
This article was downloaded by: [Zhong Wan]
On: 26 November 2014, At: 18:58
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Optimization: A Journal of
Mathematical Programming and
Operations Research
Publication details, including instructions for authors and
subscription information:
http://www.tandfonline.com/loi/gopt20

An improved three-term conjugate
gradient algorithm for solving
unconstrained optimization problems
Songhai Denga & Zhong Wana

a School of Mathematics and Statistics, Central South University,
Changsha, China.
Published online: 24 Nov 2014.

To cite this article: Songhai Deng & Zhong Wan (2014): An improved three-term conjugate
gradient algorithm for solving unconstrained optimization problems, Optimization: A Journal of
Mathematical Programming and Operations Research, DOI: 10.1080/02331934.2014.984706

To link to this article:  http://dx.doi.org/10.1080/02331934.2014.984706

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the
“Content”) contained in the publications on our platform. However, Taylor & Francis,
our agents, and our licensors make no representations or warranties whatsoever as to
the accuracy, completeness, or suitability for any purpose of the Content. Any opinions
and views expressed in this publication are the opinions and views of the authors,
and are not the views of or endorsed by Taylor & Francis. The accuracy of the Content
should not be relied upon and should be independently verified with primary sources
of information. Taylor and Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or
howsoever caused arising directly or indirectly in connection with, in relation to or arising
out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any
substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing,
systematic supply, or distribution in any form to anyone is expressly forbidden. Terms &

http://www.tandfonline.com/loi/gopt20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/02331934.2014.984706
http://dx.doi.org/10.1080/02331934.2014.984706


Conditions of access and use can be found at http://www.tandfonline.com/page/terms-
and-conditions

D
ow

nl
oa

de
d 

by
 [

Z
ho

ng
 W

an
] 

at
 1

8:
58

 2
6 

N
ov

em
be

r 
20

14
 

http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions


Optimization, 2014
http://dx.doi.org/10.1080/02331934.2014.984706

An improved three-term conjugate gradient algorithm for solving
unconstrained optimization problems

Songhai Deng and Zhong Wan∗

School of Mathematics and Statistics, Central South University, Changsha, China

(Received 1 March 2014; accepted 21 October 2014)

In this article, we present an improved three-term conjugate gradient algorithm for
large-scale unconstrained optimization. The search directions in the developed
algorithm are proved to satisfy an approximate secant equation as well as the
Dai-Liao’s conjugacy condition. With the standard Wolfe line search and the
restart strategy, global convergence of the algorithm is established under mild
conditions. By implementing the algorithm to solve 75 benchmark test problems
with dimensions from 1000 to 10,000, the obtained numerical results indicate
that the algorithm outperforms the state-of-the-art algorithms available in the
literature. It costs less CPU time and smaller number of iterations in solving the
large-scale unconstrained optimization.

Keywords: algorithms; optimization; conjugate gradient method; global
convergence

AMS Subject Classifications: 90C30; 62K05

1. Introduction

Consider the following problem:

min f (x), x ∈ R
n, (1)

where f : R
n → R is continuously differentiable such that its gradient is available. Let

g : R
n → R

n denotes the gradient function of f , and let gk denotes the value of g at xk .
Let x0 ∈ R

n be an initial point. A sequence of approximate solutions xk of (1) is often
generated by

xk+1 = xk + αkdk, (2)

where k ≥ 0, αk is a stepsize obtained by some line search rule and dk is a search direction
(see [1,2]). In the classical conjugate gradient methods, dk is given by

dk =
{−gk, if k = 0,

−gk + βkdk−1, if k > 0.
(3)

In (3), βk is called the conjugate parameter. With a different choice of βk , the obtained
method has distinct numerical performance.
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2 S. Deng and Z. Wan

Denote yk = gk+1 − gk . We present some popular conjugate parameters as follows:

βH S
k = gT

k+1 yk

dT
k yk

(Hestences and Stiefel [3]),

βF R
k = gT

k+1gk+1

gT
k gk

(Fletcher and Reeves [4]),

βDY
k = gT

k+1gk+1

dT
k yk

(Dai and Yuan [5]),

β P R P
k = gT

k+1 yk

‖gk‖2
,

βH Z
k = 1

dT
k yk

(
yk − 2dk

‖yk‖2

dT
k yk

)
gk+1 (Hager and Zhang [6]).

