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However, naive ranking methods are unable to obtain the “nor-
mal” expected crash rate by accounting for various heterogeneities
associated with diverse site features.

To overcome the problems of naive ranking methods, several recent
studies have proposed model-based ranking approaches for hot spot
identification. Elvik (5) has presented an extensive review for the
state-of-the-art approaches of road crash hot spot identification and
concludes that the empirical Bayes approach (EB) (4, 6–8) is the
most reliable method. Moreover, using simulation experiments (9)
and innovative robust evaluation criteria (10), Cheng and Washing-
ton have also proved that the EB approach is the most consistent and
reliable method for identifying sites with promise.

While the EB approach is demonstrably better suited to reliably
estimate the safety of traffic sites than naive statistical methods, it
may be subject to several imperfections under certain conditions. For
example, in a standard before-and-after evaluation using the EB
approach, an external (or previously obtained) safety performance
function (SPF) is used for each candidate site to provide the prior
estimate of safety. But in general hot spot identification studies, it
may sometimes require all sites in a road network to be screened and
the SPF to be fitted purely from the local data. In such a condition, the
EB approach may be criticized for implicitly using the data twice.
That is, the data are first used to estimate the parameters in SPF and,
once these values are determined, the observed crash count of each
site is utilized to make inference about the posterior estimation (e.g.,
4, 11). Another potential imperfection is that the EB approach may
be inadequate to explicitly account for the “uncertainty” of associa-
tions of covariates and safety (12). In the EB approach, the uncer-
tainty, which is used to indicate the confidence level of the estimated
normal safety, is merely represented by a vague overdispersion term
and it is identical for all sites in model prediction. Thus, once the SPF
is calibrated, the point estimates of all covariate effects will be
assumed to be true without any uncertainty. However, the covariate
effects in the SPF are typically estimated from crash data and thus
are definitely subject to uncertainty. Hence, the posterior estimate of
safety may be more accurate if all uncertainties associated with each
covariate effect on safety could be fully taken into account.

A promising alternative of the EB approach is the full Bayesian
(FB) method. The essential characteristic of a FB analysis is its explicit
use of probability for quantifying uncertainty in inferences based on
statistical data analysis. Thus, by accommodating all uncertainties in
the model, the normal expected crash rate could be represented by a
fitted distribution and the final safety estimate for a specific site is
obtained by averaging the possible values relative to the distribution
(12, 13). It is clear that the EB approach is a special case of FB that

Empirical Evaluation of Alternative
Approaches in Identifying 
Crash Hot Spots
Naive Ranking, Empirical Bayes, and Full Bayes Methods

Helai Huang, Hoong Chor Chin, and Md. Mazharul Haque

This study proposes a framework of a model-based hot spot identifica-
tion method by applying full Bayes (FB) technique. In comparison with
the state-of-the-art approach [i.e., empirical Bayes method (EB)], the
advantage of the FB method is the capability to seamlessly integrate prior
information and all available data into posterior distributions on which
various ranking criteria could be based. With intersection crash data col-
lected in Singapore, an empirical analysis was conducted to evaluate the
following six approaches for hot spot identification: (a) naive ranking
using raw crash data, (b) standard EB ranking, (c) FB ranking using a
Poisson-gamma model, (d) FB ranking using a Poisson-lognormal model,
(e) FB ranking using a hierarchical Poisson model, and ( f ) FB rank-
ing using a hierarchical Poisson (AR-1) model. The results show that 
(a) when using the expected crash rate–related decision parameters, all
model-based approaches perform significantly better in safety ranking
than does the naive ranking method, and (b) the FB approach using hier-
archical models significantly outperforms the standard EB approach in
correctly identifying hazardous sites.

Hot spot identification is an essential task in engineering programs
to improve the safety situation of road networks. Although methods
vary greatly, most studies have relied on historical traffic crash
records to obtain an estimation of safety for diverse traffic entities.
The majority of traditional methods estimate safety by using raw crash
data. These methods include the crash frequency method (1), the crash
rate method, the rate quality control method (2), the crash severity
method, and the safety index method (3).

