祝贺21级博士研究生周金伟研究论文在Advanced Functional Materials (IF 18.5)发表!
发布时间:2025-01-10
点击次数:
Heterogeneous Doping via Methyl-Encapsulated Fumed Silica Enabling Weak Solvated and Self-Purified Electrolyte in Long-Term High-Voltage Lithium Batteries
Jinwei Zhou1, Siyao Wu1, Fulu Chu1, Ziang Jiang1, Feixiang Wu1, *
Advanced Functionl Materials, 2025,DOI: 10.1002/adfm.202423742.
Crafting a sustainable non-aqueous electrolyte is paramount in the pursuit of high-voltage lithium batteries that exhibit exceptional performance. Traditional carbonate-based electrolytes encounter hurdles in maintaining electrochemical stability due to unstable interfaces, as well as continuous degradation of the electrolyte itself. Herein, based on heterogeneous doping, a colloidal electrolyte with multiple functions via simple integrating methyl-encapsulated fumed silica (MFS) into a conventional carbonate-based electrolyte effectively addresses the aforementioned challenges. The produced colloidal electrolyte endowed with unexpected self-purification capabilities effectively eliminates HF and H2O, consequently enhancing stability of the electrolyte, interphase, and electrode. Furthermore, MFS induces a weakly solvated Li+ structure that is heterogeneously doped into the original solvation matrix and contributes to the formation of tailored and stable electrode/electrolyte interphases for both anode and cathode. Using such electrolyte, Li||LiCoO2 batteries demonstrate capacity retentions of 83.6 % and 95.4 % within 3000 and 1000 cycles at charging voltages of 4.4 V and 4.5 V, respectively. Remarkably, with addition of 2000 ppm H2O in this electrolyte, cells can be cycled stably over 400 cycles with a capacity retention of 88.6%. This simple and effective electrolyte engineering strategy has the sustainability to significantly advance the development of highly stable high-voltage lithium batteries.