Recently, a type of three-term conjugate gradient methods has been widely studied. The
first general three-term conjugate gradient method was proposed in [7] by Beale, and the
search direction is given by

dk+1 = −gk+1 + βkdk + γkdt , (4)

where βk = βH S
k (or βF R

k and βDY
k , etc.),

γk =
⎧⎨
⎩

0, k = t + 1,

gT
k+1 yt

dT
t yt

, k > t + 1,
(5)

and dt is a restart direction. Subsequently, in [8], another three-term conjugate gradient
method was proposed, where the search direction was specified by:

dk+1 = −yk + yT
k yk

yT
k dk

dk + yT
k−1 yk

yT
k−1dk−1

dk−1, (6)

with d−1 = 0, d0 = −g0. It has been proved that for a convex quadratic function f , the
search directions generated by (6) are conjugate with respect to the coefficients matrix of the
second-order term. As an extension of the classic conjugate gradient method, the following
two three-term conjugate gradient methods:

dk+1 = −gk+1 + gT
k+1 yk

gT
k gk

dk − gT
k+1dk

gT
k gk

yk, (7)

dk+1 = −gk+1 + gT
k+1 yk

sT
k yk

sk − gT
k+1sk

sT
k yk

yk . (8)

were presented in [9,10], respectively. (7) is called the descent modified PRP conjugate
gradient algorithm, and (8) is referred to as the descent modified HS conjugate gradient
method. A notable property of these methods is that the search directions can be proved to
be sufficiently descent. Actually, dk in [9] or [10] satisfies gT

k dk = −‖gk‖2 for each k ≥ 0.
Very recently, a series of three descent conjugate gradient algorithms were developed

by Andrei in [11–13]. Let sk = xk+1 − xk . The search directions in these algorithms are
determined by
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Optimization 3

dk+1 = − yT
k sk

‖gk‖2
gk+1 + yT

k gk+1

‖gk‖2
sk − sT

k gk+1

‖gk‖2
yk, (9)

dk+1 = −gk+1 −
((

1 + ‖yk‖2

yT
k sk

)
sT

k gk+1

yT
k sk

− yT
k gk+1

yT
k sk

)
sk − sT

k gk+1

yT
k sk

yk, (10)

and

dk+1 = −gk+1 −
((

1 + 2
‖yk‖2

yT
k sk

)
sT

k gk+1

yT
k sk

− yT
k gk+1

yT
k sk

)
sk − sT

k gk+1

yT
k sk

yk, (11)

respectively. Different from (7) and (8), the directions in (9)–(11) satisfy the sufficiently
descent condition as well as the following extended conjugacy condition in [14]:

dT
k+1 yk = −tk gT

k+1sk, (12)

where tk > 0. Numerical experiments showed that the three-term conjugate gradient method
in [12] outperforms the other six three-term algorithms in [9–11,15–17].

In this article, we intend to construct a new search direction in the framework of
three-term conjugate gradient method. This direction is required to satisfy the Dai-Liao’s
conjugacy condition (12) as well as an approximate secant equation (not being sufficiently
descent). Since the search direction satisfies an approximate secant condition and is closely
related with the limited memory BFGS method, it can greatly improve the numerical
performance of the classic conjugate gradient method. On the other hand, different from
the quasi-Newton method, the constructed direction in this article does not need to compute
or store any approximate Hessian matrix of the objective function. Thus, the cost of
computation at each iteration of algorithm is similar to that in the conjugate gradient method.

In addition, different from the ordinary restart strategy, the developed algorithm in
this article may restart with an associated two-term conjugate gradient method (versus a
standard conjugate gradient method) if necessary.

The rest of this article is organized as follows. In next section, we will state the idea to
propose a new spectral conjugate gradient method in detail, and then a new algorithm
is developed. Global convergence is established in Section 3. Section 4 is devoted to
numerical experiments. Some conclusions are drawn in the last section.

2. Algorithm: improved three-term conjugate gradient (ITTCG)

In this section, we will construct a new three-term conjugate gradient direction. Then, an
algorithm will be developed.