Despite their simplicity, however, these naive statistical methods
using raw crash data have serious limitations, particularly in cases
when data are only available for a short-term period (e.g., 2 to 3 years
or less). A well-known limitation is the regression-to-the-mean prob-
lem (4). Furthermore, the naive method is subject to its incapability
of examining the crash dispersion (5). In particular, it may be more
useful to rank the sites by the magnitude by which the crash risk
exceeds what is normal for such sites with similar characteristics.

H. Huang, Department of Civil and Environmental Engineering, University of 
Central Florida, 301A Engineering Building 2, Orlando, FL 32816. H. C. Chin and 
M. M. Haque, Department of Civil Engineering, National University of Singapore,
Singapore 117576. Corresponding author: H. Huang, huanghelai@hotmail.com.

Transportation Research Record: Journal of the Transportation Research Board,
No. 2103, Transportation Research Board of the National Academies, Washington,
D.C., 2009, pp. 32–41.
DOI: 10.3141/2103-05



arises when an FB analysis is simplified, for instance, by assuming
that the safety effect of covariates such as lane width is known with-
out any uncertainty. A further advantage of the FB method is its flex-
ibility in explicitly representing the hierarchical models. Hierarchical
structures exist extensively in crash data because of the data collec-
tion and clustering process. Several recent studies have indicated that
crash rate may be better fitted by explicitly accounting for the spatial
and temporal heterogeneities using hierarchical modeling technique
(14–18). Hence, there is a need to explore the use of FB hierarchical
models in site ranking and hot spot identification.

This study aims at employing the FB approach to propose a
methodological framework of hot spot identification. Different prob-
abilistic model specifications are proposed with Bayesian model
inference and model selection measurements. The impact of differ-
ent risk models are compared with each other with respect to the
safety ranking and hot spot screening. Comparison is also conducted
with the naive ranking method and the standard EB approach to pro-
vide an empirical evaluation on alternative hot spot identification
approaches.

FULL BAYESIAN HIERARCHICAL MODELING
APPROACH IN HOT SPOT IDENTIFICATION

This section presents the proposed FB approach including model
specification, comparison, and assessment, as well as safety estimate
and decision parameters in ranking sites and identifying hot spots.

Model Specification

Central to the model-based hot spot identification methods is the
establishment of a probabilistic functional form of crash frequency
and diverse risk factors associated with the traffic sites (i.e., SPF or
crash prediction model). Traditionally, a Poisson regression model
has been applied for fitting crash rate. While the Poisson model
requires the equality of mean and variance, many studies have found
that the variance of crash frequency is significantly greater than the
mean (e.g., 19, 20). To accommodate for the overdispersion, some
additional variance components could be incorporated into the mean
of the standard Poisson model. The overdispersed Poisson model is
generally expressed as follows:

where yit is the crash count at ith site in tth time period and Poisson
distributed with the mean crash frequency λit. Given the exposure
component eit (normally a measure of traffic flow) and the observed
risk factors Xit at a specific site, the mean crash rate μit varies by a
stochastic component υ.

Conveniently, υ could be assumed independent of Xit and also
independent of each other for different observations, denoted as �it.
The standard Poisson–gamma (PG) (or negative binomial, NB) or
Poisson–lognormal (PLN) models are obtained by specifying exp(�it)
with a gamma or lognormal distribution, respectively.

Model 1. Poisson–gamma model (negative binommial model):
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It is easy to derive the first two moments of the observed crash
count yit with these two model specifications as

Clearly, both NB and PLN models have a relaxed variance struc-
ture which allows the variance to be larger than the marginal mean
of yit. In particular, the inverse dispersion parameters [i.e., 1/α in the
NB model and (exp[σ2] − 1) in the PLN model] provide measures
to accommodate the extra variability exhibited in crash data. While
the NB model has been applied broadly in traffic safety studies
(e.g., 19, 20), Lord and Miranda-Moreno (21) recently found that
the PLN model could be a better alternative in cases of small sam-
ple size and low sample mean. In the overdispersed Poisson mod-
els, a stochastic component is specified to the mean of the standard
Poisson distribution to provide a vague measure to relax the equal-
ity constraint of mean and variance. However, they are incapable
of taking into account any structured heterogeneities due to the spa-
tial and temporal effects of the crash data (14). To explicitly model
these structured heterogeneities introduced in the data collection
and clustering process, hierarchical modeling technique has been
found to be a better alternative in several recent traffic safety studies
(14, 17, 18).

