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In this study it is demonstrated that, with respect to model formulation, the number of linear and nonlinear
equations involved in water distribution networks can be reduced to the number of closed simple loops.
Regarding the optimization technique, a discrete state transition algorithm (STA) is introduced to solve
several cases of water distribution networks. Firstly, the focus is on a parametric study of the ‘restoration
probability and risk probability’ in the dynamic STA. To deal effectively with head pressure constraints,
the influence is then investigated of the penalty coefficient and search enforcement on the performance of
the algorithm. Based on the experience gained from training the Two-Loop network problem, a discrete
STA has successfully achieved the best known solutions for the Hanoi, triple Hanoi and New York network
problems.

Keywords: discrete state transition algorithm; water distribution network; intelligent optimization;
NP-hardness

1. Introduction

Pipes, hydraulic devices (pumps, valves, etc.) and reservoirs are connected in a water distribu-
tion network in a complex manner. The physical behaviour of a looped network is governed by
a set of linear and nonlinear equations, including continuity and energy equations, and head loss
functions. The overall planning tasks to be performed in water distribution networks consist of
three kinds of problem: layout, design and operation. Although these problems are not indepen-
dent of each other, they can be formulated and solved separately from a technical point of view
since each one can be considered as a parameter when others are being solved. In this work, the
optimal design problem is focused upon.

The optimal selection of pipe diameters to constitute a water distribution network respecting
certain pressure requirements has been shown to be an NP-hard problem (Yates, Templeman, and
Boffey 1984), mainly for two reasons: nonlinear equations and discrete-valued diameters. A ter-
ribly clumsy method for designing pipe networks is by enumeration or complete trial and error
(Gessler 1985). Traditional methods linearize and relax the problem, firstly to facilitate the use
of linear and nonlinear programming, and then they have to round off the solution to the nearest
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discrete diameters (Alperovits and Shamir 1977; Morgan and Goulter 1985; Goulter, Lussier,
and Morgan 1986; Kessler and Shamir 1989; Eiger, Shamir, and Ben-Tal 1994). Such algo-
rithms cannot guarantee global optima and sometimes cause infeasible solutions. In the last few
decades, intelligent optimization techniques, including genetic algorithms (Dandy, Simpson, and
Murphy 1996; Savic and Walters 1997; Simpson, Dandy, and Murphy 1994), simulated annealing
(Cunha and Sousa 1999), shuffled complex evolution (Liong and Atiquzzaman 2004), ant colony
optimization (Zecchin et al. 2005 2006), harmony search (Geem 2006), particle swarm optimiza-
tion (Montalvo et al. 2008), differential evolution (Vasan and Simonovic 2010) and some of their
hybrids (Cisty 2010; Haghighi, Samani, and Samani 2011), have found wide application in this
field. The advantages of using these stochastic algorithms are: (i) simple representation of a
discrete-valued solution; (ii) independence of the problem structure to some extent; (iii) easy
computation due to the use of only information about the objective function; and (iv) a high
probability of gaining the global optimum or an approximate global optimum in a reasonable
amount of time.

Recently, a new intelligent optimization algorithm, called the state transition algorithm (STA),
was proposed by Zhou, Yang, and Gui (2011a,b 2012 2014), and it showed powerful perfor-
mance in continuous function optimization. Yang et al. (2013) proposed a discrete STA for
solving the travelling salesman problem, and the results demonstrated that it consumed much
less time and had better search ability than the well-known simulated annealing and ant colony
optimization. The goal of this article is to apply a discrete STA to the optimal design problem of
water distribution networks.

This article is organized as follows. In Section 2, the optimization model of water distri-
bution networks is established, including the objective function, decision variables and some
constraints. In Section 3, the basic key elements of the discrete STA are introduced. The focus is
on the intelligent operators of the discrete STA and a parametric study of the ‘restoration prob-
ability’ and ‘risk probability’. How to deal with the constraints and the implementation of the
discrete STA for the optimal design problem are illustrated in Section 4. In Section 5, several
case studies are given. The Two-Loop network is mainly studied to investigate the influence
of the penalty coefficient and search enforcement on the performance of the discrete STA. The
experience gained is applied to other cases, and the results obtained by the proposed discrete
STA as well as comparisons with other optimization algorithms are illustrated. Conclusions are
given in Section 6.

2. Formulation of the water distribution network optimization model

For a given layout of pipes and a set of specified demand patterns at the nodes, the optimal design
of a water distribution network is to find the combination of commercial pipe sizes which gives
the minimum cost, subject to the following constraints:

• continuity of flow;
• head loss;
• conservation of energy;
• minimum pressure head.

2.1. The objective function

Considering that the pipe layout, connectivity and imposed minimum head constraints are
known, in the optimal design problem of the water distribution network, the pipe diameters are
the only decision variables. As a result, the objective function is assured to be a cost function of
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pipe diameters

min
Dj∈�

fobj =
NP∑
j=1

Ljc(Dj), (1)

where � is a set of commercial pipe sizes, NP is the number of pipes, and Lj is the length of pipe
j, which is known in this study. c(Dj) indicates that, for every commercial pipe size, there is a
corresponding cost per unit associated with it.

2.2. Continuity equation

Conservation of mass at nodes or junctions in a water distribution network yields a set of linear
algebraic equations in terms of flows. At each node, flow continuity should be satisfied:

−
∑

Qin +
∑

Qout + DM = 0, (2)

where DM is the demand at the node, and Qin and Qout are the flow entering and leaving the
node, respectively.

2.3. Head loss equation

The head loss in a pipe in the water distribution network can be computed from a number of
empirically obtained equations. Two commonly used equations are the Darcy–Weisbach head
loss equation and the Hazen–Williams head loss equation. The general expression for the head
loss in a pipe j located between nodes i and k is given by

Hi − Hk = rjQj|Qj|α−1 = ω
Lj

CαDβ
j

Qj|Qj|α−1, (3)

where Hi and Hk are nodal pressure head at the end of the pipe at node i and k, respectively;
rj is called the resistance factor for pipe j; Qj is the flow in pipe j; ω is a numerical conversion
constant depending on the units used; Lj is the length of pipe j; C is the roughness coefficient;
and α and β are coefficients.

In the International System of Units (SI), ω = 10.6744 or ω = 10.5088, α = 1/0.54 = 1.852
and β = 2.63/0.54 = 4.871 are employed in this study using the Hazen–Williams formula.