Let dk+1 be the search direction at the (k + 1)th iteration. If dk+1 is generated by the
quasi-Newton method, then it should be required to satisfy the following condition (see
[18–22]):

sT
k ∇2 f (xk+1)dk+1 = −sT

k gk+1. (13)

Since it is difficult to compute and store the Hessian matrix ∇2 f (xk+1) in solving large-scale
optimization problems, we replace (13) by

yT
k dk+1 = −sT

k gk+1, (14)

where the secant condition ∇2 fk+1sk = yk is employed.
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4 S. Deng and Z. Wan

To obtain a direction dk+1 satisfying (14), we construct dk+1 as follows:

dk+1 = −gk+1 −
((

1 + ‖yk‖2

yT
k sk

)
sT

k gk+1

yT
k sk

− yT
k gk+1

yT
k sk

)
sk + sT

k gk+1

yT
k sk

yk . (15)

It is noted that the main difference between (15) and (10) or (11) lies in the sign of the last
term. As in (15), the positive sign ensures that dk+1 satisfies the condition (14). However,
for the directions given by (10) and (11), the equality (14) does not hold.

Unfortunately, the search direction in (15) is not always descent as a quasi-Newton
direction. For this reason, we use the restart strategy to develop a well-defined algorithm.
Similar to the Beale’s three-term method, we restart the direction with a two-term conjugate
gradient direction if it is descent. If the two-term conjugate gradient direction is still ascent,
then the algorithm restarts with the steepest descent direction −gk+1. Specifically, we choose
a search direction as follows:

dk+1 = −gk+1 − δksk + ηk yk, (16)

where

δk =

⎧⎪⎨
⎪⎩
(

1 + ‖yk‖2

yT
k sk

)
sT

k gk+1

yT
k sk

− yT
k gk+1

yT
k sk

� δ̄k, if (−gk+1 − δ̄ksk)
T gk+1 < 0,

0, otherwise,
(17)

and

ηk =
⎧⎨
⎩

sT
k gk+1

yT
k sk

, if gT
k+1sk gT

k+1 yk < 0,

0, otherwise.
(18)

Along the obtained direction given by (16)–(18), we find a suitable step length by the
standard Wolfe line search{

f (xk+1) ≤ f (xk) + δg(xk)
T d(xk)

g(xk+1)
T d(xk) ≥ σg(xk)

T d(xk),
(19)

or the strong Wolfe line search rule (see [15,23–25]) :{
f (xk+1) ≤ f (xk) + δg(xk)

T d(xk)

|g(xk+1)
T d(xk)| ≤ σ |g(xk)

T d(xk)|. (20)

With the above preparation, we now in a position to state the overall framework of our
algorithm.

Algorithm 2.1 (ITTCG) Step 1 Take constants δ and σ , 0 < δ ≤ σ < 1. Choose an initial
point x0 ∈ dom f and compute f0 = f (x0) and g0 = ∇g(x0). Set k := 0.

Step 2 If ‖gk‖∞ < ε, then the algorithm stops. Otherwise, go to Step 3.
Step 3 Determine the stepsize αk by the Wolfe line search conditions (19)
Step 4 Update the iterate point as xk+1 := xk + αkdk . Compute fk+1, gk+1, yk =

gk+1 − gk and sk = xk+1 − xk .
Step 5 Determine δk and ηk by (17) and (18), respectively.
Step 6 Compute the search direction by (16).
Step 7 Set k := k + 1, return to Step 2.
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Optimization 5

3. Global convergence

In this section, we are going to study the global convergence of Algorithm 2.1.
We first state the following mild assumptions, which are required to prove the main

results in this article.

Assumption 3.1 The level set 	 = {x ∈ R
n | f (x) ≤ f (x0)} is bounded.

Assumption 3.2 In some neighbourhood N of 	, f is continuously differentiable and
its gradient is Lipschitz continuous, namely, there exists a constant L > 0 such that

‖g(x) − g(y)‖ ≤ L‖x − y‖, ∀x, y ∈ N . (21)

Remark 3.1 Since f (xk) is decreasing, it is clear that the sequence {xk} generated by
Algorithm 2.1 is contained in a bounded region from Assumption 3.1. So, there exists
a convergent subsequence of {xk}. Without loss of generality, it is supposed that {xk} is
convergent. In addition, from Assumptions 3.1 and 3.2, it follows that there is a constant
γ > 0 such that ‖g(x)‖ ≤ γ , ∀x ∈ 	. Thus, the sequence {gk} is bounded.

We first prove the following results.

Lemma 3.1 Let f : R
n → R be a continuously differentiable function. Then, the direction

generated by Algorithm 2.1 is descent.

Proof From the Wolfe conditions (19), it follows that yT
k sk > 0. Thus, if (gT

k+1sk)

(gT
k+1 yk) < 0, then

gT
k+1dk+1 = −‖gk+1‖2 −

(
1 + ‖yk‖2

yT
k sk

)
(gT

k+1sk)
2

yT
k sk

+ 2
gT

k+1sk gT
k+1 yk

yT
k sk

< 0.

