for all regres-
ion coefficients (γ00,γp0 and γ0q) with normal distributions
0, 1000), and the varianceτ2

0 of the normal distributed random
ffects μ0j with inverse Gamma distribution (0.001, 0.001). The
odel was computed via the Gibbs sampler, a MCMC technique

Gilks et al., 1995), which was implemented using WinBUGS
oftware (Spiegelhalter et al., 2003a). The 95% Bayesian cred-
ble interval (95% BCI) was used to examine the significance
f covariates, which provides probability interpretations with
ormality assumption on unknowns and confidence interval
stimations (Gelman et al., 2003). Specifically, those coeffi-
ient estimations were identified as significant, whose 95%
CIs do not cover “0”, i.e., the 95% BCIs of O.R. do not
over “1”. Besides, engineering and intuitive judgment should
e able to confirm the validity and practicality of the sign of
ach covariate and the rough magnitude of each estimated coe-
ficient.

.3. Assessment of random effects using intra-class
orrelation coefficient

An intra-class correlation coefficient ρ (ICC) is normally
efined to examine the proportion of specific crash-level vari-
nce (level 2) in overall residual variance (Jones and Jorgensen,
003; Kim et al., 2007). Since the logistic distribution for
he individual-level (level 1) residual implies a variance of
2/3 = 3.29, this implies that for a two-level logistic random

ntercept model with an intercept variance of τ2
0 , the ICC for

etween-crash residual is

= τ2
0

τ2
0 + π2/3

he ICC is an indicator of the magnitude of the within-crash
orrelation. A value of ρ close to zero means that there is a very
mall variation between the different crashes, indicating that
BL model may be adequate for the data. On the other hand, a

elative large value of ρ implies a favor for hierarchical model,
.g. HBL model in this study.

.4. Model comparison using deviance information
riterion

To further ensure the advantage of employing HBL over OBL,
BL model was obtained by dropping random effects u0j, which
eans ignoring the severity correlations between driver–vehicle

nits within the same crashes. So the Eq. (5) changes
o:
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ogit(πij) = log

(
πij

1 − πij

)

= γ00 +
P∑

p=1

γp0Xpij +
Q∑

q=1

γ0qZqj (6)

For model comparison, deviance information criterion (DIC),
roposed by Speigelhalter et al. (2003b) was used. In complex
ierarchical models where parameters may outnumber observa-
ions, DIC provides a Bayesian measure of model complexity
nd fit that can be combined to compare models of arbitrary
tructure (Speigelhalter et al., 2003b). This can overcome the
roblems of classical criteria, such as Akaike information cri-
erion (AIC) and Bayesian information criterion (BIC). These
lassical criteria require the specification of the number of
arameters in each model. Specifically, DIC is defined as:

IC = D(γ̄) + 2pD = D(γ) + pD

here D(γ̄)is the deviance evaluated at the posterior means of
stimated unknowns (γ̄), and posterior mean deviance D(γ)can
e taken as a Bayesian measure of fit or “adequacy”. pD is
otivated as a complexity measure for the effective number of

arameters in a model, as the difference between D(γ) and D(γ̄),
.e., mean deviance minus the deviance of the means. As a gen-
ralization of AIC, DIC can thus been considered a Bayesian
easure of fit or adequacy, penalized by an additional complex-

ty term pD. As with AIC, models with lower DIC values are
referred.

. Dataset for analysis

For this study, crash data in Singapore from 2003 to 2005
ere used. Singapore is a heavily urbanized island country with

n area of about 700 km2 and 3235 km of roads (in 2005). Of
he total of 19832 reported crashes in this period, 4095 cases
ccurring at signalized intersections were extracted and used in
he model. In these, 7840 driver–vehicle units were involved,
esulting in an average involvement rate of 1.91 individuals per
rash.

In the dataset, each observation is associated with a
river–vehicle unit involved in the crashes at intersections. Two

ategorical severity indicators are of interest, which are driver
njury severity: (a) fatal or serious injury, DI(A), (b) slight or no
njury, DI(B); and vehicle damage severity: (a) extensive dam-
ge, VD(A), (b) slight or no damage, VD(B). To yield a net effect

V
c
h
1

able 1
ummary of crash severity at signalized intersection by years

ear DI(A) DI(B) % of DI(A) VD(A) V

003 39 2622 1.49 491 21
004 37 2885 1.28 398 25
005 36 2221 1.62 173 20

otal 112 7728 1.45 1062 67

ote: DI(A): driver with fatal/serious injury; VD(A): vehicle with extensive damage
ehicle with slight or no injury; IS(B): otherwise.
nd Prevention 40 (2008) 45–54

stimate of each potential factor on individual severity, a binary
ependent variable was defined by combining the two severity
ndicators: (a) DI(A) or/and VD(A), denoted as IS(A), repre-
enting high individual severity (b) otherwise is low individual
everity denoted as IS(B). A summary of severity statistics is
iven for years in Table 1.