For this purpose, one common hierarchical specification could be
proposed by replacing the cross-observation variation component �it

with a cross-site random effects component αi in the link function,
which is,

The random effects αi are independent of covariates Xit and also inde-
pendent of each other for different sites. Clearly, this hierarchical
Poisson (HP) model assumes that potential overdispersion identified
in crash data may be explained by omitted or unobserved cross-
site heterogeneities. Within each site, the observations in different
time periods remain independent Poisson distributions.

Furthermore, it may also be interesting to investigate possible
serial correlation between crash observations in successive time
periods at a specific site. The serial correlation may arise from time-
dependent factors that are unobservable or missing in the model and
factors with time-dependent or autoregressive safety effect that are
not explicitly specified in the model (22). This possible autocorrela-
tion can be reflected in model by a serial variation δit. There are
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various options to specify the distribution of δit (23). A common
choice is to assume a lag-1 dependence in the errors (i.e., AR-1 model)
based on the stationarity assumption, with γ as the autocorrelation
coefficient:

As shown above, different models could be specified to explicitly
accommodate various structured heterogeneities according to the
specific crash data structure. In this study, the abovementioned four
model specifications are employed to illustrate the FB approach in
comparison with traditional hot spot identification methods.

Model Comparison and Assessment

In selecting an appropriate model, different stochastic components
can be tested by the statistical significance of their hyperparameters.
In principle, the most parsimonious model is preferred. For the pur-
pose of model selection, deviance information criterion (DIC) is used
in this study (24). Moreover, the goodness of fit of candidate models
are assessed by mean absolute deviance (MAD) and mean-squared
predictive error (MSPE):

where yit
obs is the observed crash number at site i in time period t

while yit
pred denotes the model prediction of expected crash number

for the specific site.

Full Bayesian Estimation of “Safety” 
and Decision Parameters

Bayesian analysis is a process of fitting a probability model to the
data set and summarizing the posterior probability distribution on the
model parameters and on unobserved quantities (13). In the context
of estimating the expected number of crashes at a specific traffic site,
the FB method consists of three steps:

Step 1. Specifying prior distributions for each model parameter
[i.e., Prior(�, υ)]. These prior distributions represent accumulated
knowledge about, for example, effects of risk factors and dispersion
parameters in crash data.

Step 2. Setting up a full probability model (M): Pr(yit, �, υ) =
Pr(yit⎟ �, υ)Pr(�, υ), which is a joint probability for all parameters as
well as the unobservable expected number of crashes at certain sites.

Step 3. Conditioning on all observed data (D): Calculating the
appropriate posterior distribution of all unknowns and then inte-
grating this distribution over the model parameters to obtain the
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desired marginal distribution of the expected number of crashes at
a specific site.

Markov chain Monte Carlo (MCMC) (13) is a general approach to
implement Bayesian inference. For this study, simulations of model
prediction for the crash number of each site (i.e., yit

pred) were drawn
from the posterior distribution. Use the sample draws to compute the
posterior density of any functions of yit

pred that may be of interest.
Hence, it is clear that as in the EB approach, information about

similar sites is incorporated into the estimate for a single site in the
FB analysis. Nevertheless, in the EB approach the model parameters
are estimated externally. The point estimators of parameters are then
used as if they were true values. All uncertainties associated with
model prediction are integrated by a vague and identical overdisper-
sion parameter as an indication of confidence level of observed crash
data. This implies that, in the EB approach, uncertainty associated
with estimating covariate coefficients may not be precisely taken into
account in the estimate of safety for a specific site (12, 13). Com-
paratively, the FB approach provides a flexible and direct means to
fully accommodate and measure uncertainties associated with model
predictions of the expected crash number.

Following a FB estimate of safety, different decision parameters
(Θ) could be selected to rank the sites considered for further engineer-
ing study of safety treatment. The choice of decision parameters needs
to take into account the context under which the rank is to be used,
especially the range of treatments to be performed. Without much loss
of generality, two common decision parameters are illustrated:

While the first decision parameter (Θi,1) provides a direct measure
for expected crash number for the years of interest, the second (Θi,2)
is useful to identify sites that exhibit abnormally high unobserved
random effects (i.e., higher accident reduction potential) so that
some field studies may be conducted to figure out what might have
contributed to these effects.