Otherwise, we have ηk = 0. Hence,

gT
k+1dk+1 = −‖gk+1‖2 −

(
1 + ‖yk‖2

yT
k sk

)
(gT

k+1sk)
2

yT
k sk

+ gT
k+1sk gT

k+1 yk

yT
k sk

.

If gT
k+1dk+1 < 0, dk+1 reduce to a direction given by the associated two-term conjugate

gradient method. Otherwise, dk+1 = −gk+1 and gT
k+1dk+1 = −‖gk+1‖2 < 0.

Based on the above discussion, we conclude that the direction generated by Algorithm
2.1 is descent. �

Lemma 3.2 Suppose that the stepsize αk satisfies the Wolfe conditions (19). Then, dk+1
given by (16) satisfies the conjugacy condition (12) apart from the restarted search direc-
tions.

Proof Since gT
k+1sk gT

k+1 yk < 0, it follows from (16) that

yT
k dk+1 = −sT

k gk+1.

Thus, (12) holds with tk = 1 > 0.
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6 S. Deng and Z. Wan

If gT
k+1sk gT

k+1 yk ≥ 0, then by direct calculation,

yT
k dk+1 = −

(
1 + ‖yk‖2

yT
k sk

)
sk gk+1.

Thus, (12) holds with tk = 1 + ‖yk‖2

yT
k sk

> 0. �

Remark 3.2 In the memoryless version of BFGS algorithm, the inverse approximate
Hessian matrix of f is updated by

Hk+1 = Hk − sk yT
k Hk + Hk yksT

k

yT
k sk

+
(

1 + yT
k Hk yk

yT
k sk

)
sksT

k

yT
k sk

. (22)

If we set Hk = I in (22), then dk+1 in (16) satisfies dk+1 = −Hk+1gk+1. Thus, our search
direction is an approximate quasi-Newton direction.

Lemma 3.3 Suppose that dk is a descent direction and that the gradient ∇ f satisfies the
Lipschitz condition:

‖∇ f (x) − ∇ f (xk)‖ ≤ L‖x − xk‖
for all x ∈ [xk, xk+1]. Under the Wolfe line search, it holds that

αk ≥ (1 − σ)|gT
k dk |

L‖dk‖2
.

Proof Subtracting gT
k dk from the both sides of the first inequality in (19), we obtain

(σ − 1)gT
k dk ≤ (gk+1 − gk)

T dk = yT
k dk ≤ ‖yk‖‖dk‖ ≤ αk L‖dk‖2.

Since dk is descent and 0 < σ < 1, the conclusion follows immediately. �

Lemma 3.4 Let {dk} and {αk} be two sequences generated by Algorithm 2.1. Suppose
that Assumptions (3.1) and (3.2) hold. Then,

∞∑
k=0

(gT
k dk)

2

‖dk‖2
< +∞. (23)

Proof From (19) and Lemma 3.3, it follows that

fk − fk+1 ≥ −ραk gT
k dk ≥ ρ

(1 − σ)(gT
k dk)

2

L‖dk‖2
.

In virtue of Assumption 3.1, we get the Zoutendijk condition (23). �

Powell [26] gives the following property that in conjugate gradient algorithm the
iteration can fail, in the sense that ‖gk‖ ≥ γ1 > 0 for all k, only if ‖dk‖ → ∞ sufficiently
rapid. More precise, the sequence of gradient norms ‖gk‖ can be bounded away from zero
only if

∑
k≥0

1/‖dk‖ < ∞. For any conjugate gradient method with strong Wolfe line search

(20) the following general results holds.[27]
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Optimization 7

Proposition 3.1 Let {dk} and {αk} be two sequences generated by Algorithm 2.1. Sup-
pose that Assumptions 3.1 and 3.2 hold. For any conjugate gradient method (2), if∑

k≥1

1

‖dk‖2
= +∞ (24)

holds then
lim inf

k→∞ ‖gk‖ = 0.

Theorem 3.1 Let {xk} be a sequence generated by Algorithm 2.1. Suppose that Assump-
tions 3.1 and 3.2 hold. If f is a uniformly convex function on the level set 	, i.e. there exists
a constant μ > 0 such that

(∇ f (x) − ∇ f (y))T (x − y) ≥ μ‖x − y‖2

for all x, y in the neighbourhood N of 	, then,

lim
k→∞ ‖gk‖ = 0. (25)

Proof By Assumptions 3.1 and 3.2, we know that ‖gk‖ < γ and ‖yk‖ ≤ L‖sk‖. Since f
is a uniformly convex function on the level set 	, it is clear that

yT
k sk ≥ μ‖sk‖2.