In addition to severity levels, a record of crash IP number,
eometric features, traffic conditions, driver and vehicle char-
cteristics was also reported. There are a total of 25 variables
oded for each intersection crash in the dataset. A number of
ariables like location code, vehicle registration number, nature
f vehicle registration, etc. were excluded as they were irrele-
ant to the analytical purpose. A correlation matrix for those
emaining variables, which were hypothesized to relate to the
everity levels, was checked to avoid multi-collinearity as well
s wrong signs or implausible magnitudes in the estimated
oefficients. For the highly correlated variables, only the most
ignificant variable was retained in the analysis; for example,
eather condition was excluded because of its high correla-

ion with road surface. Finally, a total of 10 covariates in the
rash-level were used, i.e. Day of Week, Time of Day, Inter-
ection Type, Nature of Lane, Road Surface, Street Lighting,
oad Speed Limit, Vehicle Movement, Presence of Red Light
amera, and Pedestrian Involved. In addition, to explore how
ifferently the various driver–vehicle characteristics affected
he severity levels, five covariates in the individual-level, i.e.
river–vehicle level, were selected, i.e. Vehicle Type, Driver
ge, Driver Gender, Involvement of Offending Party, Passen-
er Involved. Unfortunately, several vehicle safety features such
s airbags, and anti-lock brakes, are not included in the crash
ataset. But although those variables may be important to affect
he individual severity, they are not so useful in Singapore since

ost vehicles are less than 6 years old and are hence equipped
ith the latest protective features in modern cars. Moreover, the

tringent compulsory annual inspection on all vehicles to ensure
hey are road worthy means that these features are in serviceable
onditions.

The definitions of the selected covariates, together with their
ean and standard deviation (S.D.), are presented in Table 2.
or convenience of analysis, all these variables were split as
roups of dummy variables based on the engineering experi-
nces or existing findings in previous studies. For example,

ehicle Type was categorized as three groups of two-wheel vehi-
le, light vehicle and heavy vehicle, since the vehicle weight
ad been identified relevant to injury severity (Evans and Frick,
994).

D(B) % of VD(A) IS(A) IS(B) % of IS(A)

70 22.63 508 2153 23.59
24 15.77 412 2510 16.41
84 8.30 192 2065 9.30

78 15.67 1112 6728 16.53

; IS(A): DI(A) or/and VD(A); DI(B): driver with slight or no injury; VD(B):
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Table 2
Covariates used in the model

Covariates Description of the variables Mean S.D.

Day of week If crash at weekend = 1, otherwise = 0 0.164 0.370
Time of day

Day time If crash in 10 a.m.–5 p.m. = 1, otherwise = 0 0.289 0.453
Night time If crash at 8 p.m.–7 a.m. = 1, otherwise = 0 0.434 0.496
Peak time If crash at 7 a.m.–10 a.m. or 5 p.m.–8 p.m. = 1, otherwise = 0 0.278 0.448

Intersection type
X intersection If crash at X type intersection = 1, otherwise = 0 0.014 0.115
T/Y intersection If crash at T/Y type intersection = 1, otherwise = 0 0.232 0.422
Other types If crash at other type intersection = 1, otherwise = 0 0.755 0.430

Nature of lane
Single lane If crash on single lane = 1, otherwise = 0 0.025 0.155
Left-most lane If crash on Left-most lane = 1, otherwise = 0 0.163 0.369
Right-most lane If crash on right-most lane = 1, otherwise = 0 0.256 0.437
Centre lane If crash on centre lane = 1, otherwise = 0 0.556 0.497

Road surface If road surface is dry = 0, otherwise = 1 0.129 0.335
Weather condition If weather condition is fine = 0, otherwise = 1 0.098 0.297
Street lighting If street lighting is fine = 0, otherwise = 1 0.338 0.473

Road speed limit (km/h)
40 If road speed limit is 40 km/h = 1, otherwise = 0 0.005 0.068
50 If road speed limit is 50 km/h = 1, otherwise = 0 0.891 0.311
60 If road speed limit is 60 km/h = 1, otherwise = 0 0.072 0.258
70 If road speed limit is 70 km/h = 1, otherwise = 0 0.032 0.176