Remark 1 In the existing literature references, different researchers have used different values
of ω in the Hazen–Williams head loss equation; ω = 10.6744 and ω = 10.5088 are the most
commonly used. For fair comparison, both these two values are used herein for the parameter ω.

2.4. Energy equation

Energy conservation equations around closed simple loops or between fixed head nodes along
required independent paths in a network are nonlinear. Upon traversing a closed simple loop or a
required independent path, the sum of pipe head losses around the loop or the path must be zero,
which can be expressed as

∑
j∈Ls

ω
Lj

CαDβ
j

Qj|Qj|α−1 −
∑
j∈Ls

ELj = 0, (4)
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where Ls is the index of a pipe in a closed simple loop or a required independent path; ELj is the
hydraulic grade line at reservoir j.

2.5. Minimum pressure head

The minimum pressure head constraints at each node are given as follows:

Hi ≥ Hi min, ∀i = 1, . . . , NJ, (5)

where Hi min is known, and NJ is the number of nodes.
It can be seen that the optimal design of water distribution networks is a discrete optimization.

In the next section, an optimization algorithm, called the discrete state transition algorithm, is
introduced to solve the problem.

3. A brief review of the discrete state transition algorithm

Consider the following unconstrained integer optimization problem:

min f (x), (6)

where x = (x1, . . . , xn), xi ∈ I ⊂ Z
m (m is the number of choices for each xi), i = 1, . . . , n, and

f (x) is a real-valued function.

3.1. The framework of the discrete state transition algorithm

If a solution to a specific optimization problem is described as a state, then the transformation
to update the solution becomes a state transition. Without loss of generality, the unified form of
discrete state transition algorithm can be described as

xk+1 = Ak(xk)
⊕

Bk(uk)

yk+1 = f (xk+1),

⎫⎬
⎭ (7)

where xk ∈ Z
n stands for a current state, corresponding to a solution of a discrete optimization

problem; uk is a function of external states; Ak(·), Bk(·) are transformation operators, which are
usually state transition matrices;

⊕
is an operation admissible to operate on two states; f is the

cost function or evaluation function.
As an intelligent optimization algorithm, the discrete state transition algorithm has the

following five key elements.

(1) Solution representation. In the discrete STA, special representations are chosen, that is, the
permutation of the set {1, 2, . . . , n}, which can be easily manipulated by some intelligent
operators discussed below. The reason that the operators are called ‘intelligent’ is due to
their geometric properties (swap, shift, symmetry and substitute), and an intelligent oper-
ator has the same functional feature for different representations. A big advantage of such
representations and operators is that, after each state transformation, the newly created state
is always feasible, avoiding the difficulty of rounding off a continuous solution as in other
cases.
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To illustrate the advantages of the solution representation, the following unconstrained
discrete optimization problem is considered:

min f (x) = (x1 − 1)2 + (x2 − x2
1)

2 + (x3 − x2
2)

2, xi ∈ {a1, a2, a3}, i = 1, 2, 3,

where {a1, a2, a3} can be integers, for instance {a1, a2, a3} = {−1, 2, 3}, or can be discrete
values, for instance {a1, a2, a3} = {0.8, 1.2, 1.5}. In the discrete state transition algorithm,
the indices {1, 2, 3} are used for solution representation, since there exists a one-to-one rela-
tionship to {a1, a2, a3}, for example x̂ = (1, 1, 2)T is used to represent x = (a1, a1, a2)

T.
Then, the intelligent operators are applied to the representative solution. Suppose the

current solution is x̂ = (1, 1, 2)T, after the following swap transformation matrix, then

⎛
⎝2

1
1

⎞
⎠ =

⎛
⎝0 0 1

0 1 0
1 0 0

⎞
⎠×

⎛
⎝1

1
2

⎞
⎠ ,

which is also a feasible solution, representing x = (a2, a1, a1)
T.

However, in other cases, if the floating point numbers are used for solution representation,
for instance, two parents x = (1.0, 1.0, 2.0), y = (1.0, 2.0, 2.0), then by arithmetic crossover
in the genetic algorithm, the offspring may be z = 0.5(x+ y) = (1.0, 1.5, 2.0), which is
infeasible, and a round-off procedure is necessary to remedy the intermediate solution.

(2) Sampling. When a transformation operator is exerted on a current state, the next state is
not deterministic, that is to say, there are possibly different choices for the next state. It
is not difficult to imagine that all possible choices will constitute a candidate set, or a
‘neighbourhood’. Then the transformation is executed several times, which is called search
enforcement (SE), on the current state for sampling a candidate set or ‘neighbourhood’.
Sampling is a very important factor in state transition algorithms since it only uses some
samples (the number of samples is SE) to represent the ‘neighbourhood’, which can reduce
the search space and avoid enumeration. For example, suppose the current solution is
x̂ = (1, 2, . . . , n)T, under the swap transformation of exchanging two random positions there
will be [n× (n− 1)]/(2× 1) possible candidate solutions in total. However, in discrete
state transition algorithms, the value of search enforcement (SE) is fixed at less than 100.
If n is large compared to 0.5(n2 − n), then SE is quite small and can thus reduce the search
space and avoid enumerating all possible solutions.

(3) Local exploitation and global exploration. In optimization algorithms, it is quite significant
to design good local and global search operators. Local exploitation can guarantee high pre-
cision of a solution and convergent performance of an algorithm, and global exploration
can avoid getting trapped into local minima or prevent premature convergence. In discrete
optimization, it is extremely difficult to define a ‘good’ local optimal solution due to its
dependence on a problem’s structure, which leads to the same difficulty in the definition of
local exploitation and global exploration. Anyway, in the discrete state transition algorithm,
a small change to the current solution by a transformation is defined as local exploita-
tion, while a big change to the current solution by a transformation is defined as global
exploration.

The big difference between different optimization algorithms is the local and global oper-
ator designs. In discrete state transition algorithms, state transformation matrices are the
main difference.

For example, the swap transformation matrix Aswap
k (ma), it has the function of exchanging

ma random positions. Suppose that the current solution is x̂ = (1, 2, 3, 4, 5, 6)T. If ma = 2, it
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may have ⎛
⎜⎜⎜⎜⎜⎜⎝

1
2
6
4
5
3

⎞
⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎠
×

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2
3
4
5
6

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In this case, the elements in positions 3 and 6 are exchanged. Since there is a small change to
the current solution, the swap transformation with ma = 2 is called a local search.If ma = 4,
it may have ⎛

⎜⎜⎜⎜⎜⎜⎝

3
2
1
4
6
5

⎞
⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 1 0 0 0 0
1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1
0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠
×

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2
3
4
5
6

⎞
⎟⎟⎟⎟⎟⎟⎠

.

