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Exploring  the  significant  variables  related  to specific  types  of  crashes  is vitally  important  in  the planning
stage  of  a transportation  network.  This  paper  aims  to identify  and  examine  important  variables  associated
with  total  crashes  and  severe  crashes  per  traffic  analysis  zone  (TAZ)  in  four  counties  of the  state  of  Florida
by  applying  nonparametric  statistical  techniques  such  as  data  mining  and  random  forest.  The  intention  of
investigating  these  factors  in  such  aggregate  level  analysis  is to  incorporate  proactive  safety  measures  in
transportation  planning.  Total  and  severe  crashes  per  TAZ  were  modeled  to  provide  predictive  decision
trees.  The  variables  which  carried  higher  weight  of  importance  for  total  crashes  per TAZ were  – total
number  of  intersections  per  TAZ,  airport  trip  productions,  light  truck productions,  and  total  roadway
ata mining
andom forest
afety planning

segment  length  with  35  mph  posted  speed  limit.  The  other  significant  variables  identified  for  total  crashes
were  total  roadway  length  with  15  mph  posted  speed  limit,  total  roadway  length  with  65  mph  posted
speed  limit,  and  non-home  based  work  productions.  For  severe  crashes,  total  number  of intersections  per
TAZ,  light  truck  productions,  total  roadway  length  with  35 mph  posted  speed  limit,  and  total  roadway
length  with  65  mph  posted  speed  limit  were  among  the  significant  variables.  These  variables  were  further

 the  
verified  and  supported  by

. Introduction

The recent emphasis on transportation safety planning (TSP)
ssues has shed light on the importance in dealing with macro-
evel crash data. Incorporating safety in the transportation planning
tage has been challenging from different perspectives. For exam-
le, aggregated crash data is criticized of having problems with
eterogeneity. Also, planning for an unused land area or even for an
xisting area requires considerations from socio-economic, demo-
raphic and different traffic-related factors. The interplay between
hese factors becomes a significant problem for prediction during
he planning stage.

For the last decade researchers have been trying to capture sig-
ificant factors associated with crashes at different aggregation

evels. In this study we  consider traffic analysis zones (TAZs) as
he base spatial unit of analysis. That means, crashes were aggre-
ated for a TAZ. TAZs are thought to be homogenous in demographic
nd land use patterns (You et al., 1997). Also they are widely used

uilding blocks of transportation planning networks and frequently
sed by metropolitan planning organizations (MPOs) in their travel
emand models (TDMs) and various traffic related analysis.
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random  forest  results.
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This paper aims to identify and examine important variables
associated with total and severe crashes per TAZ. In doing so, dif-
ferent trip related variables and road-traffic related factors were
investigated. Very few studies have addressed the effect of trip
related variables onto crashes. Trips usually depend on demo-
graphic and land use patterns of an area. Thus, trip variables were
thought to be advantageous in accounting for different correlated
effects between demographic and land use factors. Investigat-
ing these factors in such aggregate level analysis will be helpful
in incorporating proactive safety measures for long range trans-
portation planning. Data mining techniques such as decision trees
and random forests were applied to find important factors and
develop predictive crash models. These techniques are nonpara-
metric in nature and do not depend on any functional form. Also,
they account for missing values and outliers and can handle a
dataset with large number of predictors without being affected by
the multicollinearity problem between them. The superiority and
robustness of tree based algorithms are extensively discussed in
Karlaftis and Golias (2002),  Chang and Wang (2006),  Harb et al.
(2009), and Yan et al. (2010).

2. Review of literature
Macroscopic safety modeling has been addressed so far at
different spatial aggregation starting from census block to state
level. Noland (2003) analyzed how various road infrastructure

dx.doi.org/10.1016/j.aap.2011.07.019
http://www.sciencedirect.com/science/journal/00014575
http://www.elsevier.com/locate/aap
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mprovements affect traffic-related fatalities and injuries while
ontrolling for other factors like several demographic variables, per
apita alcohol consumption, seat-belt legislation, etc. which are
nown to affect overall safety. County level aggregated data has
een analyzed using socio-economic characteristics (Amoros and
aumon, 2003; Noland and Oh, 2004; Aguero-Valverde and Jovanis,
006), weather conditions and amount of travel (Aguero-Valverde
nd Jovanis, 2006), and transportation infrastructure (Noland and
h, 2004; Aguero-Valverde and Jovanis, 2006). Wier et al. (2009)

ooked at the vehicle–pedestrian injury collisions at 176 San Fran-
isco, California census tracts. The predictor variables examined
n their study included street, land use, and population character-
stics. Noland and Quddus (2004) analyzed ward level crash data
or England using land use types, road characteristics and demo-
raphic data. Levine et al. (1995) examined the number of motor
ehicle crashes per census block group to population, employment
nd road characteristics.