Vehicle movement
Single vehicle self-skidded If single vehicle self-skidded = 1, otherwise = 0 0.031 0.172
Single vehicle against stationary

object or pedestrian
If single vehicle against stationary object or pedestrian = 1,
otherwise = 0

0.029 0.169

Between moving vehicle and
stationary vehicle

If between moving vehicle and stationary vehicle = 1,
otherwise = 0

0.882 0.323

Between moving vehicles If between moving vehicles = 1, otherwise = 0 0.053 0.223
Other movements If other movements = 1, otherwise = 0 0.006 0.076

Presence of red light camera If a red light camera is present = 1, otherwise = 0 0.072 0.258
Pedestrian involved If passengers involved = 1, otherwise = 0 0.051 0.220

Vehicle type
Two-wheel vehicle If vehicle type is motor scooter or motorcycle = 1,

otherwise = 0
0.304 0.460

Light vehicle If vehicle type is motorcar, station wagon, goods can,
pick-up or minibus = 1, otherwise = 0

0.572 0.495

Heavy vehicle If vehicle type is Bus, bendy, lorry, tip truck, trailer, crane or
other heavy vehicles = 1, otherwise = 0

0.124 0.329

Driver age
≤ 25 If driver age < = 25 = 1, otherwise = 0 0.162 0.368
26–45 If driver age within 26–45 = 1, otherwise = 0 0.480 0.500
46–65 If driver age within 46–65 = 1, otherwise = 0 0.326 0.469
>65 If driver age >65 = 1, otherwise = 0 0.033 0.178

Driver gender If driver is female = 1, otherwise = 0 0.104 0.305
I ul = 1,
P ard =

4
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nvolvement of offending party If driver is likely at = fa
assenger involved If with passengers on bo

. Model calibration and validation

A preliminary examination of potential within-crash covari-
nce in the collected dataset identified a significant correlation
etween individuals involved in same multi-vehicle crashes,

hich represent 83.5% of all crashes at signalized intersec-

ions in Singapore. In particular, in a multi-vehicle crash, if
he severity of driver–vehicle unit was IS(A), then the others
ad a probability of 31% also to be in IS(A). On the other

m
a

i

otherwise = 0 0.627 0.484
1, otherwise = 0 0.170 0.376

and, if a driver–vehicle unit was in IS(B), then the others had
nly 12% chance to be in IS(A). This significantly lower ratio
learly implies that the correlation among the individual severi-
ies in a multi-vehicle crash may exist. Hence, the proposed HBL

odel may be more appropriate in modeling the data than OBL

odel. The results for model calibration as well as quantitative

ssessment are presented in this section.
In the model calibration, beginning with the 15 covariates

n the dataset, each variable was tested for the statistical sig-
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Table 3
Posterior summaries of parameter estimates

Parameters Effect estimate Odds ratio 95% BCI of odds ratio

Mean S.D. 2.5% 97.5%

Fixed effects
Time of day
Day timea 0 0 1.00 1.00 1.00
Night time 0.17 0.09 1.19 1.04 1.39
Peak time −0.89 0.36 0.41 0.12 0.85

Intersection type
X intersection −0.72 1.27 0.49 0.07 5.38
T/Y intersection 0.18 0.06 1.20 1.02 1.36
Other typesa 0 0 1.00 1.00 1.00

Nature of lane
Single lane −1.05 0.98 0.35 0.07 2.27
Left-most lane −0.37 0.42 0.69 0.33 1.50
Right-most lane 0.23 0.08 1.26 1.07 1.83
Centre lanea 0 0 1.00 1.00 1.00

Street lighting −1.17 0.34 0.31 0.14 0.59
Presence of red light camera 0.73 0.12 2.08 1.68 2.53
Pedestrian involved −0.96 0.46 0.38 0.14 0.92

Vehicle type
Two-wheel vehicle 1.29 0.21 3.63 2.53 5.75
Light vehiclea 0 0 1.00 1.00 1.00
Heavy vehicle −2.07 0.36 0.13 0.11 0.23

Driver age
≤ 25 0.15 0.13 1.16 1.02 1.43
26–45a 0 0 1.00 1.00 1.00
46–65 −0.16 0.19 0.85 0.61 1.19
>65 0.53 0.28 1.70 1.03 3.74