In this case, the elements in positions 1, 3, 5 and 6 are exchanged. Since there is a big change
to the current solution, the swap transformation with ma = 4 is called a global search.

(4) Self learning and regular communication. State transition algorithms behave in two ways,
one is individual-based, the other is population-based, which is certainly an extended ver-
sion. The individual-based state transition algorithm focuses on self learning, in other words,
with emphasis on the operators’ designing and dynamic adjustment (details of which are
given in the following). Undoubtedly, communication between different states is a promis-
ing strategy for state transition algorithms, as indicated by Zhou, Yang, and Gui (2012).
Through communication, states can share information and cooperate with each other. How-
ever, how to communicate and when to communicate are key issues. In continuous state
transition algorithms, an intermittent exchange strategy was proposed, which means that
states communicate with each other at a certain frequency in a regular way.

(5) Dynamic adjustment. This is a potentially useful strategy for state transition algorithms.
In the iteration process of an intelligent algorithm, the fitness value can decrease sharply
in the early stages, but can stagnate in the late stages, due to the static environment. As
a result, some perturbation should be added to activate the environment. In fact, dynamic
adjustment can be understood and implemented in various ways. For example, the alterna-
tive use of different local and global operators is dynamic adjustment to some extent. Then,
the search enforcement can be changed, the cost function can be varied, the dimension can
be reduced, etc. Of course, the probability of accepting a bad solution is another dynamic
adjustment, which is widely used in simulated annealing (SA). In SA, the Metropolis cri-
terion (Metropolis et al. 1953) is used to accept a bad solution: the probabiltity p is given
by

p = exp

(−�E

kBT

)
, (8)

where �E = f (xk+1)− f (xk), kB is the Boltzmann probability factor, and T is the tempera-
ture to regulate the process of annealing. In the early stages, the temperature is high, and it
has a big probability of accepting a bad solution, while in the late stages the temperature is
low, and it has very small probability of accepting a bad solution, which is the key point to
guarantee convergence. It can be seen that the Metropolis criterion has the ability to escape
from local optimality, but on the other hand, it will miss some ‘good solutions’ as well.
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In this study, the individual-based STA with a dynamic adjustment strategy called ‘risk
and restoration in probability’ is focused upon, and the main process of the dynamic discrete
STA is shown in the following pseudocode:

1: repeat
2: [Best,fBest]← swap(fcn,Best,fBest,SE,n,ma)
3: [Best,fBest]← shift(fcn,Best,fBest,SE,n,mb)
4: [Best,fBest]← symmetry(fcn,Best,fBest,SE,n,mc)
5: [Best,fBest]← substitute(fcn,Best,fBest,SE,set,n,md )
6: if fBest < fBest∗ then 	 greedy criterion
7: Best∗ ← Best
8: fBest∗ ← fBest
9: end if

10: if rand < p1 then 	 restoration in probability
11: Best← Best∗

12: fBest← fBest∗

13: end if
14: until the maximum number of iterations is met

As for detailed explanations, the swap function in above pseudocode is given as follows,
for example:

1: State← op_swap(Best,SE,n,ma)
2: [newBest,fnewBest]← fitness(funfcn,State)
3: if fnewBest < fBest then 	 greedy criterion
4: Best← newBest
5: fBest← fnewBest
6: else
7: if rand < p2 then 	 risk in probability
8: Best← newBest
9: fBest← fnewBest

10: end if
11: end if
From the pseudocodes, it can be seen that, in the discrete STA, the ‘greedy criterion’ is
adopted overall to keep the incumbent ‘Best∗’, and in particular cases, a bad solution ‘Best’
is accepted in each inner state transformation with a probability p2, and at the same time the
historical ‘Best∗’ is restored in the outer iterative process with another probability p1. The
probability of accepting a bad solution strategy aims to escape from local optima, while the
‘greedy criterion’ and ‘restoring the historical best solution in probability’ are to guarantee
good convergence. The ‘risk and restoration in probability’ strategy in the dynamic discrete
STA will help to improve the global search ability.

3.2. The representation, local and global operators

In the discrete STA, an index of commercial size is used as a representation of a solution to the
optimal design problem. For example, if there are eight pipes and for each pipe there are three
choices, then the details of four special geometric operators are defined as follows.

(1) Swap transformation

xk+1 = Aswap
k (ma)xk , (9)

where Aswap
k ∈ Z

n×n is called the swap permutation matrix, ma is a constant integer called
the swap factor to control the maximum number of positions to be exchanged, while the
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Figure 1. Illustration of the swap transformation.

Figure 2. Illustration of the shift transformation.

positions are random. If ma = 2, the swap operator is regarded as local exploitation, and if
ma ≥ 3, the swap operator is regarded as global exploration. Figure 1 gives the function of
the swap transformation graphically when ma = 2.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3
3
3
1
2
2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
3
3
1
3
2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(2) Shift transformation

xk+1 = Ashift
k (mb)xk , (10)

where Ashift
k ∈ Z

n×n is called the shift permutation matrix, mb is a constant integer called the
shift factor to control the maximum length of consecutive positions to be shifted. Note that
the position selected to be shifted next, and the positions to be shifted, are chosen randomly.
Similarly, shift transformation is regarded as local exploitation or global exploration when
mb = 1 or mb ≥ 2, respectively. To clarify, if mb = 1, position 2 is set to be shifted after
position 6, as described in Figure 2.

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
3
3
1
3
2
2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
3
3
1
3
2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3) Symmetry transformation

xk+1 = Asym
k (mc)xk , (11)

where Asym
k ∈ Z

n×n is called the symmetry permutation matrix, mc is a constant integer
called the symmetry factor to control the maximum length of subsequent positions as centre.
Note that the component before the subsequent positions, and the consecutive positions to be
symmetrized, are all created randomly. Considering that the symmetry transformation can
make a big change to the current solution, it is intrinsically regarded as global exploration.
For instance, if mc = 0, let position 3 be chosen, then the subsequent position or the centre
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Figure 3. Illustration of the symmetry transformation.

