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By transforming identification and control for nonlinear system into optimization prob-
lems, a novel optimization method named state transition algorithm (STA) is introduced
to solve the problems. In the proposed STA, a solution to a optimization problem is consid-
ered as a state, and the updating of a solution equates to a state transition, which makes it
easy to understand and convenient to implement. First, the STA is applied to identify the
optimal parameters of the estimated system with previously known structure. With the
accurate estimated model, an off-line PID controller is then designed optimally by using
the STA as well. Experimental results have demonstrated the validity of the methodology,
and comparisons to STA with other optimization algorithms have testified that STA is a
promising alternative method for system identification and control due to its stronger
search ability, faster convergence rate and more stable performance.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

The identification and control of nonlinear system have been widely studied in recent years [1–4]. Before the design of a
controller, it is necessary to achieve system identification. In general, the process of system identification can be decomposed
into two steps: the selection of an appropriate identification model (system structure) and an estimation of the model’s
parameters, of which, the parameter estimation plays a relatively more important role since a specific class of models that
can best describe the real system can usually be derived by mechanism analysis of industrial processes [5].

As for techniques of parameter estimation, approaches such as least-squares method, instrumental variable method, cor-
relative function method, and maximum-likelihood method are widely used [6,7]. Especially for the least-squares method, it
has been successfully utilized to identify the parameters in static and dynamic systems [8]. However, most of these tech-
niques have some fundamental issues, including their dependence on unrealistic assumptions such as unimodal perfor-
mance and differentiability of the performance function, and they are easily getting trapped into local optimum, because
these methods are in essence local search techniques based on gradient. For example, the least-squares method is only suit-
able for the model structure possessing some linear property. Once the model structure exhibits nonlinear performance, this
approach often fails in finding a global optimum and becomes ineffective [5–7,9].

Fortunately, the modern intelligent optimization algorithms, such as genetic algorithm (GA) [10,11], particle swarm opti-
mization (PSO) [12,13], are global search techniques based not on gradient, and they have been successfully applied in var-
ious optimization problems even with multimodal property. As a matter of fact, some intelligent optimization algorithms
have been utilized in the field of nonlinear system identification and control. In [14], estimation of bar parameters with
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binary-coded genetic algorithm was studied, and it was verified that the GAs can produce better results than most determin-
istic methods. Genetic algorithm based parameter identification of a hysteretic brushless exciter model was proposed in [15].
In [7,16], real-coded genetic algorithms were applied for nonlinear system identification and controller tuning, and the sim-
ulation examples demonstrated the effectiveness of the GA based approaches. Then, in [5,6,9], parameter estimation and
control of nonlinear system based on adaptive particle swarm optimization were presented, and examples confirmed the
validity of the method. Further more, in [17], identification of Jiles–Atherton model parameters using particle swarm opti-
mization, and in [18], parameters identification for PEM fuel-cell mechanism model based on effective informed adaptive
particle swarm optimization were put forwarded subsequently. All of these indicate that intelligent optimization techniques
are alternatives for traditional methods including gradient descent, quasi-Newton, and Nelder–Mead’s simplex methods.

Although GA and PSO are alternative approaches for the problem, they always encounter premature convergence and
their convergence rates are not so satisfactory when dealing with some complex or multimodal functions [19,20]. State tran-
sition algorithm (STA) is a novel optimization method based on the concept of state and state transition recently, which orig-
inates from the thought of state space representation and space transformation [21,22]. In STA, four special transformation
operators are designed, and they represent different search functions in space, which makes STA easy to understand and
convenient to implement. For continuous function optimization problems, STA has exhibited comparable search ability
compared with other intelligent optimization algorithms [23,24].

In this paper, the STA is firstly introduced to identify the optimal parameters of nonlinear system. Then, we will discuss
the off-line PID controller design by adopting STA according to the estimated model. The PID control is popular due to its
ease of use, good stability and simple realization. The key issue for PID controller design is the accurate and efficient tuning
of PID control gains: proportional gain Kp, integral gain Ki and derivative gain Kd. For adjusting PID controller parameters
efficiently, many methods were proposed. The Ziegler–Nichols method is an experimental one that is widely used; however,
this method needs certain prior knowledge on a plant model [25]. Once tuning the controller by Ziegler–Nichols method, a
good but not optimum system response will be gained. On the other hand, many artificial intelligence techniques such as
neural networks, fuzzy systems and neural-fuzzy logic have been widely applied to the appropriate tuning of PID controller
gains [26]. Besides these methods, modern intelligent optimization algorithms, such as GA and PSO, have also received much
attention, and they are used to find the optimal parameters of PID controller [5,7,16].