Involvement of offending party 0.49 0.13 1.63 1.21 2.14
Random effects

Between-crash variance (τ2
0 ) 1.34 0.87 0.56 2.29

Within-crash variance 3.29
ICC 0.289

riable

n
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ρ
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a Represents the reference category used in the model for the multinomial va

ificance and the insignificant ones were eliminated. In the
nal model, three chains of 20,000 iterations each produced

race plots with a good degree of mixing, and Brooks, Gelman
nd Rubin convergence diagnostics (Brooks and Gelman, 1998)
sing Bayesian output analysis (BOA) program (Smith, 2001)
ndicated convergence. Particularly, after discarding 10,000
urn-in samples and thinning to retain every fifth sample to
educe autocorrelation (leaving a total of 6000 posterior sam-
les), the 0.975 quantiles of the corrected scale reduction factor
CSRF) for the parameters were each 1.2 or less. Posterior
istributions were all uni-modal. The means, standard devi-
tions and associated 95% BCI of estimated random effects
nd regression coefficients were monitored and listed in the
able 3.

To check the model adequacy, underlying assumptions for
he HBL model in Eq. (5) were assessed. Posterior samples of

he crash-level random effects (u0j) can be thought of as resid-
als, and thus can be examined with usual model diagnostics.
n the MCMC simulation, 200 random effects u0j were ran-
omly sampled, and the fact that they averaged very close to zero

m
E
m
m

.

as reassured. Normal probability plots, revealing no strong
bnormalities, also validate the normality and exchangeability
ssumptions.

As shown in Table 3, the variance of u0j(τ2
0 ), indicating the

agnitude of the between-crash variance, is 1.34. Hence, the
CC is calculated by:

= 1.34

1.34 + π2/3
= 28.9%

his means that 28.9% of unexplained variations in individ-
al severity were resulted from between-crash variance, which
trongly suggests the usefulness of the model specification of
ierarchical structure. If an OBL mode was implemented with-
ut considering the random effects between crashes, the results
ill be biased and inaccurate.
Model comparison using DIC further strengthened this argu-
ent. DIC values for fitted OBL model Eq. (6) and HBL model
q. (5) are given in Table 4. Results show that D(γ) of HBL
odel (1984.5) is less than one third of that obtained in OBL
odel (6165.5). After penalized by pD, the DIC value for HBL
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Table 4
Results of model comparison using DIC
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rdinary logistic model 6165.5 6139.1 26.4 6191.9
ierarchical logistic model 1984.5 901.1 1083.4 3067.9

odel (3067.9) is also hugely less than that in OBL model
6191.9). This further proves that the use of crash-level ran-
om effects in HBL model can substantially improve the model
t.

. Discussions on significant risk factors

Summary statistics for the posterior samples of fixed effects
f significant covariates are presented in Table 3. In the final
BL model, nine variables were identified as significant judged
y 95% BCI. They are: (1) Time of Day, (2) Intersection Type,
3) Nature of Lane, (4) Street Lighting, (5) Presence of Red
ight Camera, (6) Pedestrian Involved, (7) Vehicle Type, (8)
river Age, (9) Involvement of Offending Party. The detailed

nterpretations for these significant risk factors are offered in
he following.

.1. Time of day

The time of crash occurrence was classified into three peri-
ds, i.e., day time (10 a.m.–5 p.m.), night time (8 p.m.–7 a.m.),
nd peak time (7 a.m.–10 a.m. or 5 p.m.–8 p.m.). Compared with
rash occurrences during day time, crashes which occur at night
ime have 19% higher odds of high severity (IS(A)) (O.R. 1.19,
5% BCI (1.04, 1.39)). This finding is consistent with Simoncic
2001) who found crashes at night were more serious than those
uring daytime. This may be expected since speeding and alco-
ol use resulting in higher crash severity are more likely in these
ours. Moreover, at night the effect of street lighting comes into
lay and this was also found to be significant in this study. The
igh probability of IS(A) in night time is consistent with pre-
ious studies for severities of motorcycle crashes (Quddus et
l., 2002) and single vehicle crashes (Rifaat and Chin, 2005) in
ingapore. Furthermore, individuals involved at crashes in peak

ime (O.R. 0.41, 95% BCI (0.12, 0.85)) were also found to have
educed odds of being IS(A) by 60%. It can be reasoned that
ue to the higher traffic volume, the vehicle speeds during peak
ime are substantially reduced compared to off-peak time, hence
esulting in lower crash severity. This is consistent with Zhang et
l. (2000), in which the odds of fatality in crashes that occurred
n 70–90 kph zones were almost six times more than those in
rashes occurring in zones with slower speeds.