EMPIRICAL EVALUATION OF ALTERNATIVE 
HOT SPOT IDENTIFICATION APPROACHES

This section presents an empirical evaluation of proposed alternative
FB models in terms of model fitting, site ranking, and hot spot identi-
fication by comparing the FB method with the naive statistical method
and the state-of-the-art method using a standard EB approach.

Data Description and Analytical Strategy

In this study, a data set of all four-legged signalized intersections at
Singapore was collected from a citywide survey. The data set con-
tains historical crash data maintained by Singapore Traffic Police and
major descriptive factors associated with each intersection. In order
to circumvent special modeling treatment needed to account for zero
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inflation in the crash data (25, 26), sites with four or more crashes
during the past 10 years (1997–2006) were screened and used for
analysis. A total of 582 sites were used. A cursory review of the
selected sites showed that the samples cover almost all important
intersections and are well spread out over the country.

In spite of considerable research efforts in exploring the statistical
relationships between traffic crashes and traffic flows (e.g., 12), there
is no consistent crash exposure measurement for intersections. In
order to select an appropriate exposure measure for this study, three
traditional functional forms [see Chapman (27)] were preliminarily
considered, which include the sum of all entering flows, the product
of cross-flows at conflict points, and the square root of the product of
the cross-flows. Correlation tests on each of these exposure measures
showed that the product of traffic volumes (average daily traffic) from
major and minor roads of each intersection is the most appropriate one
with the strongest correlation with the observed crash numbers.
Hence, it was used as the traffic exposure measure (i.e., eit) in the cur-
rent study. In other words, the analysis assumes that crash frequency
for a specific intersection is proportional to the product of the flows at
two intersecting roadways given all other risk factors equal.

In addition to the traffic volume, a variety of self-explanatory risk
factors are considered as covariates (X′it), which include one-way
road, number of lanes, uncontrolled left-turn lane, exclusive right-
turn lane, presence of red light camera, presence of median, and pres-
ence of pedestrians crossing. The dummy variable technique was
employed to code these categorical variables.

In the evaluation, crash data in the latest 3 years (2004–2006) were
used to calibrate the alternative risk models and then make the FB esti-
mation for the expected crash rate at each site. The hazardous sites
could then be selected based on the ranking using the estimated
“safety” under different decision parameters. To assess whether the hot
spots were truly or falsely identified, average crash rates referring to
the whole 10-year period (1997–2006) were used as empirical criteria
for comparison. The assumption was that, without significant change
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for the intersection layout during the study period, the crash count from
a long-term historical period should well represent the “true” value of
safety. A descriptive statistics chart of crash frequencies for the latest
3 years as well as for the whole 10 years is shown in Figure 1.

Model Calibration and Diagnostics

The FB analysis was implemented in freeware WinBUGS package
(28) using a MCMC algorithm. In the absence of strong prior infor-
mation for factor effects and dispersion parameters, uninformative
priors were assumed with normal distribution (0, 1,000) for all regres-
sion coefficients (�), and with gamma distribution (0.001, 0.001) for
hyperparameters associated with the disturbance terms [i.e., 1/α in
NB model, σ2

� in PLN model, σ2
α in HP model, and σ2

δ in HP(AR-1)
model]. In model calibration, three chains of 15,000 iterations were
set up for each model based on the convergence speed and the mag-
nitude of the data set. Gelman–Rubin convergence statistics (29) were
used to monitor the convergence of simulation chains. After ensuring
the convergence, the first 5,000 samples were discarded as adaptation
and burn-in, and only every 10th sample of the rest were retained for
estimation to reduce autocorrelation, leaving a total of 3,000 posterior
samples for each estimate.