The goal of this paper is to introduce a novel method STA for both parameter estimation and control of nonlinear systems.
In order to evaluate the performance of the STA, experiments are carried out to testify the validity of the proposed method-
ology, the results of which have confirmed that STA is an efficient method. Compared with other intelligent optimization
algorithms, the simulation examples have demonstrated that the STA has superior features in terms of search ability, con-
vergence rate and stability.

2. Problems description

To transform a specified problem into the standard form of optimization problem is called optimization modeling, which
is the basis for parameter identification and system control. The standard optimization problems should consist of objective
function and decision variables, while optimization algorithms are used to find a global optimal solution to the objective
function restricted to some additional constraints.

2.1. Identification of nonlinear system

In this paper, the following class of discrete nonlinear systems described by the state space model is considered:
xðkþ 1Þ ¼ f ðk; xðkÞ; uðkÞ; P1Þ
yðkÞ ¼ hðk; xðkÞ; uðkÞ; P2Þ;

ð1Þ
where, x 2 Rn is the state vector, u 2 R is the input, y 2 R is the output, P1 and P2 are unknown parameter vectors that will
be identified, and f ð�Þ and hð�Þ are nonlinear functions. Without loss of generality, let h ¼ ½h1; h2; . . . ; hn� be a rearranging vec-
tor containing all parameters in P1 and P2 where n represents the total number of unknown system parameters. Furthermore,
the estimated system model can be described as:
x̂ðkþ 1Þ ¼ f ðk; x̂ðkÞ; uðkÞ; P̂1Þ
ŷðkÞ ¼ hðk; x̂ðkÞ; uðkÞ; P̂2Þ;

ð2Þ
where, x̂ 2 Rn and ŷ 2 R denote the state vector and the output of the model, P̂1 and P̂2 are the estimated parameter vectors,
respectively. Accordingly, let ĥ ¼ ½ĥ1; ĥ2; . . . ; ĥn� be the estimated rearranging vector.

The basic thought of system identification is to compare the real system responses with the estimated system responses.
Moreover, to accurately estimate the ĥ, some assumptions on the nonlinear systems are required:

(1) The system output must be available for measurement.
(2) System parameters must be connected with the system output.
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To deal with the problem of parameter estimation, a specified problem should be formulated as an optimization problem.
In this study, the decision variables are the estimated parameter vector ĥ, while the objective function is chosen as the fol-
lowing mean squared errors (MSE):
MSE ¼ 1
N

XN

k¼1

e2 ¼ 1
N
½XðkÞ � X̂ðkÞ�

2
; ð3Þ
where, N is the length of sampling data, XðkÞ ¼ ½xðkÞ; yðkÞ� and X̂ðkÞ ¼ ½x̂ðkÞ; ŷðkÞ� are real and estimated values at time k,
respectively.

It is obvious to find that the MSE is the function of variable vector ĥ, and then, the optimization problem will be solved by
optimization algorithms which will minimize the MSE value so that the real nonlinear system is actually estimated. The
block diagram of the nonlinear system parameter estimation is given in Fig. 1.

2.2. Design of PID controller

When the nonlinear system model is estimated, an off-line PID controller is then designed to guarantee the stability and
other performances of the system. The reason why the PID controller is adopted is that it is the most widely used controller
for application in industrial processes. The continuous form of a PID controller can be described as follows:
uðtÞ ¼ Kp eðtÞ þ 1
Ti

Z t

0
eðtÞdt þ Td

d
dt

eðtÞ
� �

; ð4Þ
where, eðtÞ is the error signal between the desired and actual outputs, uðtÞ is the control force, Kp; Ti; Td are the proportional
gain, integral time constant and derivative time constant, respectively. By using the following approximations:
R t