.2. Intersection type

It was found that crashes occurring at T/Y type intersections

O.R. 1.20, 95% BCI (1.02, 1.36)) increase the odds of being
S(A) by 20%, in contrast to other type of intersections. Results
ndicate that, though insignificant, X type intersections may have
n averagely positive effect on reducing the crash severity. Vehi-
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les on the minor road at T/Y type intersections, merging into
he major road, have a higher probability to be seriously collided
y the going-through vehicles on the major road. This is similar
o the right-turn traffic (left-driving) at X type intersections. In
ddition, a shorter sight distance, commonly associated with a
/Y type intersections, may also be a factor causing more severe
rashes.

.3. Nature of lane

Another significant geometric factor is Nature of Lane, where
he right-most (left driving) lane (O.R. 1.26, 95% BCI (1.07,
.83)) was identified to be significant on increasing the odds of
evere crashes by 26%, compared with central lane. This result
s consistent with the Khorashadi et al. (2005) who found that
or right driving, if the location of collision is on the left lane, the
ikelihood of injury severity increased by 268.1%. The higher
everity risk may be caused by higher speed on right-most lane
han on other lanes. According to Bedard et al. (2002), traveling
t speeds exceeding 112 kph was independently associated with
164% increase in the odds of a fatality compared with speeds

ess than 56 kph.

.4. Street lighting

Street lighting was identified as a significant factor (O.R.
.31, 95% BCI (0.14, 0.59)). The odds ratio value indicates that
bad street lighting condition can increase the odds of severe

rash by about 69%. This result is generally expected because
rivers may have more reaction time and better perception ability
n crash risk in good street lighting environments. Yau (2004)
lso found that street lighting condition affects the crash severity
or the single vehicle crashes in Hongkong. This finding implies
hat improving the street lighting can substantially improve the
afety condition at intersections.

.5. Presence of red light camera

Results show that among the highly significant risk factors,
resence of Red Light Camera (O.R. 2.08, 95% BCI (1.68, 2.53))

s associated negatively with crash severity. In other words, the
resence of red light camera is associated with higher severity
evel. In the sites with red light camera, the odds of being IS(A)
ncrease by 108%. This may seem surprising compared to find-
ngs in many studies in which the red light camera has been
roved to be useful in reducing the violation and crash frequen-
ies, as well as relieving the crash severity. In a recent driver
ehavior study in Singapore, Huang et al. (2006) have found
hat the presence of a red light camera is effective in curbing the
ed light running as well as reducing crash risk in angle crashes.
lthough red light camera itself may not increase the risk of

evere crashes, it is associated with high risk sites. Specifically,
ntersections with red light camera may have already been placed

n sites with more severe crashes since traffic authorities always
nstall cameras at extraordinarily hazardous sites. Moreover, this
einforces the findings by Chin and Quddus (2003), where the
resence of a surveillance camera was found to be associated
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ith an increase in the total crash frequency at intersections.
hese results imply that, keeping other covariates unchanged,
ome unmeasured factors may have effects on the relative sever-
ty.

.6. Pedestrian involved

The variable Pedestrian Involved is a significant factor affect-
ng driver severity (O.R. 0.38, 95% BCI (0.14, 0.92)). The
nvolvement of pedestrians substantially reduces the odds of
eing IS(A) by about 62%. This is intuitively reasonable since
edestrians, rather than the drivers, are much easier to be injured
eriously in the collisions. It is also supported by Chang and
ang (2006), who found that pedestrians were more likely to

ave higher risks of being injured than other types of vehicle
rivers in traffic crash. Crash severity statistic also confirms
his finding that of driver–vehicle units involved in the crashes
f “vehicle against pedestrian” type, only 3.4% were injured
everely and/or damaged extensively, compared with the overall
ate of 16.5% as shown in Table 1.

.7. Vehicle type

Vehicle type was classified as three categories in this study,
.e., two-wheel vehicle, light vehicle, and heavy vehicle. By tak-
ng the most common light vehicle as reference, the other two
ummy variables for two-wheel vehicle (O.R. 3.63, 95% BCI
2.53, 5.75)) and heavy vehicle (O.R. 0.13, 95% BCI (0.11,
.23)) were all found to have significant effects on individ-
al severity. Compared with light vehicle, two-wheel vehicle
ncreased the odds of being IS(A) by 263%, representing the

ost significant factor in the model. The severity risk in two-
heel vehicle (e.g. motorcycles) is expected as two-wheel riders
o not have the facility of safety protections that are available
n light vehicle (e.g. cars), such as seatbelt, airbag etc. Again
he two-wheel riders may be thrown off from the vehicle at
he time of collision while in the case of car crashes this may
arely happen. Kocklelman and Kweon (2002) found that rid-
ng a motorcycle is causing more severe injury than driving a
ar. Again heavy vehicle reduces the odds of being IS(A) by
7%. It is not surprising that as the vehicle weight increases, the
isks of being injured or damaged decrease substantially, even
hough other driver–vehicle units involved in the same crash