To obtain the most parsimonious model, preliminary multicolinear-
ity tests and backward stepwise methods were employed in selecting
covariates. Results of parameter estimation and Bayesian credible
interval (95% BIC) of significant factors in the final models are sum-
marized in Table 1. In all four models, six identical factors are iden-
tified as significant to affect the crash risk. The results of covariate
coefficients appear to be very robust regardless of which model is
used. The robustness of the results implies that there would not be sig-
nificant difference between selected models if they are used only for
identifying crash-contributing factors. In particular, it was found that
intersections with two-way traffic roads, more conflicting lanes,
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higher speed limit, and the presence of a pedestrian crossing are asso-
ciated with a higher crash rate. However, the use of an uncontrolled
left-turn lane (left-side driving) and the installation of a red light cam-
era may help reduce the crash rate at signalized intersections.

The comparison results of model diagnostic criteria estimated
from the models are also shown in Table 1. The results indicate that
the consideration of site-specific effects, resulting in HP and HP
(AR-1) models, can significantly improve the goodness of fit in com-
parison with standard NB and PLN models. Specifically, judged by
MAD values in the NB model and the HP model, the model-fitting
performance is improved by about 25%. Although it is very difficult
to theoretically distinguish between overdispersion (NB and PLN
models) and within-site correlation (HP and HP (AR-1) models), the
results imply that modeling site-specific effects significantly improves
the model fitting.

The results also show that the PLN model provides a slightly bet-
ter model fitting for the subject data set than the NB model (DIC from
7,661 to 7,655; MAD from 0.84 to 0.82; and MSPE from 1.42 to
1.34). It may be reasoned that the heavier tail in the lognormal distri-
bution may better accommodate for the overdispersion exhibited in
the data (21). However, it should be noted that, generally, if the dif-
ference in DIC between models is less than about 10, one would not
readily conclude that one model is better than the other. Thus, even
though MAD and MSPE support the difference between the two
models, the model-fitting improvement is not conclusive.

Likewise, the slightly decreased DIC value in the HP (AR-1) model
[DIC from 7,344 in the HP model to 7,339 in the HP(AR-1) model]
should not be used to conclude a substantial model-fitting improve-
ment. Nevertheless, the significant serial correlation coefficient (γ =
0.775) estimated in the HP (AR-1) model implies that autocorrelation
on crash rate may really exist in the subject data set. Furthermore, in
comparison with the HP model, the MAD (0.51) and MSPE (1.03)
in the HP(AR-1) model also lend support to the improvement of
goodness of fit. Wang and Abdel-Aty (22) have proved that the
autoregression model is effective in accounting for time-dependent
uncertainties in Florida intersection crash data. The limited improve-
ment from the HP model to the HP (AR-1) model in this study may
probably become more significant if more serial observations per site
are used in the model.
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Results of Empirical Evaluation 
in Hot Spot Identification

To evaluate alternative Bayesian models in hot spot identification,
the expected crash numbers for a specific site (λ̂ it), and the normal
expected crash numbers (λ̂ it

normal) for similar sites with equal values
of observed covariates were monitored at the same simulation
process of parameter estimation. Apart from the four proposed FB
models, safety estimators using the means of crash counts observed
during the 3 years (2004–2006), λ̂3

i , and the 10 years (1997–2006),
λ̂ i

10, were calculated. While λ̂ 3
i is used as raw crash count for the

naive ranking, λ̂ i
10, as the long-term average of crash rate, is assumed

to empirically represent the “true” values of safety. Moreover, a
standard EB estimation for the expected crash frequencies was also
implemented for comparison purpose. Specifically, the EB estimate
is calculated as follows (4):

where λ̂ it
normal is estimated in the NB model and has the value of 

0.171 as shown in Table 1. Using the two decision parameters
defined previously (Θi,1 and Θi,2), comparisons are conducted
between the six safety ranking approaches: (a) naive ranking using
λ̂3

i ; (b) EB ranking using λ̂ it
EB; (c) FB ranking using NB model λ̂ it

NB;
(d) FB ranking using PLN model λ̂ it

PLN; (e) FB ranking using HP
model λ̂ it

HP; and ( f ) FB ranking using HP(AR-1) model λ̂ it
HP(AR−1).