Figure 4. Illustration of the substitute transformation.

is {∅}, and the consecutive positions {4, 5} with components (3, 1), and the function of
symmetry transformation are given in Figure 3.⎛

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
3
3
2
3
2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
3
3
1
3
2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(4) Substitute transformation

xk+1 = Asub
k (md)xk + Bsub

k (md)uk , (12)

where Asub
k , Bsub

k ∈ Z
n×n are called substitute permutation matrices, md is a constant integer

called the substitute factor to control the maximum number of positions to be substituted.
Note that the positions are created randomly. If md = 1, the substitute operator is regarded
as local exploitation, and if md ≥ 2, the substitute operator is regarded as global exploration.
Figure 4 illustrates the function of the substitute transformation vividly when md = 1.⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
1
3
3
1
3
2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 1 0 0 0 0
0 0 0 0 1 0 0 0
0 0 0 0 0 1 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
2
3
3
1
3
2
1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0
0 1 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
×

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
1
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

Remark 2 Compared with the operators in other stochastic optimization algorithms, there are
two main differences: one is that both local search operators and global search operators are
designed purposely and specially for the discrete state transition algorithm; another is that the
solution representation is much simpler and a new solution can be generated conveniently and
flexibly by these local and global operators.

3.3. Parameter selection

In the state transformations, there are four factors to control the intensity between local search
and global search. If the values of these factors are big, the four operators are all considered as
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global search. However, it is very difficult to decide for what values they should be taken as local
search or global search. For simplicity and efficiency, as also demonstrated in Yang et al. (2013),
the larger the values of these factors, the poorer the performance of the discrete STA, the swap,
shift and substitute operators are taken as local search, and the symmetry operator is considered
as global search; therefore, the values ma = 2, mb = 1, md = 1 and mc = 0 are consistently set
in the rest of this article.

On the other hand, the restoration probability p1 and the risk probability p2 play a significant
role in the discrete STA. To select an appropriate combination of parameters (p1, p2), a Monte
Carlo simulation study is arranged in the following.

Considering the following optimization problem:

min
x≥0

f (x) = x,

where a new candidate xk+1 is generated by the following update equation:

xk+1 = r1.

Here, r1 is a uniformly distributed random number over the interval (0, 1).
The same ‘risk and restoration in probability’ strategy is used to accept a new solution as

follows:

1: Initialize x∗ ← 0.5, f ∗ ← f (x∗), xk ← x∗

2: repeat
3: xk+1← r1

4: if f (xk+1) < f (xk) then
5: xk ← xk+1

6: else if r2 < p2 then 	 risk in probability
7: xk ← xk+1

8: end if
9: if f (xk) < f ∗ then 	 greedy criterion

10: f ∗ ← f (xk)

11: end if
12: if r3 < p1 then 	 restoration in probability
13: xk ← x∗

14: end if
15: until the maximum number of iterations is met

Here, r2 and r3 are uniformly distributed random numbers over the interval (0, 1) and f ∗ = f (x∗)
is historically the best solution.

Various groups of (p1, p2) are tested for the experiment, in which the maximum number of
iterations is 1e3, and 1e4 runs are carried out for each group. The experimental results are shown
in Table 1. Without loss of generality, the group (p1, p2) = (0.1, 0.1) is adopted in this article for
the following study due to its good performance and simplicity.

Remark 3 It can be seen that the Monte Carlo simulation study for the optimization problem can
be considered as a general case for the selection of p1 and p2, and the group (p1, p2) = (0.1, 0.1)

can also be applied to other optimization problems with the ‘risk and restoration in probability’
strategy.
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Table 1. A Monte Carlo simulation study.

p2

p1 0.1 0.3 0.5 0.7 0.9

0.1 9.9254e−4± 9.8274e−4a 0.0010± 9.8255e−4 0.0010± 0.0010 9.9027e−4± 9.9498e−4 9.7423e−4± 9.8163e−4
0.3 0.0010± 9.9359e−4 0.0010± 0.0010 0.0010± 0.0010 9.8736e−4± 9.8159e−4 9.9254e−4± 0.0010

0.5 0.0010± 9.9755e−4 9.9249e−4± 9.7547e−4 0.0010± 0.0010 0.0010± 0.0010 0.0010± 0.0010

0.7 0.0010± 0.0010 0.0010± 0.0010 0.0010± 0.0010 9.9456e−4± 9.8730e−4 9.9609e−4± 9.9991e−4
0.9 0.0010± 9.9637e−4 0.0010± 9.9667e−4 9.8258e−4± 9.8261e−4 0.0010± 0.0010 0.0010± 0.0010

aIndicates mean ± standard deviation.

4. Implementation of the discrete STA

The above discrete STA is essentially for unconstrained discrete optimization problems. To real-
ize the optimal design of water distribution networks, some constraints have to be dealt with.
For the equality constraints on continuity of flow and conservation of energy, there exist some
hydraulic analysis software packages, such as Epanet (Rossman 2000) and Kypipe (Wood 1980),
in which the continuity and energy constraints are automatically satisfied. Considering that the
continuity equations are linear, some pipe flows can be first fixed as known to solve the linear
equations and then substituted into the energy equations, which can reduce the computational
complexity of solving continuity equations (linear equations) and energy equations (nonlinear
equations) simultaneously. The details can be found in the Two-Loop network, as shown in
Section 5.1. It is not difficult to imagine that the number of nonlinear equations equals that of the
simple closed loops or required independent paths in a network, and then the Newton–Raphson
method is used to solve the nonlinear equations.

For minimum pressure head constraints, the most commonly used technique is the penalty
function method, adding a penalty term when the corresponding constraint is violated. For
example, the following scheme:

fpenal = pc
NP∑
i=1

max{0, Hi min − Hi}ρ , (13)

where pc is the penalty coefficient, and ρ is normally 1 or 2 (ρ = 1 in this study). Finally, the
total cost is

fcost = fobj + fpenal. (14)

A brief description of the steps using the discrete STA is given in the following.

Step 1: Create an initial Best solution. Generate a group of candidate solutions randomly (the
size is the search enforcement, SE) and then select the fittest solution according to fcost.
Let Best∗ = Best and store Best∗.

Step 2: Update the Best. Use swap transformation to generate a group of candidate solutions on
the basis of Best. If the fittest of the candidate solutions is better than Best according to
fcost, then accept the fittest solution as Best; otherwise, accept the fittest solution as Best
with probability p2. Similar procedures are adaptable to shift, symmetry and substitute
transformations.

Step 3: Update the Best∗. The Best∗ is updated only when Best is better than Best∗.
Step 4: Restore the Best. The Best is restored to Best∗ with probability p1.
Step 5: Go back to repeat Step 2 until the maximum number of iterations is met.
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Figure 5. The Two-Loop network.