This study analyzed total and severe crashes at 1349 TAZs of four
ounties of the state of Florida with variations in urban and rural
andscape. The study considered several road network characteris-
ics and various trip related predictors in the crash analysis.

A wide spectrum of modeling approaches has been incorpo-
ated in aggregate level safety research. For example, negative
inomial (NB) models have been widely used in TAZ (Hadayeghi
t al., 2003, 2006; Guevara et al., 2004), ward (Noland and Quddus,
004), and county (Karlaftis and Tarko, 1998; Amoros and Laumon,
003; Noland and Oh, 2004; Aguero-Valverde and Jovanis, 2006)

evel aggregate crash analyses. Wier et al. (2009) used ordinary
east square regression to predict vehicle–pedestrian injury col-
ision for the census tracts. Other methodologies found in the
iterature include log linear models (Washington et al., 2006)
nd geographically weighted regression (GWR) models (Hadayeghi
t al., 2003) for TAZs, spatial lag models for block groups (Levine
t al., 1995), and more recently Bayesian hierarchical models for
he wards (Quddus, 2008) and Bayesian spatial models for the coun-
ies (Huang et al., 2010). Quddus (2008) found that in many cases
he results from the non-spatial NB models were similar to the
ayesian hierarchical models. Also, Aguero-Valverde and Jovanis
2006) found no evidence of spatial correlation in fatal crashes
or the counties of Pennsylvania and their results concerning the
ffects of covariates on fatal and injury crash risk were mostly
onsistent in direction and magnitude for both NB and Full Bayes
odels.
The application of classification and regression tree (CART) in

oad safety analysis has been advocated due to its nonparametric
ature and for providing strong, yet simple, variable exploration
nd predictive ability. CART has the advantage of handling a rel-
tively large number of independent predictors. Also, being a
onparametric tool no functional form is required in modeling with
ART and has both theoretical and applied ascendancy over mul-
iple linear and NB models in analyzing crash rates (Karlaftis and
olias, 2002).

The safety literature reflects several examples of CART appli-
ation in analyzing crashes. For example, Stewart (1996) applied
ART models to analyze motor vehicle crash data to estimate mea-
ures of driver injury severity when the crash consisted of a vehicle
triking a fixed object on the roadside. Stewart (1996) concluded
hat the tree structure has the advantage of determining com-
lex interaction among the variables easily; however, if the target
ariable can be approximated accurately by a known functional
orm of the independent predictors, standard regression proce-
ure would be expected to perform better than CART. It is well

nown that crash pattern often violates underlying assumptions
ade by the traditional/classical regression functions. To compen-

ate for multicollinearity between variables, missing observations,
nd the fact that the true model form was unknown for different
 Prevention 45 (2012) 317– 325

factors affecting crashes, by type of collision, at signalized intersec-
tions Abdel-Aty et al. (2005) used tree based regressions. Chang and
Chen (2005) analyzed two  years of crash data from national freeway
in Taiwan using CART and traditional negative binomial models
using different geometric, traffic characteristics, and environmen-
tal factors. Chang and Chen (2005) study demonstrated CART to be a
good alternative in analyzing freeway crash frequencies compared
with negative binomial regression models based on the prediction
performances. More recently Yan et al. (2010) used hierarchi-
cal tree-based regression (HTBR) to explore train–vehicle crashes
occurring at highway–rail grade crossings. The authors developed
several predictive crash models and assessed the effectiveness of
the stop-sign treatment utilizing HTBR. Application of nonparamet-
ric regression trees in the other safety literature include-predictive
modeling of rural crash frequency by Karlaftis and Golias (2002),
analyzing rear end crashes by Yan and Radwan (2006),  classifica-
tion of intersection crashes by Qin and Han (2008),  and exploring
factors associated with crash avoidance maneuvers by Harb et al.
(2009).

This paper investigated important variable rankings along with
the predictive trees. Random Forest technique was incorporated in
this regard to examine and rank important variables. Washington
(2000) commented on tree based regression as a valuable data
exploration technique for understanding the data structure or rela-
tionships among variables. Harb et al. (2009) used similar technique
to classify drivers with evasive action and drivers with no evasive
actions in their study exploring several driver, vehicle, and environ-
mental characteristics associated with crash avoidance maneuvers.
Abdel-Aty et al. (2005) extensively used tree based variable impor-
tance ranking to identify important factors related with different
collision types occurring at signalized intersections. Also, Abdel-
Aty et al. (2008) argued that random forest is more robust variable
selection tool as it exhausts a collection of multiple tree classifiers
as compared to one single decision tree.