For the purpose of comparison, false identification test (FIT) is
commonly used in practice (5, 9). Generally in FIT, some critical
crash rates (e.g., four or more crashes per year) or cutoff percentage
of total number of sites (e.g., top 1%, 2.5%, 5%, or 10% of all sites)
are predetermined to establish hazardous sites. Compared with the
list of true safe sites, the binary result (i.e., safe or unsafe) given by
different methods can be analyzed as correct positive (CP: correctly
claim a safe site as safe), false positive (FP: falsely claim a safe site
as unsafe), correct negative (CN: correctly claim an unsafe site as
unsafe), and false negative (FN: falsely claim an unsafe site as safe).
Two diagnostic criteria have been established in previous studies
(5): sensitivity and specificity.

1
a

ˆ ˆλ ω λ ω ωit it it it it ityEB normal obs with= + −( ) =1
11
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TABLE 1 Parameter Estimation and Model Diagnostics

NB Model PLN Model HP Model HP (AR-1) Model

Mean 95% BCI Mean 95% BCI Mean 95% BCI Mean 95% BCI

Intercept −0.892 (−1.06, −0.71) −0.971 (−1.14, −0.80) −0.908 (−1.13, −0.67) −0.930 (−1.17, −0.70)

One-way traffic −0.226 (−0.31, −0.15) −0.230 (−0.31, −0.15) −0.238 (−0.34, −0.13) −0.241 (−0.35, −0.13)

No. of lanes −0.184 (−0.21, −0.16) −0.185 (−0.21, −0.16) −0.194 (−0.23, −0.16) −0.191 (−0.23, −0.16)

Uncontrolled left-turn lane −0.216 (−0.27, −0.17) −0.217 (−0.27, −0.17) −0.225 (−0.29, −0.16) −0.228 (−0.30, −0.16)

Pedestrian crossing 0.222 (0.18, 0.26) 0.223 (0.18, 0.26) 0.225 (0.17, 0.28) 0.227 (0.17, 0.28)

Red-light camera −0.286 (−0.36, −0.22) −0.286 (−0.36, −0.21) −0.290 (−0.40, −0.19) −0.295 (−0.40, −0.181)

Speed limit < 50 km/h −0.582 (−0.99, −0.19) −0.583 (−1.02, −0.17) −0.566 (−1.10, −0.07) −0.580 (−1.09, −0.07)

Variance of υa 0.171 (0.22, 0.13) 0.182 (0.14, 0.22) 0.219 (0.178, 0.27) 0.011 (0.00, 0.04)

Serial correlation coefficient (γ) 0.775 (0.72, 0.80)

DIC 7,661 7,655 7,344 7,339

MAD 0.84 0.82 0.63 0.51

MSPE 1.42 1.34 1.12 1.03

aVariance of υ: 1/a in NB model, σ2
� in PLN model, σ2

α in HP model, and σ2
δ in HP(AR-1) model.



Clearly, “sensitivity” measures the ability of a specific method to
correctly identify true hazardous sites, whereas “specificity” indi-
cates the ability to distinguish safe sites from hazardous sites. Thus,
the methods with higher values of sensitivity and specification are
preferred.

However, the FIT has certain limitations. As argued by Cheng
and Washington (10), the standard FIT is not informative enough to
provide adequate insight into the relative performances of hot spot
identification methods. One disadvantage of FIT is that, by using
several predetermined thresholds, it is not able to fully utilize the
ordinal rank data produced in hot spot identification. For example,
suppose that a cutoff level of 5% of all sites is given in the current
study, resulting in the top 29 sites as hot spots (582�5%). In this
case, for the worst site (top 1) in reality, the standard FIT is not able
to provide any differentiation in terms of predictive performance for
this specific site to be perfectly ranked first by one method or 29th
by another. Another potential drawback of FIT is that each identifi-
cation is weighted equally. In other words, once a site is identified
as positive or negative, there is no quantitative comparison between
the true crash rates and model predictions.

To overcome the major drawbacks of FIT, a continuous set of
thresholds were tested in this study to monitor the performance of
alternative approaches with respect to ordinal rank data. The per-
centage of dispersion deviations produced by different methods is
also calculated in a continuous numerical scale. It is clear that with

specificity
number of correct negatives ide

=
nntified CN

total number of true negatives

( )
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sensitivity
number of correct positives ide

=
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total number of true positives
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a continuous scale of critical crash rate or cutoff level, all informa-
tion contained in the ordinal ranking data can be reflected in the
analysis. This treatment is supposed to have a comparable effect to
the site consistency test suggested by Cheng and Washington (10).
A unique advantage of this treatment is its convenience in making
graphical analysis, as shown later. Furthermore, for the purpose of
quantitative comparison, a measure of MAD is utilized to indicate
the quantitative discrepancy of each model prediction to the true
safety. The empirical comparison results are detailed as follows.