Remark 4 It should be noticed that once a solution is given, then the flow in each pipe is
determined by solving the nonlinear equations, and then whether the minimum pressure head
is satisfied can be evaluated and the corresponding penalty term to each head pressure constraint
can be decided.

The proposed discrete state transition algorithm is programmed in Matlab® R2010b (version
7.11.0.584) on an Intel® CoreTM i3-2310M CPU @ 2.10 GHz in a Windows 7 environment. In
the next section, some case studies are presented to investigate the performance of the proposed
approach.

5. Case studies

The performance of the proposed discrete STA is investigated by three well-known water distri-
bution networks, namely, the Two-Loop network, the Hanoi network and the New York network.
First, a detailed study of the Two-Loop problem is given to show that the network system with
eight unknowns governed by six linear equations and two nonlinear equations can be reduced
to only two unknowns governed by two nonlinear equations. This Two-Loop case is also fully
trained to study the effect of penalty coefficients and search enforcement on the performance of
the algorithm. Based on the experience gained from the case, the known best solutions for the
other two networks are also achieved by the algorithm.

5.1. The Two-Loop network

The layout of the Two-Loop network is shown in Figure 5. There is a single reservoir with a
210 m fixed head and eight pipes, each 1000 m long. The node data and cost data are given in
Tables 2 and 3, and the minimum acceptable pressure requirements are all 30 m above ground
level. The Hazen–Williams coefficient C is assumed to be 130 and ω = 10.5088 for the Two-
Loop network.

In this case study, an illustrative procedure is given to show how to reduce the complexity
of solving the linear and nonlinear equations. The flow continuity equations of the Two-Loop



Engineering Optimization 615

Table 2. Node data for the Two-Loop network.

Node Demand (m3 h−1) Ground level (m)

1 − 1120.0 210.00
2 100.0 150.00
3 100.0 160.00
4 120.0 155.00
5 270.0 150.00
6 330.0 165.00
7 200.0 160.00

Table 3. Cost data for the Two-Loop network.

No. Diameter (in.)a Cost ($/m) No. Diameter (in.)a Cost ($/m)

1 1 2 8 12 50
2 2 5 9 14 60
3 3 8 10 16 90
4 4 11 11 18 130
5 6 16 12 20 170
6 8 23 13 22 300
7 10 32 14 24 550

a1 in. = 2.54 cm.

network are given as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−Q1 + Q2 + Q3 + DM2 = 0

−Q2 + Q7 + DM3 = 0

−Q3 + Q4 + Q5 + DM4 = 0

−Q7 − Q8 − Q4 + DM5 = 0

−Q5 + Q6 + DM6 = 0

−Q6 + Q8 + DM7 = 0.

(15)

Assume that Q4, Q6 are fixed, then

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q1 = DM2 + DM3 + DM4 + DM5 + DM6 + DM7

Q2 = DM3 + DM5 + DM7 − Q4 − Q6

Q3 = DM4 + DM6 + Q4 + Q6

Q5 = DM6 + Q6

Q7 = DM5 + DM7 − Q4 − Q6

Q8 = Q6 − DM7.

(16)

The energy conservation equations can be formulated as

{
r3Q3|Q3|α−1 + r4Q4|Q4|α−1 − r7Q7|Q7|α−1 − r2Q2|Q2|α−1 = 0

r5Q5|Q5|α−1 + r6Q6|Q6|α−1 + r8Q8|Q8|α−1 − r4Q4|Q4|α−1 = 0
(17)
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and the head loss equations⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H2 = Head− r1Q1|Q1|α−1 − G2 ≥ H2 min

H3 = H2 − r2Q2|Q2|α−1 − G3 ≥ H3 min

H4 = H2 − r3Q3|Q3|α−1 − G4 ≥ H4 min

H5 = H4 − r4Q4|Q4|α−1 − G5 ≥ H5 min

H6 = H4 − r5Q5|Q5|α−1 − G6 ≥ H6 min

H7 = H6 − r6Q6|Q6|α−1 − G7 ≥ H7 min,

(18)

where Gi (i = 2, . . . , 7) is ground level.

Remark 5 It should be noted that there are six linear equations and two nonlinear equations
involving eight unknown flows in the original network system. However, by fixing Q4, Q6 as
assumedly known variables, the above procedures show that it is only necessary to solve the
nonlinear system (17) with two unknowns (Q4, Q6). That is to say, the number of linear and
nonlinear equations involved in water distribution networks can be reduced to the number of
closed simple loops.

For the Two-Loop network, a diameter has to be selected for each pipe, and for each pipe there
is a choice of 14. It is not difficult to imagine that when choosing a numerical order (No.), it
corresponds to an exact diameter. That is the reason why the discrete STA uses the permutation
{1, 2, . . . , n} as its decision variables and all the intelligent operators are operated on a certain
permutation.

Next, an empirical study of the the Two-Loop network by the proposed discrete STA is con-
ducted to investigate the influence of the remained parameters, namely the search enforcement
(SE) and the penalty coefficient (pc). SE is set to be 0.5, 1, 2, 3 and 4 times the dimension of the
decision variable. Considering that the average cost times the average pipe length is 1.0335e5
and the average of the minimum pressure heads is 30, the order of magnitude for pc is set at 1e4.
In this situation, pc is fixed at 1e4, 2e4, 4e4, 8e4 and 1e5, or increases from 1e4 to 1e5 in a linear
way. The maximum number of iterations is set at 2e2, and a total of 20 runs are executed for each
group of search enforcement SE and penalty coefficient pc.

As can be seen from Table 4, for a fixed SE, the search ability is declining as the pc increases,
but the feasibility rate increases simultaneously with the pc. For a fixed pc, the search ability is
increasing as the SE increases from four to eight but declining as the SE increases any more.
When the pc varies in the iterative process, the performance is not the best but much more
satisfactory than a constant one to some extent. By observation, it can be seen that setting SE to
be the dimensionality of the decision variable is a good choice, and in this setting environment,
pc = 2e4 is a good penalty coefficient. Figure 6 gives the iterative curves of the best solutions
gained when SE = 8 and pc = 2e4, respectively. It should be emphasized that best solution is
$419,000 in all cases.

Remark 6 Under the circumstance, the minimum function evaluations to achieve the best
known solution is 2048, which takes up 0.000,1387% of all possible combinations (148 =
1.4758e9).

