副教授 博士生导师 硕士生导师
电子邮箱:
入职时间:2018-09-12
所在单位:土木工程学院
学历:博士研究生毕业
在职信息:在职
夏晓东,博士,江西九江人,副教授,博士生导师,获德国洪堡学者、湖南省优青及中南大学课堂教学三十佳,入选全球前2%顶尖科学家“2023年度科学影响力排行榜”。2018年3月获同济大学力学专业工学博士学位,师从仲政教授;2015年10月至2017年10月在美国Rutgers大学机械系联合培养,合作导师George J. Weng教授。先后主持国家自然科学基金、湖南省自然科学基金、重点实验室开放基金等课题,并作为项目参与人主研国家自然基金重大项目子课题。主要研究方向:智能材料多场耦合力学与优化设计、多尺度有限元计算方法、电磁隐身等,相关研究成果已应用于航空航天、新能源、交通等领域。申请国家发明专利10余项(已授权第一发明人专利6项),在国际知名期刊发表 SCI 学术论文50余篇,包括固体力学顶级期刊International Journal of Plasticity、International Journal of Engineering Science、Mechanics of Materials等,以及材料领域权威期刊Composites Science and Technology、Carbon、Materials & Design等,累计引用1000余次,最高单篇引用100余次。课题组科研氛围良好,经费充足,指导的研究生曾获得国家奖学金、省级优秀毕业生等荣誉;热忱欢迎力学、土木、材料、机械、交通等专业本科生及研究生加入,请将个人简历发送至xiaodongxia@csu.edu.cn。
【学术主页】
[1] https://www.researchgate.net/profile/Xiaodong-Xia-4
[2] https://scholar.google.com/citations?user=7UQlBXAAAAAJ&hl=en
【研究方向】
[1] 智能材料多场耦合力学与优化设计
[2] 多尺度有限元计算方法
[3] 电磁隐身
[4] 土木工程材料有限元相场模拟
[5] 高灵敏传感器多场耦合分析与结构设计
[6] 新能源储能器件可靠性及失效分析
【科研项目】
[1] 国家自然科学基金委员会, 青年科学基金项目, 考虑场相关界面效应的低维功能复合材料多场耦合等效行为研究, 2020-01至2022-12, 主持。
[2] 湖南省自然科学基金委员会, 青年科学基金项目, 碳基纳米复合材料的场相关界面效应及电-磁-热-弹多场耦合均匀化分析, 2020-01至2022-12, 主持。
[3] 磁学与磁性材料教育部重点实验室, 开放课题, 力-热耦合作用下低维功能纳米复合材料等效高频电磁屏蔽效能的研究, 2021-01至2021-12, 主持。
[4] 国家自然科学基金委员会, 面上项目, 考虑极端环境下单晶材料压痕蠕变与拉伸蠕变的等效性研究, 2022-01至2025-12, 参与。
[5] 河北省重型装备与大型结构力学可靠性重点实验室, 开放课题, 功能复合材料力学性能的多目标优化研究, 2021-12至2023-05, 主持。
[6] 国家自然科学基金委员会, 面上项目, 复杂服役环境下低维储能复合材料力-热-电多场耦合耐久性研究, 2024-01至2027-12, 主持。
[7] 湖南省教育厅, 普通高等学校教改研究重点项目, 基于科研思维+工程化理念教学模式的工程力学创新教育改革研究, 2023-05至2025-05, 主持。
[8] 湖南省自然科学基金委员会, 优秀青年项目, 复杂服役环境下低维功能复合材料多场耦合力学, 2024-01至2026-12, 主持。
[9] 中南大学, 创新创业教育教学改革研究项目, 激发学生科研驱动力的工程力学教育创新研究, 2024-05至2026-05, 主持。
[10] 西部灾害与环境力学教育部重点实验室,开放课题, 碳基纳米复合材料非线性玻璃转化过程研究,2024-06至2025-05, 主持。
【发明专利】
[1] 夏晓东等,一种石墨烯多孔纳米复合材料的交流电学性能预测方法,国家发明专利,ZL201910750297.6,2021-03-19。
[2] 夏晓东等,一种低维功能复合材料温度相关等效电学性能的预测方法,国家发明专利,ZL201910818608.8,2021-07-27。
[3] 夏晓东等,预测石墨烯/铝纳米复合材料球磨相关拉伸强度的方法,国家发明专利,ZL202110142157.8,2022-09-16。
[4] 夏晓东等,一种无级调控铁电复合材料界面裂纹断裂韧性的方法,国家发明专利,ZL201911064550.9,2023-03-28。
[5] 夏晓东等,一种碳纤维/莫来石复合材料高频电磁屏蔽效能的评价方法,国家发明专利,ZL20201 0189896.8,2023-04-21。
[6] 夏晓东等,一种边缘计算任务卸载方法、系统,国家发明专利,ZL202010069264.8, 2023-04-28。
【学术论文】
2024年:
[61] Xiao, J., Lv, J., Xia, X., & Wang, J. (2024). Flexoelectric and surface effects on bending deformation and vibration of piezoelectric nanolaminates: Analytical solutions. Applied Mathematical Modelling, 135, 541-558.