False Identification Test

Two common types of FITs were conducted to compare the alterna-
tive methods using decision parameter Θi,1, that is, by giving criti-
cal crash rates or cutoff number of sites (i.e., cutoff percentage of all
sites). Specifically, FIT by giving critical crash rates means that the
sites with predicted crash rates equal to or higher than the given crit-
ical crash rates are identified as hot spots. Likewise, in FIT by giv-
ing cutoff number of sites, the top sites with ranks up to the cutoff
number are screened as hazardous.

Using a continuous scale of critical crash rates, Figures 2 and 3
show the performance of the six alternative approaches in terms of
sensitivity and specificity, respectively. Clearly, the naive ranking
method using only raw data is the one with the worst performance in
correctly identifying both hazardous sites (see Figure 2) and non-
hazardous sites (see Figure 3). Among the five model-based methods,
it is apparent that the HP and HP (AR-1) models outperform EB, PG,
and PLN models. This indicates that the models that account for site-
specific effects are superior to the nonhierarchical models. The dis-
crepancy becomes larger when the critical crash rate is increasing. In
usual practice, because of the constraint of resource or budget, only
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FIGURE 2 Sensitivity of alternative ranking approaches given critical crash rate.



sites with very high crash risk will be selected for further investiga-
tion and remedial treatment. Hence, the outperformance of the FB
approach with hierarchical models becomes more important, partic-
ularly for practice purposes. In addition, as shown in Figures 2 and
3, there seems to be no obvious discrepancy among EB, PG, and PLN
models as well as between HP and HP (AR-1) models.

Furthermore, the results of sensitivity for cutoff number of sites
from 10 to 300 are illustrated in Figure 4. It should be noted that,
for FIT by giving cutoff number of sites, there is no need to dupli-
cate reporting the specificity, because given a fixed number of sites
for TP, the FP will be equal to the FN. As in the aforementioned
result, the ranking criterion by raw crash data in the FIT by giving
cutoff number of sites has the worst performance too. Compared
with other model-based approaches, the discrepancy becomes
larger when the number of sites selected is small (e.g., <100). Like-
wise, EB and FB using the NB model again have comparable capa-
bility in correctly identifying hot spots. A slight outperformance of
FB using the PLN model over EB and FB using the NB model is
found, which is more significant when the number of hot spots
selected is between 20 and 80 sites, approximately 3% to 14% of
the overall sites. The HP and HP (AR-1) models have equivalently
the best performance in correctly identifying hot spots. Compared
with standard EB approaches, this outperformance is on average
25% when fewer than 200 sites (34% of all sites) are screened as
hot spots for further engineering study.

Percentage of Dispersion Deviations

To further examine the deviations between alternative model-based
ranking approaches, the percentage of dispersion deviations using
the decision parameter Θi,2 was calculated for alternative FB mod-
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els compared with the standard EB approach, which is shown in Fig-
ure 5. As mentioned previously, the decision parameter Θi,2 is able
to measure the dispersion to which traffic sites exhibit abnormally
high unobserved random effects by comparing the “average” expected
values at similar sites. The result shows that the alternative FB
approach using different crash prediction models may also lead to
considerably different lists of hot spots using deviation as the rank-
ing decision parameter. The deviation is the most significant for the
FB estimate using the PLN model.

Mean Absolute Deviations

Finally, to yield a quantitative understanding about the discrepancy
of performance of alternative approaches, the MADs were calcu-
lated by comparing model prediction at a specific site (λ̂ it) to the
mean of the crash number observed in the 10 years (λ̂ i

10):

The results shown in Figure 6 indicate that HP and HP (AR-1)
models have the best predictive performance to the long-term mean
of crash frequency [MAD: 0.394 in the HP model and 0.383 in the
HP (AR-1) model]. Naive estimation using a simple mean of crash
count in the 3 years has an average deviation from the long-term
mean of 0.845 crash per intersection. Again, EB and FB ranking
using the NB model have equivalent performances (MAD: 0.567 in
the EB approach and 0.566 in the NB model). It is not surprising
because both the point safety estimates and overdispersion param-
eter used in the EB approach were estimated from the NB model.
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Moreover, as in the model-fitting diagnostic, there is only a slight
difference in model prediction accuracy between the PLN model
(MAD: 0.550) and the NB model.