ay be more vulnerable to be injured or damaged. This find-
ng is also supported by Levine et al. (1999), who reported that
very 454 kg (1000 lbs) increase in vehicle weight was equiva-
ent to the driver’s ability to withstand front impact crashes of
0 more kph (6 mph) before being fatally injured. However, it
s interesting to notice that as found in Rifaat and Chin (2005),
he truck crashes in single vehicle crashes are more likely to
esult in serious injuries and fatalities. This contradiction can be
xplained by the different collision types between intersection
rash and single vehicle crash. In contrast to intersection crash,

ore severe crashes may be caused by higher energy exchange

or trucks with roadside objects in single vehicle crashes. More-
ver, as found in Rifaat and Chin (2005), the higher relative
atality risk was associated with truck crashes mainly on high

w
t
T
C
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peed roads such as expressway rather than other highway types
here signalized intersections are located.

.8. Driver age

The demographic variable, driver age, was found to be sig-
ificant on individual severity, in which both young group (O.R.
.16, 95% BCI (1.02, 1.43)) and aged group (O.R. 1.70, 95%
CI (1.03, 3.74)) were identified to have effects on increasing

he odds of being IS(A). Odds ratios indicate that a 16% increase
f the IS(A) odds is associated with young drivers while 70%
or aged drivers. It is likely because young drivers drive more
ecklessly (Rifaat and Chin, 2005; Kocklelman and Kweon,
002) while aged drivers have relatively weak risk detecting and
eacting abilities. Again Hilakivi et al. (1989) also showed that
oung drivers as well as older drivers are more at risk of being
nvolved in severe crashes. Another reason for young drivers
o be involved with severe crashes may be that they represent
large proportion of riders of two-wheel vehicles, which have
een proven to be associated with a higher risk of being involved
n more severe crashes (Rifaat and Chin, 2005; Quddus et al.,
002). Furthermore, as indicated by Rifaat and Chin (2005),
ecrease of visual power, deterioration of muscle strength and
eaction time may be responsible for the aged drivers to be
nvolved in severe crashes.

.9. Involvement of offending party

Involvement of offending party affects crash severity sig-
ificantly (O.R. 1.63, 95% BCI (1.21, 2.14)). The at-fault
river–vehicle unit has 63% higher odds to be IS(A) than the
ot-at-fault party. This provides a more convincible evidence
or educating drivers to keep away from risk-taking maneuvers.

. Conclusions and recommendations

This study developed a Bayesian HBL model to identify the
isk factors on individual severity of driver injury and vehicle
amage at urban intersections. It is helpful to account for the
everity correlation of driver–vehicle units involved in the same
ulti-vehicle crashes. The estimation of random effects using

CC showed that 28.9% of unexplained variation in severity
evel was resulted from between-crash variance. Model com-
arison with ordinary logistic model using DIC further ensured
he suitability and model-improving effectiveness of introduc-
ng the crash-level random effects. This means, if ordinary
ogistic model was used, 28.9% residual variance could not
e explained by the model, which might result in inaccurate
oefficient estimates of risk factors. The Bayesian hierarchical
odeling approach also showed flexibilites to explicitly explore

he hierarchical data structure in traffic safety field.
Of the covariates including various geometric features, traf-

c conditions, and driver–vehicle characteristics, nine variables

ere identified as significant using 95% BCI. Among these,

he crash-level significant factors are Time of Day, Intersection
ype, Nature of Lane, Street Lighting, Presence of Red Light
amera, and Pedestrian Involved. In particular, it was found
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hat crashes occurring in peak time, in good street-lighting con-
ition, and in the case of pedestrians involved are associated
ith lower severity, while those occurring in night time, at T/Y

ype intersections, on right-most lane, and in the presence of
ed light cameras have larger odds of being severe. Vehicle
ype, Driver Age and Involvement of Offending Party were also
ound to affect severities of driver injury and vehicle damage
ignificantly. Specifically, results indicated that heavy vehicles
ave a better resistance on serious injury or extensive dam-
ge, while two-wheel vehicles, young or aged drivers, with the
nvolvement of offending party have a higher risk of being high
everity.

This study has a great potential in traffic safety discipline,
specially when the correlation exists in the dataset. This study
llustrated a way to analyze the potential within-crash correla-
ions in severity study using the hierarchical modeling technique.
t also proved and emphasized the importance of accounting for
his kind of within-cluster correlation in yielding reliable and
ccurate effect estimates for various risk factors.