The objectives of this paper are two-fold. The paper investigates
important variables associated with total and severe crashes per
traffic analysis zone (TAZ). It also illustrates the application of data
mining techniques such as decision trees and random forests to
find these important factors. Application of nonparametric meth-
ods (such as decision trees) is relatively new in safety modeling.
Therefore, we have emphasized its robustness as compared to clas-
sical/traditional regression models.

As discussed above, several previous studies looked into the
aggregated crash data and several regression techniques were
applied to predict crashes and to capture significant variables asso-
ciated with aggregate crashes. However, application of data mining
techniques to investigate important variables and the association
between the predictors and target at aggregated levels has not been
performed. In this study, this has been incorporated through appli-
cation of CART and random forest.

The rest of the paper is structured as follows. The following sec-
tion presents the traffic analysis zones and the data preparation
steps undergone for this study. The next sections provide a brief
overview of classification and regression trees and random forest
techniques. The sections thereafter present modeling and results
of the decision tree analyses, and explain prediction ability of the
tree models. In the following section variable importance rankings
from random forest are presented. Finally the paper ends with a
discussion summarizing the results, limitation of the study and the
future scope.
3. Data description

Traffic analysis zones (TAZs) are special areas delineated by state
and/or local transportation officials for tabulating traffic-related



sis and

d
P
t
(
i
h
c
a
o
H
d
t
m
o
a
w
T
o

t
f
t
d
R

(
s
t
a
T
T

•

•

•

d
T
e
n
b
a
c
b
n
r
e
r
t
a
h
e

v
r

4

v

C. Siddiqui et al. / Accident Analy

ata and are defined as part of the Census Transportation Planning
ackage (US Census Bureau, web link). A TAZ is a spatial aggrega-
ion of census blocks and its size is in part a function of population
Peters and MacDonald, 2004). As cited by You et al. (1997) the most
mportant criteria used to define TAZs include spatial contiguity,
omogeneity, compactness, etc. Also TAZs have commonly been
onsidered as a basis for the aggregate modeling process (Miller
nd Shaw, 2001). The study in this paper was based on 1349 TAZs
f four counties in the state of Florida. The counties considered were
illsborough, Citrus, Pasco, and Hernando. Crashes which occurred
uring the years 2005 and 2006 in these four counties were used for
he analysis in the study. The Geographic Information System (GIS)

aps with crash locations were collected from Florida Department
f Transportation (FDOT). Each crash in the GIS map was geocoded
nd provided with several attributes. The roadway characteristics
ere identified from separate GIS shape files provided by FDOT.

hese GIS maps represented actual locations of crashes and lengths
f roadways.

The TAZ cartographic boundary maps of the study counties and
he number of trip attraction and production per day per TAZ
or thirteen different categories were collected from FDOT Dis-
rict Seven Intermodal Systems Development Unit. The latest trip
ata based on ‘taz2004’ data structure (generated from Tampa Bay
egional Planning Model version 6.0) was used in the study.

According to the United States Department of Transportation
USDOT), planners use home as a base to predict travel patterns
ince typically household characteristics related to travel are easier
o identify and forecast. The conventional meaning of a trip origin
nd destination is not valid for trip productions and attractions.
he following are a few rules suggested by the USDOT (National
ransportation Laboratory):

Rule 1: If a trip begins or ends at the traveler’s home, the trip is
produced at the home end.
Rule 2: If a trip begins or ends at the traveler’s home, the trip is
attracted to the non-home end.
Rule 3: If a trip begins at a non-home location and ends at a non-
home location, the trip is produced at the origin and attracted to
the destination.

Classifying trips by trip purposes is typical in trip-based travel
emand models adopted by different agencies (such as, MPOs).
his enables the simulation of trip behaviors more accurately. For
xample, a social-recreational trip is more likely to have higher
umber of occupants in a vehicle as compared to a work trip. Home
ased work, home based non-work and non-home based work
ttractions/productions are usually personal trips. Trips in the other
ategories portend vehicle trips. A home based work trip is made
etween traveler’s home and his/her workplace. A home based
on-work trip (may be for various purposes, e.g., shop, school, social
ecreational, etc.) is made between home and any other destination
xcept workplace. A non-home based trip has neither ends at home,
egardless of purpose. A trip with one end inside the study area and
he other end outside is defined as an external–internal trip. Also

 trip may  be categorized by the vehicular usage (taxi, light truck,
eavy truck, etc.) and specific purposes (such as college, airport,
tc.)