[60] Wang, J., Xiao, J., & Xia, X. (2024). Buckling and post-buckling behavior of nano-laminates considering surface effects. Archive of Applied Mechanics, 1-20.
[59] Xia, X., & Weng, G. J. (2024). Some fundamental electrical properties of highly aligned graphene nanocomposites and lightweight foams. In Nanomechanics of Structures and Materials (pp. 21-61). Elsevier.
[58] Li, P., Zhang, J., Gao, Y., Xia, X., & Weng, G. J. (2024). Effect of magnetic field on macroscopic hysteresis and microscopic magnetic domains for different ferromagnetic materials. Journal of Materials Research and Technology, 31, 458-471.
[57] Xia, X., Liu, Y., Zhang, J., Luo, J., & Weng, G. J. (2024). Tailoring electromagnetic interference shielding effectiveness of SiO2-decorated MWCNT/polymer nanocomposites. Mechanics of Materials, 191, 104949.
[56] Xia, X., Zhao, S, Zhang, J., Fang, C., & Weng, G. J. (2024). Revealing the time-dependent electromechanically coupled performances of viscoelastic MWCNT/polyethylene nanocomposite stress sensors. Composites Science and Technology, 247, 110417.
2023年:
[55] Xia, X., Niekamp, R., Brands, D., & Schröder, J. (2023). A hybrid computational scheme on electromechanically coupled behaviors of aligned MWCNT/polymer nanocomposite sensors with strain-dependent tunneling effect. Archive of Applied Mechanics, 93, 4305-4325.
[54] Zan, X. D., Guo, X., Xia, X., Weng, G. J., Chen, G., & Han, F. Z. (2023). Anisotropic deformation mechanisms of rolling-textured Zircaloy-4 alloy by a crystal plasticity model. Computational Materials Science, 229, 112424.
[53] Xia, X., Liu, Y., Pan, Y., & Zhong, Z. (2023). Multi-objective optimal design of high-efficient EMI shielding in porous graphene-reinforced nanocomposites. International Journal of Mechanics and Materials in Design, 19: 669-685.
[52] Xia, X., Hellebrand, S., Brands, D., & Schröder, J. (2023). Modeling the DC and AC electromechanically coupled effects in CNT-based nanocomposite sensors. PAMM, 22, e202200138.
[51] Du, H., Mazzeo, A. D., Shan, J. W., Xia, X., Weng, G. J. (2023). Electrical response, elastic property, and pressure sensing under bending of hybrid graphene/CNT/elastomer nanocomposites. Composite Structures, 311, 116838.
[50] Meguid, S. A., Xia, X., & Elaskalany, M. (2023). Unravelling the sensory capability of MWCNT-reinforced nanocomposites: Experimental and numerical investigations. Carbon, 204, 147-161.
[49] Sheng, Y., Li, C., Wang, J., Xia, X., Weng, G. J., & Su, Y. (2023). Multiscale modeling of thermal conductivity of hierarchical CNT-polymer nanocomposite system with progressive agglomeration. Carbon, 201, 785-795.