Two important extensions of this research can be proposed.
irstly, while this study only considered the random intercept

n the regression equations, the random effects on the covariate
oefficients can also be examined with careful specifications,
esulting in random slope model Eqs. (1–3). In the random slope
odel, the cross-level interaction between covariates could be

ppropriately specified and estimated. Secondly, the hierarchical
ata structure in traffic data is not only limited in crash-specific
orrelation in severity analysis. A more general form can also
e proposed for traffic safety study to be a five-level hierarchy,
.e., geographic region–traffic site–crash–vehicle–occupant. The
nvolvement and emphasis for different sub-groups of these
evels depend on different research purposes and also rely on
he heterogeneity examination on crash data employed. The
ayesian approach provides us with a flexible and reliable model
alibration and assessment measure for these potential explo-
ations and applications.

eferences

bdel-Aty, M., Keller, J., 2005. Exploring the overall and specific crash severity
levels at signalized intersections. Accid. Anal. Prev. 37 (3), 417–425.

l-Ghamdi, A.S., 2002. Using logistic regression to estimate the influence of
accident factors on accident severity. Accid. Anal. Prev. 34 (6), 729–741.

edard, M., Guyatt, G.H., Stones, M.J., Hirdes, J.P., 2002. The independent
contribution of driver, crash, and vehicle characteristics to driver fatalities.
Accid. Anal. Prev. 34 (6), 717–727.

rooks, S.P., Gelman, A., 1998. General methods for monitoring convergence
of iterative simulation. J. Comput. Graph. Stat. 7 (4), 434–455.

hang, L.Y., Wang, H.W., 2006. Analysis of traffic injury severity: an application
of non-parametric classification tree techniques. Accid. Anal. Prev. 38 (5),
1019–1027.

hin, H.C., Quddus, M.A., 2003. Applying the random effect negative binomial
model to examine traffic accident occurrence at signalized intersections.
Accid. Anal. Prev. 35 (2), 253–259.

vans, L., 1992. Car size or car mass: which has greater influence on fatality

risk? Am. J. Pub. Health 82 (8), 1105–1112.

vans, L., 1993. Mass ratio and relative driver fatality risk in two-vehicle crashes.
Accid. Anal. Prev. 25 (2), 213–224.

vans, L., Frick, M., 1994. Car mass and fatality risk: has the relationship
changed? Am. J. Public Health 84 (1), 33–36.

S

S

nd Prevention 40 (2008) 45–54 53

elman, A., Carlin, J.B., Stern, H.S., 2003. Bayesian Data Analysis, 2nd ed.
Chapman & Hall, New York.

ilks, W.R., Richardson, S., Spiegelhalter, D.J., 1995. Markov Chain Monte
Carlo methods in Practice. Chapman & Hall, New York.

oldstein, H., 2003. Multilevel Statistical Models, 3nd ed. Edward Arnold,
London.

auer, E., 2006. The frequency-severity indeterminacy. Accid. Anal. Prev. 38
(1), 78–83.

ilakivi, I., Veilahti, J., Asplund, P., Sinivuo, J., Laitinen, L., Koskenvuo, K.,
1989. A sixteen-factor personality test for predicting automobile driving
accidents of young drivers. Accid. Anal. Prev. 21 (5), 413–418.

uang, H.L., Chin, H.C., Heng, H.H., 2006. Effect of red light camera on
accident risk at intersections. In: TRB 2006 Annual Meeting CD-ROM,
Transportation Research Board, National Research Council, Washington,
DC.

ames, J.L., Kim, K.E., 1996. Restraint use by children involved in crashes in
Hawaii, 1986–1991. Transportation Research Record 1560, 8–11.

ones, A.P., Jorgensen, S.H., 2003. The use of multilevel models for the predic-
tion of road accident outcomes. Accid. Anal. Prev. 35 (1), 59–69.

horashadi, A., Niemeier, D., Shankar, V., Mannering, F., 2005. Differences in
rural and urban driver-injury severities in accidents involving large-trucks:
An explanatory analysis. Accid. Anal. Prev. 37 (5), 910–921.

im, D.G., Washington, S., 2006. The significance of endogeneity problems in
crash models: an examination of left-turn lanes in intersection crash models.
Accid. Anal. Prev. 38 (6), 1094–1100.

im, D.G., Washington, Oh, S., Jutaek, 2006. Modeling crash types: new insights
into the effects of covariates on crashes at rural intersections. J. Transport.
Eng. 132 (4), 282–292.