Table 5 gives the best solutions gained by various algorithms, and it can be seen that the
STA can achieve the best known solution in this case. It should be noted that the same solu-
tion was also achieved by GAs (Savic and Walters 1997), SA (Cunha and Sousa 1999) and HS
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Table 4. An empirical study of the Two-Loop network.

pc

SE 1e4 2e4 4e4 8e4 1e5 1e4→ 1e5

4 4.2978e5± 1.4882e4(55%)a 4.3631e5± 1.3394e4(85%) 4.5184e5± 2.3575e4(95%) 4.5063e5± 1.7400e4(95%) 4.4190e5± 1.6121e4(95%) 4.4368e5± 1.8563e4(90%)

8 4.2195e5± 1.4853e4(65%) 4.3181e5± 1.3870e4(85%) 4.3526e5± 1.2721e4(90%) 4.3577e5± 1.2903e4(95%) 4.4085e5± 1.5853e4(90%) 4.3620e5± 1.5702e4(80%)

16 4.2682e5± 1.2946e4(75%) 4.3340e5± 1.5347e4(80%) 4.3410e5± 1.2004e4(90%) 431, 550± 1.4406e4(100%) 4.3458e+5± 1.4992e4(90%) 433, 600± 1.4207e4(100%)

24 4.2380e5± 1.2756e4(75%) 4.3193e5± 1.2898e4(95%) 4.3555e5± 1.5049e4(90%) 440, 950± 1.4417e4(100%) 432, 600± 1.5398e4(100%) 4.3073e5± 1.3252e4(95%)

32 4.2686e5± 1.5549e4(55%) 4.3046e5± 1.5523e4(80%) 4.3376e5± 1.3900e4(95%) 451, 400± 5.4648e4(100%) 4.3600e5± 1.7731e4(85%) 4.3305e5± 1.4657e4(95%)

aIndicates the percentage of feasible solutions.
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Figure 6. Iterative curves of best solutions when SE = 8 and pc = 2e4 for the Two-Loop problem, respectively.

Table 5. Solutions for the Two-Loop network.

(Alperovits and (Goulter, Lussier, and (Kessler and STA STA
Pipe Shamir 1977) Morgan 1986) Shamir 1989) (fixed) (variable)

1 20 20 18 18 18
18 18

2 8 10 12 10 10
6 10

3 18 16 16 16 16
4 8 6 3 4 4

6 4 2
5 16 16 16 16 16

14 14
6 12 12 12 10 10

10 10 10
7 6 10 10 10 10

8 8
8 6 2 3 1 1

4 1 2

Cost($) 497,525 435,015 417,500 419,000 419,000

Table 6. Pressure heads for the Two-Loop network (unit: m).

(Alperovits and (Goulter, Lussier, and (Kessler and STA (fixed
Node Shamir 1977) Morgan 1986) Shamir 1989) and variable)

2 53.96 54.30 53.26 53.24
3 32.32 33.19 30.08 30.49
4 44.97 44.19 43.64 43.44
5 32.31 32.32 30.10 33.78
6 31.19 31.19 30.08 30.43
7 31.57 31.57 30.09 30.54

(Geem 2006) with function evaluations at 250,000, 70,000 and 5000, respectively. Although the
solution in Kessler and Shamir (1989) is even better, it should be noted that it involves segmental
pipes. The pressure heads for the Two-Loop network obtained by various algorithms are given
in Table 6.
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Figure 7. The Hanoi network.

Table 7. Cost data for the Hanoi network.

No. Diameter (in.) Cost ($/m)

1 12 45.726
2 16 70.400
3 20 98.387
4 24 129.333
5 30 180.748
6 40 278.280

5.2. Hanoi network

The layout of the Hanoi network is given in Figure 7. There are 32 nodes, 34 pipes and 3 loops
in this network system. At node 1, there exists a reservoir with a 100 m fixed head. The cost data,
and the pipe and node data are given in Tables 7 and 8, respectively. The minimum acceptable
pressure requirements at all nodes are also fixed at 30 m and the Hazen–Williams coefficient C
is assumed to be 130 as well.

From the experience gained from the training of the Two-Loop network, the search enforce-
ment SE does not affect the performance of the discrete STA explicitly, but the penalty coefficient
pc plays a significant role in the search ability and the solution feasibility, and a good penalty
coefficient can be evaluated by setting the order of magnitude equal to the average pipe length
times the minimum pressure head.

For the Hanoi network, the search enforcement SE is set at 20, and the penalty coefficient pc
is fixed at 4e4, or varies from 4e4 to 1e5 in a linearly increasing way. The maximum number
of iterations is set at 1e3, and a total of 20 runs are executed for both fixed and variable pc.
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Table 8. Pipe and node data for the Hanoi network.

Pipe Length (m) Pipe length (m) Node Demand (m3/h) Node Demand (m3/h)

1 100 18 800 1 − 19,940 18 1345
2 1350 19 400 2 890 19 60
3 900 20 2200 3 850 20 1275
4 1150 21 1500 4 130 21 930
5 1450 22 500 5 725 22 485
6 450 23 2650 6 1005 23 1045
7 850 24 1230 7 1350 24 820
8 850 25 1300 8 550 25 170
9 800 26 850 9 525 26 900
10 950 27 300 10 525 27 370
11 1200 28 750 11 500 28 290
12 3500 29 1500 12 560 29 360
13 800 30 2000 13 940 30 360
14 500 31 1600 14 615 31 105
15 550 32 150 15 280 32 805
16 2730 33 860 16 310 – –
17 1750 34 950 17 865 – –
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Figure 8. Iterative curves of the best solutions using the STA for the Hanoi problem when ω is 10.6744 and 10.5088,
respectively.

Figure 8 gives the iterative curves of best solutions using the STA for the Hanoi problem when
ω is 10.6744 and 10.5088, respectively.

Remark 7 Under the circumstances, the minimum number of function evaluations to achieve
the best known solution is 23,240, which takes up 8.1114e−21% of all possible combinations
(634 = 2.8651e26).

Table 9 gives the best solutions gained by various algorithms, and it can be seen that, if ω =
10.5088, the STA with fixed pc can achieve the best known solution in this case at a cost of
6.056 million dollars, while the solution using the STA with variable pc obtains a solution at a
cost of 6.065 million dollars. If ω = 10.6744, the STA with fixed pc can achieve the best known
solution at 6.097 million dollars, and it can obtain 6.109 million dollars with variable pc. Savic
and Walters (1997) used the GA to obtain the solution with 1,000,000 function evaluations.
The solution gained in Zecchin et al. (2006) using ACO need 100,000 function evaluations.
Exactly the same solution was achieved by SA (Cunha and Sousa 1999) and HS (Geem 2006)
as well, with the function evaluations of 53, 000 and 200, 000, respectively. It should be noted
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Table 9. Solutions for the Hanoi network.