All variables were aggregated at the TAZ level using ArcMapTM

ersion 9.2. The complete list and descriptive statistics of different
esponses and predictors are provided in Table 1.
. Classification and regression tree (CART)

Classification and regression trees (CART) are mainly used for
ariable selection, variable importance, interaction detection, strat-
 Prevention 45 (2012) 317– 325 319

ified modeling, missing value imputation, model interpretation,
predictive modeling, etc. This study mainly focuses on the vari-
able selection, variable importance and predictive modeling for
total and severe crashes occurring at TAZs. As mentioned previ-
ously CART is a nonparametric method and invariant to monotonic
transformation of its independent predictors.

The CART analysis consisted of growing the large initial tree, cal-
culating tree pruning criteria such as AIC, BIC, and deviance values
for different tree sizes, and finally pruning the tree to determine the
best tree structure. Initially the tree was  grown by binary recursive
partitioning by dividing the variables into Y < a and Y ≥ a, where Y
is any variable that belongs to roadway or trip characteristics, and
a is the splitting value for that variable. The objective of such kind
of splitting was to reduce impurity in the child nodes. An optimal
splitting rule was being used by the CART procedure where the
reduction in impurity in the child nodes was maximized. Gini cri-
terion and misclassification rates were used in this study as the
potential node impurity measures. As the initial large tree grew,
node impurity of offspring from every node compared to the par-
ent node was minimized. The measure of the node impurity for any
node t using Gini criterion follows:

i(t) =
∑

j /=  i

p(i|t)p(j|t) (1)

is defined where i(t) is the node impurity of node t, and p(i|t) and
p(j|t) are the fraction of cases in node t for which the splitting vari-
able falls into category i or j. For a tree with N terminal nodes
misclassification rate is given by,

Misclassification rate =
N∑

t=1

p(t)[1 − p(j|t)] (2)

where, p(t) is the proportion of the data belonging to node t.
The impurities were calculated using learning dataset. The learn-

ing dataset constituted 67% of the total sample size. As the size of
the initial tree increases, the nodal impurity decreases. The opti-
mal  splitting rules developed for the initial tree was  then used in
the test dataset to calculate model performance. Finally, the ini-
tial large tree was snipped based on the selected pruning criterion.
CART process exhausts the most important variables to construct
the final tree complying with the pruning criterion. Readers who are
interested in deeper understanding of the CART procedure would
be referred to Chang and Chen (2005) and Breiman et al. (1984) as
they provide an extensive description of the tree algorithm.

The CART analyses were also performed using 10-fold cross val-
idation (CV) technique. In general, a k-fold CV is a relatively more
efficient remedy than the traditional holdout data (i.e., partition-
ing dataset into learning and testing). Performance measures of
the trees are averaged over k models. Each model is then fit with
(k − 1)/k of the data and assessed on the remaining 1/k of the data.
Then the average over the k holdout datasets is used to estimate
the performance of the model fitted to the full dataset.

5. Random forest

Random forest is a relatively new tool in exploring the impor-
tance ranking for the variables. Like other data mining tools random
forest can handle large number of variables for a large dataset.
Random forest technique exploits bootstrap sampling to grow a
collection of tree classifiers. The results from these trees are then
used to assess the importance of the variables used in the tree mod-

eling. Along with bootstrap sampling random forest also applies
Gini impurity criterion so that the Gini impurity for the child nodes
is less than the parent nodes. Gini decrease for each individual
variable are added up for all trees in the forest and used to gen-
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Table  1
Variable description.

Variable name Definition N Mean Standard deviation Min  Max

TAZ2004 Traffic analysis zone (as per year 2004) 1349 – – – –

Response variables (per TAZ in years 2005–2006)
log totcr Natural logarithm of total number of crashes 1349 3.41 1.269 0 6.18
log  sevcr Natural logarithm of total number of fatal and severe injury crashes 1349 1.47 0.925 0 3.87

Independent variables related to roadway characteristics (total roadway segment length within a TAZ with)
seglen15 15 mph  posted speed limit 1349 0.22 0.434 0 4.063
seglen25 25 mph  posted speed limit 1349 8.27 11.729 0 244.595
seglen35 35 mph  posted speed limit 1349 1.40 1.749 0 24.934
seglen45 45 mph  posted speed limit 1349 0.11 0.422 0 6.709
seglen55 55 mph  posted speed limit 1349 0.13 0.621 0 11.248
seglen65 65 mph  posted speed limit 1349 0.22 0.711 0 10.221
SUM  SEG LEN All roads 1349 10.76 14.050 0 265
Intersection Total number of intersections per TAZ 1349 12.32 12.055 1 119