im, D.G., Lee, Y., Washington, S., Choi, K., 2007. Modeling crash outcome
probabilities at rural intersections: application of hierarchical binomial logis-
tic models. Accid. Anal. Prev. 39 (1), 125–134.

ocklelman, K.M., Kweon, Y.J., 2002. Driver injury severity: an application of
ordered probit models. Accid. Anal. Prev. 34 (3), 313–321.

enguerrand, E., Martin, J.L., Laumon, B., 2006. Modeling the hierarchical
structure of road crash data: application to severity analysis. Accid. Anal.
Prev. 38 (1), 43–53.

evine, E., Bedard, M., Molloy, D.W., Basilevsky, A., 1999. Determinants of
driver fatality risk in front impact fixed object collisions. Mature Med.
Canada 2, 239–242.

annering, F.L., Grodsky, L.L., 1995. Statistical analysis of motorcyclists’
perceived accident risk. Accid. Anal. Prev. 27 (1), 21–31.

ercier, C.R., Shelley, M.C., Rimkus, J., Mercier, J.M., 1997. Age and gender as
predictors of injury severity in head-on highway vehicular collisions. Transp.
Res. Rec. 1581, 37–46.

itra, S., Washington, S., 2007. On the nature of over-dispersion in motor
vehicle crash prediction models. Accid. Anal. Prev. 39 (3), 459–468.

’Donnell, C.J., Connor, D.H., 1996. Predicting the severity of motor vehicle
accident injuries using models of ordered multiple choice. Accid. Anal. Prev.
28 (6), 739–753.

uddus, M.A., Noland, R.B., Chin, H.C., 2002. An analysis of motorcycle injury
and vehicle damage severity using ordered probit models. J. Saf. Res. 33 (4),
445–462.

ifaat, S.M., Chin, H.C., 2005. Analysis of severity of single-vehicle crashes
in Singapore. In: TRB 2005 Annual Meeting CD-ROM, Transportation
Research Board, National Research Council, Washington, DC.

hankar, V., Mannering, F., 1996. An exploratory multinomial Logit analysis of
single-vehicle motorcycle accident severity. J. Saf. Res. 27 (3), 183–194.

imoncic, M., 2001. Road fatalities in Slovenia involving a pedestrian, cyclist
or motorcyclist and a car. Accid. Anal. Prev. 33 (2), 147–156.

mith, B.J., 2001. Bayesian Output Analysis Program (BOA). Version 1.0.0 for
S-PLUS and R. available at http://www.public-health.uiowa.edu/boa.

nijders, A.B., Bosker, R.J., 2000. Multilevel Analysis, An Introduction to Basic
and Advanced Multilevel Modeling. SAGE Publications, London.
peigelhalter, D.J., Best, N.G., Carlin, B.P., Linde, V.D., 2003b. Bayesian mea-
sures of model complexity and fit (with discussion). J. Roy. Stat. Soc., Series
B 64 (4), 583–616.

piegelhalter, D.J., Thomas, A., Best, N.G., Lunn, D., 2003a. WinBUGS version
1.4.1 User Manual. MRC Biostatistics Unit, Cambridge, UK.

http://www.public-health.uiowa.edu/boa


5 lysis a

W

4 H.L. Huang et al. / Accident Ana
ashington, S., Congdon, P., Karlaftis, M., Mannering, G., 2005.
Bayesian multinomial logit models: exploratory assessment of trans-
portation applications. In: TRB 2005 Annual Meeting CD-ROM,
Transportation Research Board, National Research Council, Washington,
DC.

Y

Z

nd Prevention 40 (2008) 45–54
au, K., 2004. Risk factors affecting the severity of single vehicle traffic acci-
dents in Hong Kong. Accid. Anal. Prev. 36 (3), 333–340.

hang, J., Lindsay, J., Clarke, K., Robbins, G., Mao, Y., 2000. Factors affect-
ing the severity of motor vehicle traffic crashes involving elderly drivers in
Ontario. Accid. Anal. Prev. 32 (1), 117–125.


	Severity of driver injury and vehicle damage in traffic crashes at intersections: A Bayesian hierarchical analysis
	Introduction
	Methodology
	Hierarchical binomial logistic model
	Bayesian inference
	Assessment of random effects using intra-class correlation coefficient
	Model comparison using deviance information criterion

	Dataset for analysis
	Model calibration and validation
	Discussions on significant risk factors
	Time of day
	Intersection type
	Nature of lane
	Street lighting
	Presence of red light camera
	Pedestrian involved
	Vehicle type
	Driver age
	Involvement of offending party

	Conclusions and recommendations
	References


