谭黎明
  • 学位:博士学位
  • 职称:副研究员
  • 学科:材料科学与工程
  • 所在单位:粉末冶金研究院

副研究员

所在单位:粉末冶金研究院
学历:博士研究生毕业
性别:
学位:博士学位
在职信息:在职
毕业院校:中南大学

学科:材料科学与工程

当前位置: 中文主页 >> 论文成果
High-Throughput Method–Accelerated Design of Ni-Based Superalloys
点击次数:
影响因子:
19.0
DOI码:
10.1002/adfm.202109367
所属单位:
中南大学粉末冶金研究院, 中南大学交通运输工程学院,南洋理工大学机械与航天工程学院
发表刊物:
Advanced Functional Materials
项目来源:
中国国家重点研究与发展计划(2016YFB0701404),中国国家自然科学基金(NSFC)(91860105)&(52074366),中国博士后科学基金会(2019M662799),中南大学创新驱动计划的青年人才项目(2019XZ027),中国山东主要科技创新项目(2019JZZY010325),长沙市自然科学基金(kq2014126)
关键字:
Alloy design, Creep resistance, High-throughput methods, Microstructure stability, Unsupervised machine learning
摘要:
Ever-increasing demands for superior alloys with improved high-temperature service properties require accurate design of their composition. However, conventional approaches to screen the properties of alloys such as creep resistance and microstructural stability cost a lot of time and resources. This work therefore proposes a novel high throughput-based design strategy for high-temperature alloys to accelerate their composition selections, by taking Ni-based superalloys as an example. A numerical inverse method is used to massively calculate the multielement diffusion coefficients based on an accurate atomic mobility database. These coefficients are subsequently employed to refine the physical models for tuning the creep rates and structural stability of alloys, followed by unsupervised machine learning to categorize their composition and determine the range of the composition with optimal performance. By using a strict screening criterion, two sets of composition with comprehensively optimal properties are selected, which is then validated by experiments. Compared with recent data-driven methods for materials design, this strategy exhibits high accuracy and efficiency attributed to the high-throughput multicomponent diffusion couples, self-developed atomic mobility database, and refined physical models. Since this strategy is independent of the alloy composition, it can efficiently accelerate the development of multicomponent high-performance alloys and tackle challenges in discovering novel materials.
合写作者:
Zexin Wang, Zi Wang, Jing Zhong, Lei Zhao, Liang Jiang, Runhua Zhou, Yong Liu, Yujia Tian, 郑涵, Qihong Fang, Lijun Zhang, Lina Zhang, 吴宏
第一作者:
Feng Liu
论文类型:
Article
通讯作者:
Lan Huang, 谭黎明, 白利春, Kun Zhou
学科门类:
工学
一级学科:
冶金
卷号:
32
期号:
28
ISSN号:
1616-301X
是否译文:
个人简介

中国科协青年托举人才(第八届)。长期致力于数据驱动高温合金和涂层材料高效设计、制造(铸造、粉末冶金、涂层、增材制造),及其服役行为研究。主持和参与湖南省自然科学基金、广东省科技特派员、中国博士后面上项目湖南省“十大”科技攻关项目湖南省技术攻关“揭榜挂帅”项目国家自然科学基金、国家重点研发计划等省级、国家级项目10余项。近五年Advanced Functional MaterialsMaterials Research LettersScripta Materialia、Virtual and Physical Prototyping、Journal of Materials Science and Technology 等期刊发表SCI论文40余篇,申请国家发明专利20余项,获软件著作权10余项。

团队聚焦于AI、高通量实验和材料大数据方法在高温合金和增材制造(3D打印)等关键领域中的应用,已获得多个重点在研项目的支持,欢迎广大有志青年报考!

其他联系方式

通讯/办公地址 :

  • 邮箱 :

  • 扫一扫用手机查看