[48] Fang, C., Chen, X., Zhang, J., Xia, X., & Weng, G. J. (2023). Study of electromagnetic interference shielding effectiveness of multilayer graphene films by Monte Carlo method. Journal of Physics D: Applied Physics, 56, 045301.
2022年:
[47] Chen, M., Pan, L., Xia, X., Zhou, W., & Li, Y. (2022). Boron nitride (BN) and BN based multiple-layer interphase for SiCf/SiC composites: A review. Ceramics International, 48, 34107-34127.
[46] Xia, X., Zhao, S., Zhang, J., Fang, C., & Weng, G. J. (2022). A unified investigation into the tensile and compressive sensing performance in highly sensitive MWCNT/epoxy nanocomposite strain sensor through loading-dependent tunneling distance. Composites Science and Technology, 230, 109723.
[45] Xia, X., Du, Z., Su, Y., Li, J., & Weng, G. J. (2022). Dual thermodynamics approach to the temperature dependence of viscoplastic creep durability in graphene-based nanocomposites. International Journal of Plasticity, 157, 103400.
[44] Xia, X., Du, Z., Zhang, J., Song, D., & Weng, G. J. (2022). The influence of ambient temperature and X-band frequency on EMI shielding performance of graphene/silica nanocomposites. Mechanics of Materials, 173, 104419.
[43] Zhang, J., Wang, X., Chen, X., Xia, X., & Weng, G. J. (2022). Piezoelectricity enhancement in graphene/polyvinylidene fluoride composites due to graphene-induced α→ β crystal phase transition. Energy Conversion and Management, 269, 116121.
[42] Zhang, Q., Xia, X., Chen, P., Xiao, P., Zhou, W., & Li, Y. (2022). Current research art of rare earth compound modified SiC-CMCs for enhanced wet-oxygen corrosion resistance. Ceramics International, 48, 24131-24143.
[41] Li, J., Chen, T., Chen, T., Yun, Z., & Xia, X. (2022). Computational modelling of frictional deformation of bimodal nanograined metals. International Journal of Mechanical Sciences, 222, 107220.
[40] Xia, X., Zhao, S., Yin, H., & Weng, G. J. (2022). Revealing the AC electromechanically coupled effects and stable sensitivity on the dielectric loss in CNT-based nanocomposite sensors. Materials & Design, 216, 110557.
[39] Xia, X., Zhao, S., Wang, J., Du, H., & Weng, G. J. (2022). Tuning the AC electric responses of decorated PDA@MWCNT/PVDF nanocomposites. Composites Science and Technology, 222, 109398.
[38] Du, H., Fang, C., Zhang, J., Xia, X., & Weng, G. J. (2022). Segregated carbon nanotube networks in CNT-polymer nanocomposites for higher electrical conductivity and dielectric permittivity, and lower percolation threshold. International Journal of Engineering Science, 173, 103650.
[37] Su, M., Xiao, J., Feng, G., & Xia, X. (2022). Mode-III fracture of a nanoscale cracked hole in one-dimensional hexagonal piezoelectric quasicrystals. International Journal of Mechanics and Materials in Design, 18, 423–433.
[36] Xia, X., Guo, X., & Weng, G. J. (2022). Creep rupture in carbon nanotube-based viscoplastic nanocomposites. International Journal of Plasticity, 150, 103189.
[35] Xia, X., Du, Z., Zhang, J., Li, J., & Weng, G. J. (2022). Modeling the impact of glass transition on the frequency-dependent complex conductivity of CNT-polymer nanocomposites. Mechanics of Materials, 165, 104195.
[34] Xia, X., Zhao, S., Long, L., Li, Y., & Zhou, W. (2022). Multi-scale modeling for frequency-dependent dielectric responses of non-uniform porous carbon fiber/mullite composites. International Journal of Applied Ceramic Technology, 19(1), 22-33.
2021年:
[33] Wang, X., Zhang, J., Xia, X., Fang, C., & Weng, G. J. (2021). Nonlinear magnetoelectric effects of polymer-based hybrid magnetoelectric composites with chain-like terfenol-D/epoxy and PVDF multilayers. Composites Science and Technology, 216, 109069.