Independent variables related to various trip productions and attractions
HBWP Home base work productions 1349 864.44 940.174 0 8056
HBWA Home base work attractions 1349 852.97 1262.400 0 17788
HBSHP Home base shop productions 1349 889.98 929.371 0 7363
HBSHA Home base shop attractions 1349 851.82 1402.270 0 15842
HBSRP Home base social recreational productions 1349 422.59 436.225 0 3173
HBSRA Home base social recreational attractions 1349 400.12 649.275 0 8127
HBSCP Home base school productions 1349 247.14 286.247 0 2965
HBSCA Home base school attractions 1349 246.75 684.592 0 6832
HBOP Home base other productions 1349 587.35 614.641 0 4533
HBOA Home base other attractions 1349 556.74 795.465 0 7992
NHBWP Non-home base work productions 1349 215.03 299.583 0 3606
NHBWA Non-home base work attractions 1349 215.03 299.583 0 3606
NHBOP Non-home base other productions 1349 575.41 860.352 0 10144
NHBOA Non-home base other attractions 1349 575.41 860.352 0 10144
LTRKP Light truck productions 1349 268.62 231.951 0 2264
LTRKA Light truck attractions 1349 268.62 231.951 0 2264
HTRKP Heavy truck productions 1349 68.76 102.811 0 1591
HTRKA Heavy truck attractions 1349 68.76 102.811 0 1591
TAXIP Taxi productions 1349 20.26 21.849 0 323
TAXIA  Taxi attractions 1349 20.26 21.849 0 323
EIP  External–internal productions 1349 0 0 0 0
EIA External–internal attractions 1349 40.21 56.448 0 647
AIRPP  Airport productions 1349 12.58 34.145 0 540
AIRPA Airport attractions 1349 0 0 0 0
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COLP  College productions 

COLA College attractions 

rate variable importance measure (Breiman and Cutler, web link).
bdel-Aty et al. (2008) and Harb et al. (2009) provide more details
n how random forest important variable ranking algorithm works.

Statistical computing software R (The R Project) and SAS® were
sed in this study to perform various data mining analyses.

. Models and results

Regression trees were developed for predicting total crashes
nd severe crashes occurring at the study TAZs. Natural logarithmic
ransformations of the response variables were considered to stabi-

ize variance and to minimize average square error. Two regression
rees were modeled and their results were compared. The first tree
as developed based on the learning and test samples. The sec-

nd tree was based on the 10-fold cross validation (CV) technique

able 2
oodness-of-fit statistics for different pruned trees.

Tree types Residual mean deviance Averag

Log of total crash as response
Regression tree-1 (test sample) 0.9165 0.911 

Regression tree-2 (CV) 0.7419 0.734 

Log  of severe crash as response
Regression tree-1 (test sample) 0.5855 0.581 

Regression tree-2 (CV) 0.551 0.547 
1349 79.64 161.303 0 3234
1349 38.40 341.085 0 5069

which used the complete dataset. Table 2 provides the summary
statistics of the regression trees. It can be noted that regression
trees developed by 10-fold CV provided better goodness-of-fit (i.e.,
lower residual mean deviance and average square error). Therefore
these trees (in Figs. 2 and 3) were used in predictive interpretation
of crashes and are discussed in the following sub-sections and next
sections.

Please note that in order to compare regression trees with the
parametric models, negative binomial (NB) models were developed
for the same predictor sets. It was  found that the mean/average
square error for the NB model developed for ‘log of total crash’ was

1.116 which is clearly higher than that of both the trees developed
for the similar response variable. Average square error of the NB
model for ‘log of severe crash’ was found to be 0.649 which is again
higher than that of the regression trees developed considering ‘log

e square error No. of variables used No. of terminal nodes

4 5
7 11

5 7
6 9
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Fig. 1. Tree size selection for regression tree-2 (log of to

f severe crash’ as the response. Since a smaller value is desirable
or this error, the regression trees developed using cross-validation
CV) technique provided the best fit.