0 eðtÞdt � T
Pk

j¼0eðjÞ
d
dt eðtÞ � eðkÞ�eðk�1Þ

T ;
ð5Þ
where, T is the sampling period, then (5) can be rewritten as
uðkÞ ¼ Kp eðkÞ þ T
Ti

Xk

j¼0

eðjÞ þ Td

T
eðkÞ � eðk� 1Þ½ �

( )
; ð6Þ
which is called the place type, and in most case, the increment style as described following is more practical:
uðkÞ ¼ uðk� 1Þ þ Kpf½eðkÞ � eðk� 1Þ� þ T
Ti

eðkÞ þ Td
T ½eðkÞ � 2eðk� 1Þ þ eðk� 2Þ�g

¼ uðk� 1Þ þ Kp½eðkÞ � eðk� 1Þ� þ KieðkÞ þ Kd½eðkÞ � 2eðk� 1Þ þ eðk� 2Þ�;
ð7Þ
where, Ki and Kd are integral gain and derivative gain, respectively. The block diagram of the design of an off-line PID con-
troller is illustrated in Fig. 2, where yrðkÞ is the reference output, and yðkÞ is the system output at the sampling point. Opti-
mization algorithms are used to adjust the PID controller parameters such as Kp;Ki and Kd. In the same way, mean squared
errors will be defined as the objective function
MSE ¼ 1
N

XN

k¼1

e2 ¼ 1
N
½yrðkÞ � yðkÞ�2: ð8Þ
Fig. 1. The parameter estimation process.



Fig. 2. The design of PID controller.
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3. State transition algorithm

Let us consider the following unconstrained optimization problem:
min
x2Rn

f ðxÞ; ð9Þ
where, f : Rn ! R is a objective function. In a numerical way, the iterative method is adopted to solve the problem, the es-
sence of which is to update the solution found so far. When thinking in a state and state transition way, a solution can be
regarded as a state, and the updating of a solution can be considered as a state transition process.

Based on the thought stated above, the form of state transition algorithm can be described as follows,
xkþ1 ¼ Akxk þ Bkuk;

ykþ1 ¼ f ðxkþ1Þ;

�
ð10Þ
where, xk stands for a state, corresponding to a solution of a optimization problem; Ak and Bk are state transition matrices,
which are usually transformation operators; uk is the function of variable xk and historical states; f is the objective function or
evaluation function.

Using various types of space transformation for reference, four special state transformation operators are designed to
solve continuous function optimization problems.

(1) Rotation transformation
xkþ1 ¼ xk þ a
1

nkxkk2
Rrxk; ð11Þ
where, xk 2 Rn; a is a positive constant, called rotation factor; Rr 2 Rn�n is a random matrix with its elements belonging to
the range of [-1, 1] and k � k2 is 2-norm of a vector. It has proved that the rotation transformation has the function of search-
ing in a hypersphere [21,22].

(2) Translation transformation
xkþ1 ¼ xk þ bRt
xk � xk�1

kxk � xk�1k2
; ð12Þ
where, b is a positive constant, called translation factor; Rt 2 R is a random variable with its elements belonging to the range
of [0,1]. It has illustrated the translation transformation has the function of searching along a line from xk�1 to xk at the start-
ing point xk, with the maximum length of b [21,22].

(3) Expansion transformation
xkþ1 ¼ xk þ cRexk; ð13Þ
where, c is a positive constant, called expansion factor; Re 2 Rn�n is a random diagonal matrix with its elements obeying the
Gaussian distribution. It has also stated the expansion transformation has the function of expanding the elements in xk to the
range of [-1, +1], searching in the whole space [21,22].

(4) Axesion transformation
xkþ1 ¼ xk þ dRaxk; ð14Þ
where, d is a positive constant, called axesion factor; Ra 2 Rn�n is a random diagonal matrix with its elements obeying the
Gaussian distribution and only one random index has nonzero value. As illustrated in [22], the axesion transformation is
aiming to search along the axes.

When using these transformation operators into practice, an important parameter called search enforcement (SE) is intro-
duced to describe the times of certain transformation.
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The main procedures of the version of state transition algorithm in [22] can be outlined in the following pseudocode.

