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Abstract

This paper presents an algorithm to approximate a solid
model by a hierarchical set of bounding ellipsoids having op-
timal shape and volume approximation errors. The ellipsoid-
tree is constructed in a top-down splitting framework. Start-
ing from the root of hierarchy the volume occupied by a
given model is divided into k sub-volumes where each is ap-
proximated by a volume bounding ellipsoid and will be later
subdivided into k ellipsoids for the next level in hierarchy.
The difficulty for implementing this algorithm comes from
how to evaluate the volume of an ellipsoid outside the given
model effectively and efficiently (i.e., the outside-volume-
error). A new method — analytical computation based —
is presented in this paper to compute the outside-volume-
error. One application of ellipsoid-tree approximation has
also been given at the end of the paper.

1. Introduction

Object approximation using simple primitives is a very
important issue in many applications of computer graphics,
such as ray tracing, shadowing, collision handling and
visibility. For different accuracy, those primitives construct a
hierarchy — Bounding Volume Hierarchies (BVH). Usually,
the bounding volume is a simple geometry primitive that
bounds parts of the model. Many different primitives have
been employed as the bounding volume, including Spheres
[3], [4], [10], [17], [18], Axis Aligned Bounding Boxes
(AABB) [26], Oriented Bounding Boxes (OBB) [9] and
Spherical Shells [12], etc. To the best of our knowledge,
our approach presented in [16] is the first piece of work
using ellipsoids as primitives in a BVH approach. This
paper presents a new analytical method here to evaluate the
outside-volume-error and compares it with the voxel-based
method in [16]. Furthermore, the application of ellipsoid-tree
in shadow rendering has been given in this paper.

Main Results: A novel bounding volume hierarchy
(BVH) — ellipsoid-tree has been presented in this paper
to approximate both the surface and the volume of a solid

Figure 1. The ellipsoid-tree constructed by our ana-
lytical method (left), our voxel-based method (middle)
and the sphere-tree generated by the Adaptive Medial
Axis Approximation (AMAA) (right) for a human model:
(a) the given mesh model of a human body, and the
comparisons in (b) Level 1, (c) Level 2, and (d) Level 3.

model. Based on the study of the sphere-outside-triangle vol-
ume (SOTV), an analytical method to compute the ellipsoid-
outside-triangle volume (EOTV) has been given, which is
the most difficult part of the ellipsoid-tree approximation
framework. Compared with a closely relevant BVH, sphere-
tree, generated by the state-of-the-art approach (i.e., the
adaptive medial axis approximation — AMAA [4]), the
ellipsoid-tree bounds the volume of given models more
tightly when using the same number of primitives.

The rest of the paper is organized as follows. After
reviewing the related works in section 2, the error-metrics
for ellipsoid approximation are introduced in section 3
together with their evaluation method. Section 4 presents the
framework of ellipsoid-tree construction. The experimental
results and one application in shadow rendering is given in
section 5 and 6. Lastly, our paper ends with the conclusion
section.

_____________________________ 
978-1-4244-3701-6/09/$25.00 ©2009 IEEE 
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2. Related Work

Being a simple bounding volume hierarchy, sphere-tree
is widely employed in time-critical applications. A number
of algorithms [3], [4], [10], [17], [18], [30] have been
developed for the construction of sphere-tree. The authors
in [3], [17] generated sphere-tree by using the octree data
structure, where a sphere is placed at each non-vacant leaf
node of the octree. The algorithm can be easily implemented,
but the sphere-trees generated in this way often fit the given
model quite poorly as the algorithm does not explicitly
consider the tightness of fit. Quinlan [18] adopted top-
down recursive splitting to construct sphere-trees. Using the
method, Ruinkiewicz and Levoy [20] constructed sphere-
trees for visibility culling and level-of-detail rendering. An
alternative is to merge similar spheres in a bottom-up fashion
as [19], [24], however splitting or merging in their methods
is given greedily and thus the results are locally optimal.
Methods based on the medial axis [1], [10] built a Voronoi
diagram and centered spheres at its vertices. The Adaptive
Medial Axis Approximation (AMAA) [4] extended this idea
by using greedy optimization to merge or burst spheres. The
approach is superior to other previous methods, therefore,
their result will be conducted as a benchmark for evaluating
our result. Recently, Wang et al. [30] presented a variational
approximation method for approximating solid objects by
spheres. Their method directly minimized the outside vol-
ume, thus it gave a tighter fitting.