.1. Modeling total crashes

The initial large tree provided one hundred and forty-three ter-
inal nodes based on 24 variables selected from the batch of all

nput variables. Fig. 1 shows the Bayesian Information Criterion
BIC), Alkaike Information Criterion (AIC), and deviance values for
ifferent tree sizes developed for modeling log of total crashes.

he large tree was pruned based on the least BIC value. It can
e observed that the trends of all three Goodness-of-fit statistics
ollow similar pattern. Although BIC is chosen for tree size selec-
ion, minimum AIC and deviance values are also achieved by the

Fig. 2. Regression tree for total crash
sh as response) developed using 10-fold CV technique.

same number of terminal leaves. This was  also found for severe
crashes (discussed in the following section). The pruned tree (Fig. 2)
produced eleven terminal nodes using seven significant variables
which were – total number of intersections per TAZ, light truck
productions, total roadway length with 15 mph posted speed limit
(PSL), with 35 mph  PSL, with 65 mph  PSL, airport productions, and
non-home based work productions.

6.2. Modeling severe crashes

Similar to the total crash model, a regression tree was devel-

oped using 10-fold CV technique and pruned using minimum BIC
criterion. The pruned tree (Fig. 3) had nine terminal nodes with
six variables. These variables were – total number of intersections
per TAZ, light truck productions, total roadway length with 15 mph

es using 10-fold CV technique.
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Fig. 3. Regression tree for sever

SL, with 35 mph  PSL, with 65 mph  PSL, and home-based school
roductions. It was interesting to note that all variables used in
egression tree-1 were also used for regression tree-2. The residual
ean deviance for regression tree-2 was found to be 0.551 which
as less than that of tree-1.

. Crash prediction models using trees

.1. Regression tree model for total crashes

The final tree structure for total crashes used seven significant
ariables and had eleven terminal nodes. As shown in Fig. 2, total
umber of intersections per TAZ was used to create the first split of
he data. This classified total crashes into two groups: if the num-
er of intersections was less than 4.5 per TAZ, the tree predicted
1 crashes/TAZ (e2.41) and for TAZs with total number of intersec-
ions ≥4.5, the tree predicted 46.5 crashes/TAZ (e3.84). Being used
s the first splitting variable, indeed, total number of intersections
er TAZ is considered to be the most important variable by the
ecision tree. The complexity of intersections itself has demanded
eparate research in the safety studies. Therefore, it is expected
hat the number of total crashes is dependent on the increase in
he number of intersections within a TAZ.

Light truck productions (LTRKP) and airport productions (AIRPP)
ere used in the second level split. For the TAZs with less number

f intersections (<4.5) and LTRKP ≥ 76.5 trips, the tree predicted 19
rashes (e2.94). On contrary, TAZs with more number of intersec-
ions (≥4.5) and higher number of AIRPP (≥3.5 trips/TAZ), the tree
redicted 62.2 total crashes/TAZ (e4.13).

The third level of the tree splitting occurred with three variables
hich were total roadway length with 35 mph  PSL (seglen35), light

ruck productions (LTRKP) and total roadway length with 65 mph
SL (seglen65). Following the branch which had less number of
ntersections (<4.5/TAZ) but higher light truck production trips
≥76.5 trips/TAZ at second level and then ≥303 trips/TAZ at third

evel), the tree predicted an average of 30 total crashes/TAZ. On the
ther side, if a TAZ had total intersections ≥4.5, less airport produc-
ion trips (<3.5 trips/TAZ), and total roadway length with 65 mph
SL ≥ 0.3171 miles, the tree predicted 58 total crashes for that TAZ.
hes using 10-fold CV technique.

The branch with more intersections (≥4.5/TAZ) and more air-
port production trips (≥3.5 trips/TAZ) had the highest propensity of
total crashes. As the split indicates- if total length of roadway with
65 mph  PSL is less than 0.1676 miles/TAZ, the tree predicts 54 total
crashes/TAZ (e3.99); and 110 total crashes/TAZ (e4.70), otherwise.
Therefore, from the tree structure, it can be noted that the variables
‘light truck productions’ and ‘total roadway length with 35 mph PSL’
so far were associated with the occurrence of relatively less number
of total crashes. On the other side, the variables ‘airport produc-
tions’ and ‘total roadway length with 65 mph PSL’ were associated
with TAZs which were predicted to experience a higher number of
total crashes. Hasty attitude to reach the destination may influence
airport productions to be at risk. Also airport trips could be related
to non-familiar travelers (rental cars). Among all the vehicles that
are involved in crashes between 2005 and 2006, automobiles and
light trucks constituted about 81% with light trucks having its own
share of approximately 21%. Higher involvement in crashes jus-
tifies the significance of ‘light truck productions’ as an important
variable.