Thus,

|δk | ≤ |sT
k gk+1|
|yT

k sk |
+ ‖yk‖2|sT

k gk+1|
|yT

k sk |2
+ |yT

k gk+1|
|yT

k sk |

≤ γ

μ‖sk‖ + L2γ

μ2‖sk‖ + Lγ

μ‖sk‖

= γ

μ

(
1 + L + L2

μ

)
1

‖sk‖ ,

(26)

and

|ηk | ≤ |sT
k gk+1|
|yT

k sk |
≤ ‖sk‖‖gk+1‖

μ‖sk‖2
≤ γ

μ‖sk‖ . (27)

From (26) and (27), it follows that

‖dk+1‖ ≤ ‖gk+1‖ + |δk |‖sk‖ + |ηk |‖yk‖ ≤ γ + γ

μ

(
2 + L + L2

μ

)
.

Therefore, ∑
k≥1

1

‖dk‖2
= +∞.

In view of Proposition 3.1, we know that

lim inf
k→∞ ‖gk‖ = 0. (28)
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8 S. Deng and Z. Wan

For uniformly convex functions it is equivalent to (25). �

Theorem 3.2 Let {xk} be a sequence generated by Algorithm 2.1. Suppose that Assump-
tions 3.1 and 3.2 hold. If there exists a constant c > 0, such that yT

k sk ≥ c for k large
enough. Then,

lim inf
k→∞ ‖gk‖ = 0. (29)

Proof Since gT
k sk < 0 for any k, we know

sT
k gk+1 = yT

k sk + gT
k sk < yT

k sk .

By Assumptions 3.2 and 3.1, it is clear that

‖yk‖ = ‖gk+1 − gk‖ ≤ L‖sk‖,
and there exists a constant B > 0 such that ∀x ∈ 	 (the level set)

‖x − x0‖ ≤ B.

Thus, ∀x ′, x ′′ ∈ 	,

‖x ′ − x ′′‖ ≤ ‖x ′ − x0‖ + ‖x ′′ − x0‖ ≤ 2B.

It implies that
‖sk‖ = ‖xk+1 − xk‖ ≤ 2B, ‖yk‖ ≤ 2BL .

Therefore, for k large enough,

|δk | ≤
(

1 + ‖yk‖2

|yT
k sk |

)
|sT

k gk+1|
|yT

k sk |
+ |yT

k gk+1|
|yT

k sk |
< 1 + ‖yk‖2

|yT
k sk |

+ |yT
k gk+1|
|yT

k sk |
≤ 1 + 4B2L2

c
+ 2BLγ

c
≡ M1,

(30)

and

|ηk | <
|sT

k gk+1|
yT

k sk
≤ ‖sk‖‖gk+1‖

yT
k sk

<
2Bγ

c
≡ M2. (31)

Consequently, we have

‖dk+1‖ ≤ ‖gk+1‖ + |δk |‖sk‖ + |ηk |‖yk‖ ≤ γ + 2B M1 + 2BL M2.

Similar to the proof of Theorem 3.1, we conclude that∑
k≥1

1

‖dk‖2
= +∞.

By property 3.1, (29) holds. �

Remark 3.3 It is noted that in the establishment of global convergence, we suppose that
yT

k sk ≥ c for k large enough, where c > 0 is a positive constant. This condition is also
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Optimization 9

required in [12,13] to prove the main results (see Theorem 5.2 in [12]). Since, the search
direction dk is descent and the stepsize αk is found by the Wolfe line search, it is clear that for
all k ≥ 0, the inequality yT

k sk > 0 holds. From this point of view, the condition yT
k sk ≥ c is a

bit stronger. However, as for a uniformly convex objective function, the global convergence
has been proved without this assumption (see 3.1). In the implementation of Algorithm 2.1
(see Section 4), we take c = 10−30, as done in [12,13]. In other words, if yT

k sk > 10−30, the
three-term method is employed to choose the search direction. Otherwise, dk is obtained by
the associated two-term method or the steepest descent method.