As aforementioned, ellipsoids can give tighter bounding
than spheres. Several approaches on collision detection
between ellipsoids have been investigated in [6], [8], [27],
[29]. However, these works are all based on the assump-
tion that the objects have been successfully approximated
by ellipsoids. A few modelling methods are available to
approximate given objects by ellipsoid sets. In [2], Bischoff
and Kobbelt proposed a method for approximating a 3D
model by ellipsoids. Liu et al. in [14] recently extended
the method of [2] for modelling 3D objects by implicit
surface using ellipsoidal blobs. Simari et al. [23] adopted
ellipsoids as the only type of proxies for approximating
mesh surfaces using the Lloyd method with the error metric
being a combination of Euclidean distance, angular distance
and curvature distance. However, none of these approaches
guaranteed the consequent coverage of the given model’s
volume, which is important for the downstream collision
handling applications. Moreover, these methods cannot be
directly extended to generate the BVH with ellipsoids. This
yields the motivation of our work — to construct ellipsoid-
tree for solid objects.

There are some approaches in literature about generating
the bounding ellipsoid for a set of points (ref. [13], [22],
[25], [28]). Simply applying their methods in the local region
of a given model will generate a local minimal-volume
ellipsoid; however, this local optimal ellipsoid may yield

great volume (or shape) errors for the global approximation.
Therefore, a global shape optimization method was devel-
oped in our previous paper [16], where the outside volume
and the shape approximation error of the ellipsoid-tree to a
given model are directly minimized.

3. Metrics for Ellipsoid Approximation

3.1. Metrics Definition

Before detailing the construction algorithm for ellipsoid-
tree, we will first define the metrics for ellipsoid approxi-
mation.

Surface Approximation In [5], the approximation
error between the surface X of a given model M which
is a closed and oriented manifold and its approximation Y

is defined as the distance

Lp(X, Y ) = (
1

|X |

∫ ∫
x∈X

‖d(x, Y )‖
p
dx)

1

p

where d(x, Y ) = infy∈Y ‖x−y‖, ‖·‖ is Euclidean distance,
and | · | is surface area. However, we found that it is too
complex to compute d(x, Y ) for an ellipsoid. Therefore, an
alternative surface approximation error was used. We defined
the surface approximation error between an ellipsoid o and
its corresponding surface region Xo as

Esur(o) = max{‖pi − do(pi)‖, ∀pi ∈ Xo} (1)

where do(pi) denotes the radial projection of pi on o. Our
Esur(o) actually simulates L∞(X, Y ).

Solid Approximation However, the error term
Esur(o) only works for surface but not volume. Therefore,
for a single ellipsoid o, we introduced the following volume
approximation error

Evol(o) =

∫ ∫ ∫
y∈o

δ(y, M)dy (2)

where for y ∈ �3, δ(y, M) = 1 is defined if y is outside the
solid M and inside the ellipsoid o; otherwise, δ(y, M) = 0
is given. Therefore, the approximation error measured in this
way is also called solid approximation error.

Hybrid Approximation Esur(o) controls the shape
approximation of ellipsoids to the given model, and Evol(o)
controls the volume bounding error — both are important to
ellipsoid construction. Thus, in the procedure of ellipsoids
generation, we integrated these two error terms into a hybrid
one by taking a weighted sum

E(o) = α(Esur(o))
3 + βEvol(o) (3)

The cubic power on the term Esur(o) is adopted to unify the
dimension of two terms. The values of α and β indicate the
relative importance that we place on each of the individual
error metrics. We can simply choose α = β = 0.5 to
show the same importance on the shape and the solid
approximation, or choose α = 0.8 and β = 0.2 to add more
weight on the shape approximation error.



3.2. Computation of Solid Approximation Error

For an ellipsoid, Eq.(2) can be reformulated as

Evol(o) = V (T, o) (4)

where T is the triangle set representing the object M , and
V is the volume outside T but inside the ellipsoid o.

3.2.1. Voxel-based method. A simple method to compute
the solid approximation error V (T, o) is to evaluate its
discrete form by

V (T, o) = Nout(M, o)Vvox (5)

with Nout which denotes the number of voxels whose
centers are inside o but outside M . Vvox is the volume of
each voxel. The accuracy of this evaluation depends on the
resolution of voxel sampling so we need very dense voxels
to achieve a highly accurate computation. To avoid this,
an analytical method was developed below to compute the
volume by directly integrating it triangle by triangle.

3.2.2. Analytical method. If a triangle t ∈ T is entirely
or partly inside an ellipsoid o, then there is some volume
between the ellipsoidal surface and the triangle. The volume
is denoted by V (t, o) and named ellipsoid-outside-triangle
volume (EOTV). The solid approximation error V (T, o)
between the given triangular mesh and an ellipsoid is ac-
cumulated by adding or subtracting these EOTVs over all
triangles t ∈ T on the given solid model.

