- [61]F. Tang, B. Mao, Z. Fadlullah, N. Kato.On a Novel Deep-Learning-Based Intelligent Partially Overlapping Channel Assignment in SDN-IoT.IEEE Communications Magazine, 2018
- [62]F. Tang, J. Liu, B. Mao, Z. Fadlullah, N. Kato.On Extracting the Spatial-Temporal Features of Network Traffic Patterns: A Tensor Based Deep Learning Model.IEEE International Conference on Network Infrastructure and Digital Content (IC-NIDC), 2018
- [63]B. Mao, F. Tang, Z. Fadlullah, N. Kato, O. Akashi, T. Inoue, K. Mizutani.A Novel Non-Supervised Deep-Learning-Based Network Traffic Control Method for Software Defined Wireless Networks.IEEE Wireless Communications, 2018
- [64]F. Tang, Z. Fadlullah, B. Mao, N. Kato.An Intelligent Traffic Load Prediction Based Adaptive Channel Assignment Algorithm in SDN-IoT: A Deep Learning Approach.IEEE Internet of Things Journal, 2018
- [65]F. Tang, Z. Fadlullah, B. Mao, N. Kato, F. Ono, R. Miura.On A Novel Adaptive UAV-Mounted Cloudlet-Aided Recommendation System for LBSNs.IEEE Transactions on Emerging Topics in Computing, 2018
- [66]B. Mao, Z. Fadlullah, F. Tang, N. Kato, O. Akashi, T. Inoue, K. Mizutani.A Tensor Based Deep Learning Technique for Intelligent Packet Routing.GLOBECOM 2017 - 2017 IEEE Global Communications Conference, 2017
- [67]F. Tang, B. Mao, Z. Fadlullah, N. Kato, O. Akashi, T. Inoue, K. Mizutani.On Removing Routing Protocol from Future Wireless Networks: A Real-time Deep Learning Approach for Intelligent Traffic Control.IEEE Wireless Communications, 2017
- [68]F. Tang, Z. Fadlullah, N. Kato, F. Ono, R. Miura.AC-POCA: Anticoordination Game based Partially Overlapping Channels Assignment in Combined UAV and D2D based Networks.IEEE Transactions on Vehicular Technology, 2017
- [69]B. Mao, Z. Fadlullah, F. Tang, N. Kato, O. Akashi, T. Inoue, K. Mizutani.Routing or Computing? The Paradigm Shift Towards Intelligent Computer Network Packet Transmission Based on Deep Learning.IEEE Transactions on Computers, 2017
- [70]Z. Fadlullah, F. Tang, B. Mao, N. Kato, O. Akashi, T. Inoue, K. Mizutani.State-of-the-Art Deep Learning: Evolving Machine Intelligence Toward Tomorrow’s Intelligent Network Traffic Control Systems.IEEE Communications Surveys & Tutorials, 2017
- [71]N. Kato, Z. Fadlullah, B. Mao, F. Tang, O. Akashi, T. Inoue, K. Mizutani.The Deep Learning Vision for Heterogeneous Network Traffic Control: Proposal, Challenges, and Future Perspective.IEEE Wireless Communications, 2016