(Haghighi,
(Savic and (Zecchin et al., Samani, and STA(fixed) STA(variable)

Pipe Walters 1997) 2006) Samani 2011) ω = 10.6744 ω = 10.5088 ω = 10.6744 ω = 10.5088

1 40 40 40 40 40 40 40
2 40 40 40 40 40 40 40
3 40 40 40 40 40 40 40
4 40 40 40 40 40 40 40
5 40 40 40 40 40 40 40
6 40 40 40 40 40 40 40
7 40 40 40 40 40 40 40
8 40 40 40 40 40 40 40
9 40 40 30 40 40 30 30
10 30 30 30 30 30 30 30
11 24 24 30 24 24 30 30
12 24 24 24 24 24 24 24
13 20 20 16 20 20 20 20
14 16 12 12 16 16 12 16
15 12 12 12 12 12 12 12
16 12 12 16 12 12 12 12
17 16 20 20 16 16 20 16
18 20 24 24 24 20 20 24
19 20 20 24 20 20 24 20
20 40 40 40 40 40 40 40
21 20 20 20 20 20 20 20
22 12 12 12 12 12 12 12
23 40 40 40 40 40 40 40
24 30 30 30 30 30 30 30
25 30 30 30 30 30 30 30
26 20 20 20 20 20 20 20
27 12 12 12 12 12 12 12
28 12 12 12 12 12 12 12
29 16 16 16 16 16 16 16
30 16 16 12 16 12 16 12
31 12 12 12 12 12 12 12
32 12 12 16 12 16 16 16
33 16 16 20 16 16 16 16
34 20 20 24 20 24 20 24

Cost($M) 6.073 6.134 6.190 6.097 6.056 6.109 6.065

that in GA (Savic and Walters 1997), SA (Cunha and Sousa 1999) and HS (Geem 2006), they
used ω = 10.5088, while in ACO (Zecchin et al. 2006), ω = 10.6744 was adopted. The pressure
heads for the Hanoi network obtained using the discrete STA with fixed and variable pc are given
in Table 10.

5.3. New York network

The layout of the New York network is given in Figure 9. There are 20 nodes, 21 pipes and 1 loop
in this network system. At node 1, there exists a reservoir with 300 ft fixed head. The New York
problem is different from the other two cases, because pipes already exist in the old system. The
common objective of this problem is to determine additional parallel pipes added to the existing
ones to meet increased water demands while maintaining the minimum pressure requirements.
The the cost data, and pipe and node data are given in Tables 11 and 12, respectively. The Hazen–
Williams coefficient C is assumed to be 100 in this case.

For the New York network, the search enforcement SE is also set at 20, and the penalty coef-
ficient pc is fixed at 2e6, or varies from 1e6 to 1e7 in a linearly increasing way. The maximum
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Table 10. Pressure heads for the Hanoi network (unit: m).

STA(fixed) STA(variable) STA(fixed) STA(variable)
Node ω = 10.6744 ω = 10.5088 ω = 10.6744 ω = 10.5088 Node ω = 10.6744 ω = 10.5088 ω = 10.6744 ω = 10.5088

1 100.00 100.00 100.00 100.00 17 33.56 30.51 38.00 33.20
2 97.14 97.17 97.14 97.17 18 49.94 44.29 44.89 50.16
3 61.64 61.99 61.64 61.99 19 55.08 55.90 58.68 55.37
4 56.90 57.23 57.08 57.34 20 50.53 50.89 50.43 50.90
5 51.02 51.31 51.42 51.56 21 41.18 41.57 41.07 41.59
6 44.82 45.07 45.49 45.48 22 36.01 36.42 35.90 36.44
7 43.36 43.61 44.10 44.06 23 44.41 44.73 44.21 44.76
8 41.63 41.85 42.48 42.37 24 39.23 39.03 38.91 39.07
9 40.25 40.44 41.20 41.02 25 35.98 35.34 35.56 35.40
10 39.23 39.40 37.39 37.01 26 32.25 31.44 31.58 31.53
11 37.67 37.85 35.83 35.45 27 31.20 30.15 30.22 30.29
12 34.24 34.43 34.68 34.30 28 35.76 39.12 35.60 39.15
13 30.03 30.24 30.46 30.10 29 31.06 30.21 30.94 30.26
14 35.61 35.49 34.64 33.66 30 30.10 30.47 30.01 30.52
15 33.87 33.44 30.86 32.17 31 30.58 30.75 30.13 30.80
16 31.61 30.36 30.38 30.53 32 31.84 33.20 31.41 33.26
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Figure 9. The New York network.

Table 11. Cost data for the New York network.

No. Diameter (in.) Cost ($/foot) No. Diameter (in.) Cost ($/foot)

1 0 0.00 9 120 417.0
2 36 93.5 10 132 469.0
3 48 134.0 11 144 522.0
4 60 176.0 12 156 577.0
5 72 221.0 13 168 632.0
6 84 267.0 14 180 689.0
7 96 316.0 15 192 746.0
8 108 365.0 16 204 804.0

number of iterations is set at 2e3 and 1e3 for ω = 10.6744 and ω = 10.5088, respectively, and a
total of 20 runs are executed for both fixed and variable pc. Figure 10 gives the iterative curves
of the best solutions using the STA with fixed and variable pc for the New York problem when
ω is 10.6744 and 10.5088, respectively.

Remark 8 Under the circumstances, the minimum number of function evaluations to achieve
the best known solution is 5200, which takes up 2.6883e− 19% of all possible combinations
(1621 = 1.9343e25).

Table 13 gives the best solutions gained by various algorithms, and it can be seen that the STA
with both fixed and variable pc can achieve the best known solution at a cost of 37.13 million
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Table 12. Pipe and node data for the New York network.