CONCLUSIONS, LIMITATIONS, 
AND FUTURE RESEARCH

This research proposed a framework for the model-based hot spot
identification method by applying the FB technique. Compared
with the standard EB approach, an essential theoretical advantage
of the FB approach is the capability to seamlessly integrate prior
information and all available data into posterior distributions of
unknowns. Particularly in the context of hot spot identification, all
uncertainties of associations of crash risk and various risk factors
could be accommodated to estimate a posterior distribution repre-
senting the predicted site safety on which various ranking criteria
could be based. Moreover, by use of hierarchical model specifica-
tion, the FB approach is able to flexibly take into account various
heterogeneities of crash occurrence due to spatial and temporal
effects on traffic safety.

Using four-legged signalized intersection data collected in Singa-
pore, a comparison study was conducted to empirically evaluate the
performance of model fitting and hot spot identification of alter-
native approaches. With respect to model fitting, results showed that
the hierarchical models [HP model and HP (AR-1) model] with
accommodation for site-specific effect and serial correlation have
better goodness of fit than the nonhierarchical models (NB model
and PLN model).

In hot spot identification, a comprehensive comparison was con-
ducted between six alternative approaches: naive ranking using raw
data, EB ranking, FB ranking using the NB model, FB ranking using
the PLN model, FB ranking using the HP model, and FB ranking
using the HP (AR-1) model. Without knowing a priori which sites
are truly hazardous, the empirical estimation using the long-term
crash rate was assumed to be the true safety situation at specific
sites. For the purpose of comparison, several evaluation measure-
ments, including the improved FIT, percentage of dispersion devi-
ations, and MAD, were employed and demonstrated to be useful.
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Specifically, it was found that all model-based approaches perform
significantly better in safety ranking than the naive approach using
a raw crash count. This result is consistent with most relevant studies.
It confirms the necessity of taking into account the regression-
to-the-mean effect and various heterogeneities associated with
diverse site features. Furthermore, the FB hierarchical models [i.e.,
HP model and HP (AR-1) model] were found to outperform the
standard EB approach in correctly identifying hot spots. This find-
ing indicates that the flexibility in model specification of the FB
approach can generate great potentials to improve the accuracy of
identifying hazardous sites by explicitly accounting for various
structured heterogeneities in crash data.

Although this study has dealt with a number of aspects in apply-
ing the FB approach for hot spot identification, two limitations are
worth mentioning and future research expanding from this study is
recommended. First, although the serial correlation coefficient in
the HP (AR-1) model was found to be significant, it failed to pro-
vide a remarkable improvement of model fitting and safety ranking
over the HP model. Nevertheless, it is still reasonable to suspect the
presence of potential serial correlation because time-dependent
traffic factors naturally exist in reality. Some of these factors may
be unobservable, or may not be easily specified in the model.
Essentially, serial correlation has already been identified using crash
data in several recent studies (e.g., 22). Further evaluation study is
needed to investigate the necessity of accommodating the possible
time-dependent uncertainties by using longer time series crash data.

Second, no clear distinction of predictive performance was iden-
tified in this study between the EB approach and the FB approach
with nonhierarchical models (i.e., NB model and PLN model). In other
words, the potential benefit of the FB approach in better accounting for
uncertainties associated with parameter estimation of SPF was not
adequately demonstrated in this empirical evaluation. Moreover,
although empirical data have the advantage of essentially represent-
ing the realism, the study could be criticized for using the empirical
estimation (i.e., long-term crash rate in this study) to establish the
true “safety” of candidate sites for the purpose of evaluation. Alter-
natively, several previous studies have argued the advantage of
using simulated data in evaluating hot spot identification methods
(5, 9, 10, 30). Future research could be conducted using simulated
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data to experimentally investigate the application potential of the FB
approach in traffic safety evaluation.
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