In the fourth and final level of split, non-home based work
production (NHBWP) type trips were associated with highest
number of total crashes. Following the splitting rule: if for any
particular TAZ, the total number of intersections is ≥4.5, airport
productions ≥3.5 trips, and total roadway length with 65 mph  PSL
is <0.1676 miles, the tree predicted 37 total crashes for having
NHBWP <125.5 trips; and 63.4 total crashes, otherwise. Naderan
and Shahi (2010) found non-home based work productions as a
significant predictor in every crash generation models they devel-
oped for total, severe, injury and PDO crashes. In agreement with
these authors (Naderan and Shahi, 2010) it is thought that since
these trips mostly occur during rush hours and on a periodic basis,
they bear more exposure to risk.

7.2. Regression tree model for severe crashes

The best regression tree for severe crashes per TAZ (Fig. 3)

exhausted six variables to produce nine terminal nodes. Similar
to the total crashes number of intersections per TAZ was  identi-
fied as the first splitting variable, thereby considering as the most
important predictor associated with the severe crashes. It may  be
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Fig. 4. Variable importance ranking for

bserved that, compared to the first level of split for total crashes,
he splitting rule associated with the total number of intersections
nd severe crashes/TAZ shifted to the right (4.5 versus 7.5). This
ndicates to the fact that a high density of intersection in a TAZ will
ropagate the risk for severe crashes.

At the second level of the tree, for TAZs with less number of
ntersections (<7.5) but higher (≥0.18045 miles) roadway length

ith 35 mph  PSL (seglen35), the tree predicted 3.4 severe crashes
e1.22). On contrary, for TAZs with more intersections (≥7.5) the
plit was performed using light truck productions (LTRKP) in such

 way that if LTRKP was ≥347 trips, the tree predicted 8.6 severe
rashes (e2.15); and 5 severe crashes (e1.61), otherwise.

The four subgroups created in second level split were fur-
her split using three different variables. Variable ‘total roadway
ength with 65 mph  PSL’ was used twice in the third level split-
ing rules. For TAZs with less number of intersections (<7.5), higher
oadway lengths with 35 mph  PSL (≥0.38045 miles), and higher
≥319) number of home-based school production (HBSCP) type
rips, the tree predicted 5.1 severe crashes (e1.63). For TAZs with
igher intersections (≥7.5), lower number (<347) of light truck
roductions (LTRKP), and higher length (≥0.36995 miles) of road-
ays with 65 mph  PSL, the tree predicted 8.7 severe crashes (e2.16).
owever, following LTRKP ≥ 347 trips/TAZ, for the higher length

≥0.50365 miles) of roadways with 35 mph  PSL, the tree predicted
.7 severe crashes/TAZ (e2.27) which is the highest number of pre-
icted severe crashes among all the terminal nodes.

Roadways with 65 mph  PSL represent roads with higher speed
imit and higher speeds tend to worsen crash severity (Kloeden
t al., 2002; Elvik et al., 2004). The length of roadways with 35 mph
peed limit was the second highest (13.83%) after roadways with
5 mph  posted speed limit. Tignor and Warren (1990) in the study
n driver speed behavior found that driver compliance with speed
imits is poor and on average, 7 out of 10 motorists exceeded
he posted speed in urban areas. Tignor and Warren (1990) also
eported that the compliance tends to be worse on low-speed roads.

ossibly, a road that is not designed for higher speed (e.g., roads
ith 35 mph  PSL) is riskier for the travelers who  tend to drive

bove the posted speed limit. Consequently, this driving behavior
ncreases the probability of a crash to be more severe. Educational
ssion tree developed for total crashes.

trip production was found to be a significant variable in severe
crash and injury crash generation models developed by Naderan
and Shahi (2010) for the 380 TAZs of Iran. Finding Home-based
school productions as an important splitting variable comply with
their findings.

8. Variable importance ranking using random forest

The variables which were used in the pruned tree indicate their
relatively higher level of importance among the variables used
in this study. To further verify the relative importance of these
variables random forest technique was adopted. The R package
‘randomForest’ was  used in analyzing and displaying the variable
importance plots. The variable importance ranking (in Figs. 4 and 5,
right panel) was  calculated using the total decrease in node impu-
rities from variable splits and then average over all the trees. Also,
the node impurity was  measured using residual sum of squares
(Figs. 4 and 5, left panel).

As shown in Fig. 4, total number of intersections per TAZ was top
ranked for both cases. Total roadway segment length with 65 mph
and 35 mph  posted speed limit were ranked second and third,
respectively, based on the percentage mean square error. These two
variables along with airport productions and light truck produc-
tions were within the top one-third important variables according
to the node purity. Light truck production was  ranked fourth by
the mean square error whereas airport productions were ranked
eleventh by the same. All four variables selected in regression
tree-1 were used in regression tree-2; therefore indicating higher
importance for those variables. These variables were – number of
intersections per TAZ, airport productions, light truck productions,
and roadway length with 65 mph  posted speed limit.