[32] Wang, X., Zhang, J., Ta, W., Xia, X., & Weng, G. J. (2021). Surface and interface effects on the bending behavior of nonlinear multilayered magnetoelectric nanostructures. Composite Structures, 275, 114485.
[31] Fang, C., Chen, X., Zhang, J., Xia, X., & Weng, G. J. (2021). Monte Carlo method with Bézier curves for the complex conductivity of curved CNT-polymer nanocomposites. International Journal of Engineering Science, 168, 103543.
[30] Xia, X., Liu, Y., Li, J., & Weng, G. J. (2021). Review and perspective on the calculations of mechanical and functional properties of low-dimensional nanocomposites. Journal of Micromechanics and Molecular Physics, 6(4), 67-87.
[29] Xia, X., & Weng, G. J. (2021). Dual percolations of electrical conductivity and electromagnetic interference shielding in progressively agglomerated CNT/polymer nanocomposites. Mathematics and Mechanics of Solids, 26(8), 1120-1137.
[28] Xia, X., Du, Z., Zhang, J., Li, J., & Weng, G. J. (2021). A hierarchical scheme from nano to macro scale for the strength and ductility of graphene/metal nanocomposites. International Journal of Engineering Science, 162, 103476.
[27] Wen, W. B., Deng, S. Y., Liu, T. H., Duan, S. Y., Hou, W. Q., & Xia, X. (2021). An improved sub-step composite time integration formulation with enhanced performance on linear and nonlinear dynamics. International Journal of Applied Mechanics, 13(02), 2150017.
[26] Xia, X., Li, J., Zhang, J., & Weng, G. J. (2021). Uncovering the glass-transition temperature and temperature-dependent storage modulus of graphene-polymer nanocomposites through irreversible thermodynamic processes. International Journal of Engineering Science, 158, 103411.
2020年:
[25] Zhang, J., Du, H., Xia, X., Fang, C., & Weng, G. J. (2020). Theoretical study on self-biased magnetoelectric effect of layered magnetoelectric composites. Mechanics of Materials, 151, 103609.
[24] Xia, X., Du, Z., & Weng, G. J. (2020). Predicting temperature-dependent creep and recovery behaviors of agglomerated graphene-polymer nanocomposites with a thermodynamically driven temperature-degraded process. Mechanics of Materials, 150, 103576.
[23] Xia, X., Zhao, S., Fang, C., & Weng, G. J. (2020). Modeling the strain‐dependent electrical resistance and strain sensitivity factor of CNT‐polymer nanocomposites. Mathematical Methods in the Applied Sciences. https://doi.org/10.1002/mma.6871
[22] Zhang, J., Weng, G. J., Xia, X., & Fang, C. (2020). A theory of frequency dependence and sustained high dielectric constant in functionalized graphene-polymer nanocomposites. Mechanics of Materials, 144, 103352.
[21] Xia, X., Xu, B. X., Xiao, X., & Weng, G. J. (2020). Modeling the dielectric breakdown strength and energy storage density of graphite-polymer composites with dielectric damage process. Materials & Design, 189, 108531.
[20] Xiao, X., Xiao, C., & Xia, X. (2020). Force-depth relationships with irradiation effect during spherical nano-indentation: A theoretical analysis. Journal of Nuclear Materials, 531, 152012.
[19] Xia, X., Li, Y., Long, L., Xiao, P., Luo, H., Pang, L., Xiao X.Z. & Zhou, W. (2020). Modeling for the electromagnetic properties and EMI shielding of Cf/mullite composites in the gigahertz range. Journal of the European Ceramic Society, 40(9), 3423-3430.
[18] Xia, X., Weng, G. J., Xiao, J., & Wen, W. (2020). Porosity-dependent percolation threshold and frequency-dependent electrical properties for highly aligned graphene-polymer nanocomposite foams. Materials Today Communications, 22, 100853.
[17] Xia, X., Weng, G. J., Zhang, J., & Li, Y. (2020). The effect of temperature and graphene concentration on the electrical conductivity and dielectric permittivity of graphene–polymer nanocomposites. Acta Mechanica, 231(4), 1305-1320.