1: repeat
2: ifa < amin then
3: a amax

4: end if
5: Best  expansion (funfcn,Best,SE,b; c)
6: Best  rotation (funfcn,Best,SE,a; b)
7: Best  axesion (funfcn,Best,SE,b; d)
8: a a

fc

9: until the maximum iterations is met

where, fc is a constant coefficient used for lessening the a, and the translation operator will only be performed when a better
solution is obtained.

4. Experimental results and comparison

For both the identification of nonlinear system and the design of an off-line PID controller, when the optimization algo-
rithms are utilized, they help to minimize the mean squared errors (MSE). In other words, the MSE or the evaluation of the
objective function will guide the search of the algorithms. Different from methods based on gradient, the termination crite-
rion of intelligent optimization algorithms usually are not the precision of the gradient but a prespecified maximum number
of iterations.

For comparison, the maximum iterations, population size or search enforcement are the same, and they are fixed at 100
and 30, respectively. To be more specific, in PSO, c1 ¼ c2 ¼ 1, and w will decrease in a linear way from 0.9 to 0.4, as suggested
in [10]. In STA [22], the rotation factor a will decrease in an exponential way with base fc ¼ 2 from amax ¼ 1 to amin ¼ 1e�4,
and translation factor b, expansion factor c, axesion factor d are all constant at 1. For GA, we use the MATLAB genetic
algorithm toolbox v1.2 from http://www.sheffield.ac.uk/acse/research/ecrg/getgat.html. In this paper, the following two
instances are studied.

Example 1. An unstable nonlinear system is described by
x1ðkþ 1Þ ¼ h1x1ðkÞx2ðkÞ; x1ð0Þ ¼ 1;
x2ðkþ 1Þ ¼ h2x2

1ðkÞ þ uðkÞ; x2ð0Þ ¼ 1;
yðkÞ ¼ h3x2ðkÞ � h4x2

1ðkÞ;
ð15Þ
where, h1; . . . ; h4 are to be estimated. The real parameters of the nonlinear system are assumed to be
h ¼ ½h1; h2; h3; h4� ¼ ½0:5;0:3;1:8;0:9�.

The relative variables used in optimization algorithms are given as follows
h1 2 ½0;2�; h2 2 ½0;2�; h3 2 ½0;2�; h4 2 ½0;2�; N ¼ 8:
Considering the randomness of the stochastic optimization algorithms, 30 independent trials are run. In the meanwhile,
some statistics, such as best (the minimum), mean, worst (the maximum), st.dev (standard deviation), are used to evaluate the
performance of the algorithms.

Table 1 lists the best estimated parameters gained by GA, PSO and STA, from which, we can find that only PSO and STA can
achieve the accurate parameters of the real system, and the results obtained by GA are a little far from the real parameters.
Then, from Table 2, it indicates that STA is the most stable algorithm for the problem because the mean and st.dev of STA are
the smallest. It can also be found the results gained by GA and PSO are not so satisfactory since the best is deviated from the
mean seriously.

Fig. 3 illustrates the optimization processes of parameter estimation by using STA compared with other two algo-
rithms in a middle run. It is easy to find that the convergence rate of STA are much faster than that of GA and
PSO, with no more than 30 iterations, and the changes of parameters with STA are also steadier than other two
algorithms.
Table 1
Best estimated parameters for Example 1.

Algorithms h1 h2 h3 h4

GA 0.4981 0.2995 1.7946 0.8946
PSO 0.5000 0.3000 1.8000 0.9000
STA 0.5000 0.3000 1.8000 0.9000

http://www.sheffield.ac.uk/acse/research/ecrg/getgat.html


Table 2
Performance comparison for Example 1.

Algorithms Best Mean Worst St.dev

GA 9.6674E�07 1.2572E�04 4.3492E�04 1.4433E�04
PSO 1.3938E�12 2.8000E�03 2.7700E�02 8.4000E�03
STA 5.2364E�12 5.2367E�11 1.3729E�10 3.5120E�11
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Then, with the estimated model, an off-line PID controller for this system is designed by using STA, too. As a optimizer,
STA is to minimize the mean squared error between the plant output y and the desired output yr . In the experiment, relative
variables are given by
Kp 2 ½0;1�; Ki 2 ½0;1�; Kd 2 ½0;1�; yr ¼ 2; N ¼ 50:
Also, in the same time, 30 independent trials are carried out, and some statistics are used to describe the performance of
the algorithms. Table 3 shows the parameters of PID controller under the best performance, and Table 4 gives the detailed
statistical results obtained by the three algorithms. Compared with GA and PSO, from Table 4, it is obvious to find that STA
can find the minimum MSE with a higher probability, which shows that STA is much more appropriate for the problem.