4. Numerical experiments

In this section, we shall report the numerical performance of Algorithm 2.1.
We test Algorithm 2.1 (ITTCG) by implementing it to solve the 75 benchmark test

problems from [28]. For each test problem, we undertake 10 experiments with the dimension
of the problem increasing as n = 1000, 2000, . . . , 10, 000. In the Wolfe line search, the
parameters δ = 0.0001, ρ = 0.8 and σ = 0.8. The tolerance of the algorithms takes 10−6.

We compare the ITTCG with the TTCG, developed by Andrei in [13], the THREECG
in [12] and the CG_DESCENT by Hager and Zhang in [29], which have been reported to
be very efficient for solving the non-convex unconstrained optimization problems. In these
algorithms, the Wolfe line search strategy is employed.

All codes of the computer procedures are written in Fortran 77, and are implemented on
PC with 2.9 GHz CPU processor, 4 GB RAM memory and Windows XP operation system.
The code of CG_DESCENT is downloaded from the web site:

http://www.math.ufl.edu/~~hager/papers/CG/cg_descent.f
The code of TTCG algorithm and the Wolfe Line search is downloaded from N.Andrei’s

web site:
http://camo.ici.ro/neculai/THREECG/threecg.for
The code of the Wolfe Line search is also used in the THREECG.
For all the algorithms apart from the CG_DESCENT, we fix the maximal number of

iteration, specified by maxiter (= 10, 000). The maximal number of function and gradient
evaluation is denoted by maxifg(= 15, 000). If an algorithm exceeds one of the maximal
values in solving a test problem, then it is regarded as failure in solving the problem. For
the CG_DESCENT, we adopt its default maximum values.

In the numerical experiments, it is revealed that Algorithm 2.1 (ITTCG) does not often
restart. Out of the 750 test problems, there are only four problems (less than 1% ) where the
search direction of algorithm 2.1 restarts with −gk+1 as it is ascending. This implies that
the search direction defined by (15) is often efficient to search for the minimizer of problem
(1). In addition, if the constant c takes 10−30 in Theorem 3.2, yT

k sk < c appears only for
one of the 75 test problems (Problem 71).

By the profiles of Dolan and Moré in [30], Figure 1 shows the CPU time performances
ofAlgorithm 2.1 (ITTCG), the TTCG, the THREECG and the CG_DESCENT, respectively.
Specifically, in the CPU time profiles, we plot the percentage P of problems for which the
method is within a time τ for each algorithm. In other words, the curves in Figure 1 indicate
the percentage of the test problems for which an algorithm has solved in a given time.
Thus, the obtained CPU time profiles can intuitively describe the overall performance of
the algorithms.
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Figure 1. Performance profile of CPU time.

Figure 2. Performance profile of iteration.

Since the CPU time is often affected by the environment of computer, such as the busy
or free task status and the operation system, we further make a comparison among the four
algorithms by the number of iteration and the number of evaluation of the function and the
gradient. These numbers are often fixed for an algorithm to solve the same test problem
(see [30]).

In Figure 2, we report the iteration performance of Algorithm 2.1 (ITTCG), the TTCG,
the THREECG and the CG_DESCENT, respectively. Figure 3 is used to report the func-
tion and the gradient evaluation performance of Algorithm 2.1 (ITTCG), the TTCG, the
THREECG and the CG_DESCENT, respectively.
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Figure 3. Performance profile of evaluation number for functions and gradients.

From Figure 1, out of the 750 test problems, there are 660 ones where the occupation of
CPU time by the ITTCG is less than that by the TTCG and the THREECG, respectively. Fig-
ure 2 demonstrates that the ITTCG performs slightly better than the TTCG, but outperforms
the CG_DESCENT for all of the 750 test problems. Figure 3 reveals that the numerical
performances of the algorithms are similar as for the number of evaluation of the function
and the gradient. However, the ITTCG seems to perform relatively better.

Taken together, the obtained numerical results indicate that the ITTCG performs better
than the other two three-term conjugate gradient algorithms (TTCG and THREECG), and
all of the three-term methods outperform the two-term CG_DESCENT method for the 750
test problems in this article.

5. Conclusion

In this article, we have proposed an improved three-term conjugate gradient method for
solving non-linear large-scale unconstrained optimization problems. The search directions
of the developed algorithm have been proved to satisfy an approximate secant equation as
well as the Dai-Liao’s conjugacy condition. With suitable assumptions, global convergence
of the algorithm has been established.

Numerical experiments have shown the efficiency of the algorithm in solving many
large-scale benchmark test problems. Compared with the state-of-the-art algorithms avail-
able in the literature, our algorithm costs less CPU time and smaller number of iteration in
finding the optimal solution.
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