2019年:
[16] Xia, X., Weng, G. J., Hou, D., & Wen, W. (2019). Tailoring the frequency-dependent electrical conductivity and dielectric permittivity of CNT-polymer nanocomposites with nanosized particles. International Journal of Engineering Science, 142, 1-19.
2018年:
[15] Zhang, Q., Xia, X., Wang, J., & Su, Y. (2018). Effects of epitaxial strain, film thickness and electric-field frequency on the ferroelectric behavior of BaTiO3 nano films. International Journal of Solids and Structures, 144, 32-45.
2017年:
[14] Xia, X., Su, Y., Zhong, Z., & Weng, G. J. (2017). A unified theory of plasticity, progressive damage and failure in graphene-metal nanocomposites. International Journal of Plasticity, 99, 58-80.
[13] Xia, X., & Zhong, Z. (2017). Semi-permeable Yoffe-type interfacial crack analysis in MEE composites based on the strip electro-magnetic polarization saturation model. Acta Mechanica Solida Sinica, 30(4), 354-368.
[12] Xia, X., Mazzeo, A. D., Zhong, Z., & Weng, G. J. (2017). An X-band theory of electromagnetic interference shielding for graphene-polymer nanocomposites. Journal of Applied Physics, 122(2), 025104.
[11] Xia, X., Zhong, Z., & Weng, G. J. (2017). Maxwell–Wagner–Sillars mechanism in the frequency dependence of electrical conductivity and dielectric permittivity of graphene-polymer nanocomposites. Mechanics of Materials, 109, 42-50.
[10] Xia, X., Hao, J., Wang, Y., Zhong, Z., & Weng, G. J. (2017). Theory of electrical conductivity and dielectric permittivity of highly aligned graphene-based nanocomposites. Journal of Physics: Condensed Matter, 29(20), 205702.
[9] Wang, Y., Xia, X., & Weng, G. J. (2017). Magnetoelectric coupling and interface effects of multiferroic composites under stress-prescribed boundary condition. Reviews on Advanced Materials Science, 48(1), 78-90.
[8] Xia, X., Wang, Y., Zhong, Z., & Weng, G. J. (2017). A frequency-dependent theory of electrical conductivity and dielectric permittivity for graphene-polymer nanocomposites. Carbon, 111, 221-230.
2016年:
[7] Xia, X., Wang, Y., Zhong, Z., & Weng, G. J. (2016). Theory of electric creep and electromechanical coupling with domain evolution for non-poled and fully poled ferroelectric ceramics. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 472(2194), 20160468.
[6] Xia, X., & Zhong, Z. (2016). Tuning of non-uniform switch toughening in ferroelectric composites by an electric field. Acta Mechanica Sinica, 32(5), 866-880.
[5] Xia, X., Wang, Y., Zhong, Z., & Weng, G. J. (2016). A theory of electrical conductivity, dielectric constant, and electromagnetic interference shielding for lightweight graphene composite foams. Journal of Applied Physics, 120(8), 085102.
2015年:
[4] Xia, X., & Zhong, Z. (2015). A mode III moving interfacial crack based on strip magneto-electric polarization saturation model. Smart Materials and Structures, 24(8), 085015.
[3] Xia, X., & Zhong, Z. (2015). Conservation integrals for the interfacial crack in bimaterial and layered ferroelectrics. Engineering Fracture Mechanics, 134, 202-217.
2014年:
[2] Xia, X., Cui, Y., & Zhong, Z. (2014). A mode III interfacial crack under nonuniform ferro-elastic domain switching. Theoretical and Applied Fracture Mechanics, 69, 44-52.
[1] Xia, X., Cui, Y., & Zhong, Z. (2014). Nonuniform ferro-elastic domain switching for the interfacial crack. Procedia Materials Science, 3, 1638-1643.
[1]智能材料多场耦合力学与优化设计
[2]多尺度有限元计算方法
[3]电磁隐身
[4]土木工程材料有限元相场模拟
[5]高灵敏传感器多场耦合分析与结构设计
[6]新能源储能器件可靠性及失效分析