Pipe Length (ft)a Diameters (in.) Node Demand (ft3/s)b Min Total Head (ft)

1 11,600 180 1 17.5 300.0
2 19,800 180 2 92.4 255.0
3 7,300 180 3 92.4 255.0
4 8,300 180 4 88.2 255.0
5 8,600 180 5 88.2 255.0
6 19,100 180 6 88.2 255.0
7 9,600 132 7 88.2 255.0
8 12,500 132 8 88.2 255.0
9 9,600 180 9 170.0 255.0
10 11,200 204 10 1.0 255.0
11 14,500 204 11 170.0 255.0
12 12,200 204 12 117.1 255.0
13 24,100 204 13 117.1 255.0
14 21,100 204 14 92.4 255.0
15 15,500 204 15 92.4 255.0
16 26,400 72 16 170.0 260.0
17 31,200 72 17 57.5 272.8
18 24,000 60 18 117.1 255.0
19 14,400 60 19 117.1 255.0
20 38,400 60 20 170.0 255.0
21 26,400 72 – – –

a1 ft = 0.3048 m.
b1 ft3/s = 28.3168 L/s.
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Figure 10. Iterative curves of the two best solutions using the STA for the New York problem when ω is 10.6744 and
10.5088, respectively.

dollars with ω = 10.5088. As a matter of fact, the same solution with ω = 10.5088 was also
gained by GA (Savic and Walters 1997) with the function evaluations at 1000,000. It should be
noted that ω = 10.5088 in Gessler (1985) and Morgan and Goulter (1985), while ω = 10.6744
in Dandy, Simpson, and Murphy (1996). The pressure heads for the New York network obtained
by the discrete STA are given in Table 14.

5.4. Triple Hanoi network

The triple Hanoi network is an extension of the original Hanoi network, as shown in Figure 11.
All the corresponding parameters for the nodes and lines in the triple Hanoi network are the same
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Table 13. Solutions for the New York network.

(Dandy
(Gessler (Morgan and Simpson, and STA(fixed) STA(variable)

Pipe 1985) Goulter 1985) Murphy 1996) ω = 10.6744 ω = 10.5088 ω = 10.6744 ω = 10.508

1 0 0 0 0 0 0 0
2 0 0 0 0 0 0 0
3 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0
7 100 144 0 144 108 144 108
8 100 144 0 0 0 0 0
9 0 0 0 0 0 0 0
10 0 0 0 0 0 0 0
11 0 0 0 0 0 0 0
12 0 0 0 0 0 0 0
13 0 0 0 0 0 0 0
14 0 0 0 0 0 0 0
15 0 0 120 0 0 0 0
16 100 96 84 96 96 96 96
17 100 96 96 96 96 96 96
18 80 84 84 84 96 84 84
19 60 60 72 72 72 72 72
20 0 0 0 0 0 0 0
21 80 84 72 72 72 72 72

Cost($M) 41.80 39.20 38.80 38.64 37.13 38.64 37.13

Table 14. Pressure heads for the New York network using the STA (unit: m).

Node ω = 10.6744 ω = 10.5088 Node ω = 10.6744 ω = 10.5088

1 300.00 300.00 11 273.85 273.86
2 294.20 294.33 12 275.12 275.15
3 286.14 286.47 13 278.09 278.12
4 283.78 284.16 14 285.55 285.58
5 281.68 282.13 15 293.32 293.34
6 280.06 280.55 16 260.05 260.16
7 277.50 278.08 17 272.85 272.86
8 276.65 276.51 18 261.15 261.30
9 273.76 273.76 19 255.02 255.21
10 273.73 273.73 20 260.70 260.81

as in the original Hanoi network on all single parts except for the length of four pipes (pipes 1,
2, 35 and 68), the head in the reservoir, and the demand in node 3. The detailed changes in the
triple Hanoi network are mentioned below: the head in the reservoir is changed to 105 m; the
lengths of pipes 1 and 2 are 1 m and 1786.50 m, respectively; the length of both pipes 35 and 68
is 1641.69 m; and the demand of node 3 is zero.

Under these conditions, as demonstrated by Cisty (2010), the objective function of the triple
Hanoi network can be formulated as

fTH = 3fH − 3L1C1 − 3L2C1 + (1+ 1786.5+ (2× 1641.69))C1,

where fH is the referenced optimal cost of the original Hanoi network, L1, L2 are the lengths
of the first and second pipes in the original network, and C1 is the unit price of the diameter
1016 mm.
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Figure 11. The Triple Hanoi network.

Table 15. Solutions for the Triple Hanoi network.

Network GA Cisty (2010) Geem (2006) STA

Hanoi 6,081,087 6,057,697 6,081,087 6,056,362
Triple Hanoi 19,269,160 18,394,255 18,839,302 18,369,692

It can be seen that the global optimal solution of the triple Hanoi network is dependent of
the solution obtained from solving the original Hanoi network problem. By using the proposed
discrete state transition algorithm, the optimal cost fTH = 18,369,692.48 can be obtained. The
best results obtained by different optimization algorithms can be seen in Table 15. It can be seen
that the discrete state transition algorithm can find the best optimal solution as well.

6. Conclusion

The complexity of the water distribution network comes from two aspects, one is the linear
and nonlinear equations, which are commonly handled by a hydraulic solver to ensure that the
continuity and head loss equations are satisfied automatically, the other difficulty is that the
commercial pipe size is discrete, which has been proved to be NP-hard.

In this article, it is shown that the network system can be reduced to the dimensionality
of the number of closed simple loops or required independent paths, which can reduce the
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computational complexity of solving linear and nonlinear equations simultaneously to a large
extent.

To overcome the NP-hardness, a new intelligent optimization algorithm called the discrete
state transition algorithm is introduced to find the optimal or suboptimal solution. There are four
intelligent operators in the discrete STA, which are easy to understand and to implement. The
‘restoration in probability’ p1 and ‘risk in probability’ p2 strategy in the discrete STA is used to
escape from local optima and increase the probability of capturing the global optimum.

At first, a Monte Carlo simulation is studied to investigate a good combination of p1 and p2,
and it can be seen that (p1, p2) = (0.1, 0.1) is a good choice. Then, an empirical study of the Two-
Loop network focuses upon studying the network, and it can be seen that the penalty coefficient
plays a significant role in the search ability and solution feasibility.

Based on the experience gained from the Two-Loop problem, the discrete STA has been suc-
cessfully applied to the Hanoi, the triple Hanoi and New York networks, and the results show that
the discrete STA can achieve the best known solutions with fewer function evaluations. The suc-
cess of the discrete STA in the optimal design of water distribution networks has demonstrated
that the discrete STA is a promising alternative in combinatorial optimization.

In the future, the proposed discrete state transition algorithm will be extended to large size
water distribution networks by combining it with decomposition methods and the proposed
approach will also be extended to multi-objective optimization problems involved in water
distribution networks.
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