Because of the anisotropy of ellipsoids, it is difficult
to compute the EOTV directly with an analytical method.
Therefore, we will employ sphere as the media to compute
EOTV. we deform both the ellipsoid o with radii (ra, rb, rc)
and the triangles in T to let o become a sphere with unit-
radius. After computing the sphere-outside-triangle volume
(SOTV), denoted by V (T, s) the resultant outside volume is
determined by scaling SOTV with rarbrc

V (t, o) = rarbrcV (t, s). (6)

Computing SOTV In [30], an analytical result was
presented for computing SOTV. However, only four possible
configurations between a sphere s and a triangle t are
listed in [30] as 3 vertices inside, 3 vertices outside, 2
vertices outside, and 1 vertex outside. However, from our
investigation we found that there are eight configurations.

The eight configurations are listed in Fig.2, where cases
(c), (f), (g) and (h) are missed in [30]. We illustrated the
cases in 2D, and assumed that a circle C is the intersection
between the sphere s = (c, r) and the plane of the triangle
t ∈ T . The relations between the sphere and the triangle will
be determined by the configuration between the circle C and
the triangle t. According to the number of the intersecting
points, we classified the eight cases into four classes: 0-
point class, 2-point class, 4-point class, and 6-point class.

Figure 2. The relations between a sphere and a tri-
angle. The first row is 0-point class, the second row is
2-point class, the third is 4-point class, and the fourth is
6-point class.

After considering the symmetry and removing the case that
the intersecting points are on the vertices of the triangles
(which can be classified into case (h)), there are two cases
in 0-point class, three cases in 2-point class, two cases in
4-point class, and one case in 6-point class (see Fig.2).

After getting the intersection field generated by a sphere
and a triangle, we decomposed it into some triangles and
arches to compute the resultant SOTV. Therefore, the SOTV
for cases (c)-(h) can be determined by adding SOTVs like
case (b) and additional swing volumes. In summary, SOTV
computed from decomposition can be expressed as

V (t, s) =

n∑
i=1

Vb,i +

m∑
j=1

Vswing,j (7)

where n is the number of the decomposed triangles, m is
the number of the arches, Vb,i is the volume formed by the
i-th triangle, and Vswing,j is the j-th swing volume.

To be self-contained, the formulas for computing SOTV
in case (a), (b) and the swing volume, which have been given
in [30], are listed below.

1) For case (a), the volume is [30]

Va = πh2(r − h
3
),

where h is the height of the triangle t’s plane above
c and r is the sphere radius.

2) For case (b), the volume is given by [30]



Vb = Vstri(t, s)− Vtet(t, c) = 1

3
(r3Ω−Dh),

where Vstri(t, s) is the volume bounded by the spher-
ical triangle formed by projecting the vertices of
triangle t onto the sphere s, and Vtet(t, c) is the
volume of the tetrahedron formed by the sphere center
c and the three vertices of the triangle t. Ω is the solid
angle of the triangle on the sphere and D is the area
of triangle t.

3) Swing volume lies between two planes hinged be-
tween the two points p0 and p1 where the triangle
edges exit the sphere. One of the planes is the trian-
gle’s, the other contains p0, p1 and the sphere center
c. The angle between these two planes is denoted by
ϕ, and then the volume Vs can be computed by [30]

Vswing =
∫ x1

x0

S(x)dx,
where S(x) =
(ϕ− arcsin( l0√

1−x2
))r − 1

2
(
√

r2 − x2 − l2
0
− l1)l0,

l0 =
√

r2 − ( l
2
)2 sin(ϕ), l1 =

√
r2 − ( l

2
)2 cos(ϕ),

x0 = −l
2

, x1 = l
2
, l = ‖p1 − p0‖.

While gathering SOTV over all triangles inside or inter-
secting with the sphere s, we sign the volume according to
two factors: whether the sphere center is inside the object or
not, and whether the sphere center is behind the triangle’s
plane or not. The details were discussed in [30].

4. Ellipsoid-Tree Construction Framework

The ellipsoid-tree is constructed by a top-down splitting
algorithm. Our basic idea was from [16] and was briefed
as follows. Starting from the root of hierarchy, the volume
occupied by a given model M is divided into k sub-volumes
Moi where each is approximated and fully covered by a
volume bounding ellipsoid oi. k is named as the degree of
the ellipsoid-tree, and can be freely specified by users. These
k ellipsoids are the primitives in level 1. Recursively, each
sub-volume is then subdivided into k ellipsoids for the next
level in hierarchy.

Pseudo-code of the Ellipsoid-Tree-Construction algorithm
is listed below.

In this algorithm, the most important steps are steps 6
and 7, which are the Ellipsoids Merge Algorithm and the
Variational Ellipsoids Optimization respectively.

Details for these two techniques can be found in our
previous publication [16].

5. Experimental Results

Three models — the human model in Fig.1, the horse in
Fig.3 and the bunny in Fig.4, are tested based on both voxel-
based solid approximation error evaluation and the analytical
evaluation. Starting from the minimal volume bounding
ellipsoid, four levels of the ellipsoid-tree are shown.