Variable importance rankings for the regression tree built for
severe crashes are shown in Fig. 5. According to the increased node
purity total number of intersections per TAZ and total roadway seg-
ment length with 35 mph  posted speed limit were ranked first and

second most important variables, respectively. Among the other
variables which were used in the trees, total roadway segment
length with 65 mph  posted speed limit, light truck productions, and
home-based school productions were within the top one-third of
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Fig. 5. Variable importance ranking for 

he most important variables ranked in terms of both residual sum
f squares and increased node purity.

. Conclusions

The regression trees developed in this study provided sim-
le ‘if-then’ relationship of the significant variables affecting total
nd severe crashes per TAZ. Macro-level crash analysis had been
ndergone in several studies during the past few years to capture

mportant variables associated with different crash environment
nd types. However, the challenge for this kind of work sustains
n the sense that there are different sets of predictors that may
nterplay with crashes or among themselves in numerous ways.
everal researchers used demographic and socio-economic char-
cteristics for different spatial aggregation. Using trip variables as
he predictors for crashes is thought to be privileged as to the fact
hat by nature of their generation characteristics, trips are function
f different demographic and socio-economic factors and are also
ffected by the land use pattern of an area. Therefore, trips them-
elves take account into multicollinearity between several factors.
rips ultimately are directly related to crashes and exposure. On the
ontrary, the cumulative effect of these sets of predictors may  to
ome extent make the interpretability of the trip variables difficult
hile predicting aggregated crashes (frequency or rates). However,

his outcome is not surprising since aggregating crashes for a spa-
ial unit is basically accumulating multiple types of crashes for
hat geographic boundary. And multiple types of crashes are the
henomena resulting from the complex interactions of those crash
pecific attributes.

As seen in the regression trees, and also from Figs. 4 and 5,
t is evident that few variables were associated with both total
nd severe crashes. Five variables in particular were present in
he top six of the variable rankings in terms of increasing node
purity’ for both total and severe crashes. These variables were the
otal number of intersections, total roadway length with 35 mph
SL, total roadway length with 65 mph  PSL, light truck productions

nd attractions. Except light truck attractions, the other four vari-
bles were used as splitting variables in the regression trees (in
igs. 2 and 3). Therefore, both trees and random forest outputs indi-
ate that the effect of these variables should be considered while
sion tree developed for severe crashes.

developing a strategy for improving the safety of a zone. For exam-
ple, a TAZ with higher number of intersections can be prioritized
for allocating funds for safety treatment, if necessary. TAZs with
higher lengths of roadways with 35 mph  posted speed limit may
be scrutinized carefully by transportation officials to reduce severe
crashes as well as total crashes. Alternatives such as installing speed
calming devices or lowering the speed limit may be additionally
taken into account to improve safety. Similarly, increasing number
of signage and driving directions may  be considered for unfamil-
iar drivers in a TAZ with greater amount of airport production. It
appears that some of the variables are contributing to both total and
severe crashes. However, the trees also indicated the unique pre-
dictors related to these two  crash response variables. For example,
Airport productions were uniquely associated with total crashes
per TAZ and were also identified as one of the top important vari-
ables according to the random forest rankings. Home based school
productions on the other hand appeared to be only associated with
severe crashes per TAZ.

Aggregate level analyses have been criticized due to the problem
of heterogeneity and multicollinearity. TAZs are relatively homoge-
neous geographic entities as compared to other spatial units (such
as, census blocks, and tracts), they are thought to compensate for
the heterogeneity problem. Also, the CART procedure is not affected
by the collinearity among the predictors. However, one of the lim-
itations of the study is disregarding the spatial effect which might
play a role in the neighboring TAZs. Considering spatial effect in
nonparametric crash modeling e.g., data mining, artificial neural
network, and hierarchical Bayesian analysis would definitely be an
important extension to this analysis.

The authors believe that examining significant variables related
to specific types of crashes are vitally important in the planning
stage of a transportation network. The need to predict future safety
at the planning level has been reflected in NCHRP 8-44(2) project
(Washington et al., 2010) which develops a planning-level decision
support tool by addressing socio-demographic changes. It is wise to
act proactively before crashes would occur in the roadway network.
The long range implication of this work and other along the same
line leads to a new direction where safety considerations could be
successfully integrated into the planning level. The variables found
significant in this study provide a guideline toward the factors that
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ould be assessed critically in evaluating macro level safety. These
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