Algorithm 1 Ellipsoid-Tree-Construction
1: Sample the surface of the given model M into a point

set Ps;
2: Voxelize the space around M ;
3: Compute the minimal bounding ellipsoid of Ps as the

root of ellipsoid-tree;
4: repeat
5: for each ellipsoid oi in the current level i of hierarchy

do
6: k ellipsoids are constructed for approximating Moi ;
7: Optimize the shape and position of these k ellip-

soids so that the approximation to Moi is tighter;
8: end for
9: Move to the level (i + 1) of the hierarchy;

10: until the approximation tolerance has been arrived;

Figure 3. The ellipsoid-trees constructed by (left) the
voxel-based and (right) the analytical EOTV based eval-
uation method for the horse model. Four levels are
shown: (a) the given mesh model and the root node,
(b) level 1, (c) level 2, (d) level 3. The ellipsoids in level
1 are displayed in different colors, and their children and
children’s children shown in the later levels follow these
colors.

Figure 4. The ellipsoid-trees constructed by (left) the
voxel-based and (right) the analytical EOTV based eval-
uation method for the bunny model — also four levels
are shown: (a) the given mesh model and the root node,
(b) level 1, (c) level 2, (d) level 3.



Figure 5. The sphere-tree for two models: the horse and
the bunny — four levels are shown. The spheres in level
1 are displayed in different colors, and their children and
children’s children shown in the later levels follow these
colors.

As the state-of-the-art method for sphere-tree construc-
tion, the adaptive medial axis approximation (AMAA)
method [4] is chosen as the benchmark for our ellipsoid-tree
construction method. The sphere-trees for the same three
models have been given in Fig.1 and Fig.5. The sphere-
trees are generated with the same number of primitives at
each level as the ellipsoid-trees in Figs.1, 3 and 4. The
sphere-trees are generated by the best strategy in [4] (i.e.,
the expand and select scheme). The ellipsoid-tree shows its
strength for approximating the human and the horse rather
than the bunny. The reason is that the shapes of previous
two examples are more complex.

The computation cost of the proposed algorithm is rela-
tively expensive. For computing an ellipsoid-tree with about
200 ellipsoids (e.g., the horse example), it takes about 500
seconds using the voxel-based method while 1,330 seconds
using the analytic method. The expensive computation limits
it to generate ellipsoid-tree with more than a few hundred
ellipsoids.

6. Application — Shadow Rendering

In rendering, if the resolution of the given object is very
high, it is time consuming to render the original mesh
directly. The sphere set and ellipsoid set can be used as
a proxy for rendering the original mesh or its shadow. We
can use spheres or ellipsoids to approximate the mesh and
then to speed its rendering. in Fig.6, we compare results
using ellipsoid sets and sphere sets to cast shadows from a
face light, where a ground plane is used to “catch” shadows
underneath the objects generated by a face light. In Fig.6,
the top row shows the original view, and the bottom row
shows the ground plane images. Fig.6(a) is the original mesh
and its shadow. Fig.6(b) and Fig.6(c) are shadowed from the
ellipsoid sets generated by our algorithm in which the EOTV
is computed using the analytical method and the voxel-
based method respectively. Fig.6(d) shows the sphere set
generated by AMAA and its shadow. Among the tests shown

Figure 6. Shadow Rendering for Human model, (a)
original mesh, (b) analytical method, n = 32, (c) voxel-
based method, n = 32, (d) AMAA, n = 64, where n is
the number of primitives.

in Fig.6, shadows generated by ellipsoid sets are much closer
to the true shadow generated directly from the triangular
mesh than the sphere sets from AMAA while using less
primitives. These figures were generated by ray tracing using
an available free software POVRay.

7. Conclusion and Future Work

In this paper, we develop an ellipsoid-tree construction
method which can create a bounding volume hierarchy
(BVH) from a given model with ellipsoids as primitives. In
the framework, an analytical method in solid error computa-
tion is proposed. We tested the methods on several models.
From the results, benefited from the anisotropic shape of
primitives, it is obvious that the ellipsoid-tree constructed in
our approach gives higher shape fidelity than the sphere-tree.
The approximation errors on ellipsoid-trees generated by the
voxel-based method and the analytical method are more or
less similar for lower levels in the hierarchy. And although
the analytical method are time-consuming in refining levels
of the hierarchy, it can provide accurate results and better
visual effects.

It is well known that how this novel hierarchy can be used
in the collision handling of rigid objects, but it is still under
research that how we can generate a bounded deformation
tree (similar to [11]) using ellipsoid-tree. This will be one
of our future work. The numerical test for the application
of ellipsoid-tree in collision detection will also be done as
future work.
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