Fig. 4 illustrates the convergence processes of PID controller parameters and the changes of states and output under best
MSE using STA, which shows that the convergence rate is fast, and the changes of output indicate that the stability of non-
linear system is good under the proposed PID controller. To be more specific, for the nonlinear system, it can be found that x1

is stable at 0, x2 is stable at 1.1111, and y is stable at 2 finally, which can be understood easily by analyzing the system.
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Fig. 3. Trajectories of parameters h1; h2; h3, and h4 for Example 1.



Table 3
Best parameters of PID controller for Example 1.

Algorithms Kp Ki Kd

GA 0.1459 0.3398 0.0908
PSO 0.1447 0.3407 0.0919
STA 0.1445 0.3410 0.0922

Table 4
Performance comparison of PID controller for Example 1.

Algorithms Best Mean Worst St.dev

GA 0.1000 0.1002 0.1013 0.0017
PSO 0.1000 0.1127 0.3089 0.1986
STA 0.1000 0.1000 0.1000 1.41E�10
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Fig. 4. (a), (b), (c) depict the convergence of PID controller parameters Kp; Ki and Kd with GA, PSO and STA, respectively, and (d) shows the changes of states
and output under the best parameters with STA for Example 1.
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Example 2. Consider a first-order with time-delay system whose transfer function is given by
GðsÞ ¼ yðsÞ
uðsÞ ¼

K
Tsþ 1

e�ss; ð16Þ



Table 5
Best estimated parameters for Example 2.

Algorithms K T s

GA 9.9710 4.9813 9.0283
PSO 9.9989 4.9993 9.0414
STA 10.0000 5.0000 9.0000

Table 6
Performance comparison for Example 2.

Algorithms Best Mean Worst St.dev

GA 2.0759E�07 0.0059 0.0422 0.0083
PSO 2.2503E�10 0.0113 0.2412 0.0436
STA 2.4004E�19 1.2816E�16 2.4510E�15 4.6216E�16
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Fig. 5. (a), (b), (c) show trajectories of parameters K; T , and s, and (d) shows the convergence of MSE for Example 2 under GA, PSO and STA, respectively.

176 X. Zhou et al. / Applied Mathematics and Computation 226 (2014) 169–179
where, K is the steady-state gain, T is the time constant, and s is the time delay. With the sampling time 0.01, the system (16)
can be easily changed to the discrete dynamic equation as follows:
xðkþ 1Þ ¼ ð1� 1
10TÞxðkÞ þ K

10T uðk� 10sÞ; xð0Þ ¼ 0;
yðkÞ ¼ xðkÞ:

ð17Þ



Table 7
Best parameters of PID controller for Example 2.

Algorithms Kp Ki Kd

GA 1.0000 0.3196 0
PSO 1.0000 0.3393 0.2837
STA 1.0000 0.3196 0

Table 8
Performance comparison of PID controller for Example 2.

Algorithms Best Mean Worst St.dev

GA 6.3256E�2 6.3256E�2 6.3256E�2 1.0518E�7
PSO 6.3258E�2 6.3274E�2 6.3279E�2 6.6540E�6
STA 6.3256E�2 6.3256E�2 6.3256E�2 4.0097E�15
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Fig. 6. (a), (b), (c) depict the convergence of PID controller parameters Kp;Ki and Kd with GA, PSO and STA, respectively, and (d) shows the changes of state
and error under the best parameters with STA for Example 2.
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It is assumed that the actual numerical values are K ¼ 10; T ¼ 5, and s ¼ 9, respectively. Let consider
h ¼ ½h1; h2; h3� ¼ ½K; T; s� as a vector of estimated parameters and set the control input uðkÞ ¼ 1 in this study. The relative
variables used in optimization algorithms are given as follows
K 2 ½0;20�; T 2 ½0;20�; s 2 ½0;20�; N ¼ 350:
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Table 5 shows the best estimated parameters found by GA, PSO and STA, respectively. Considering the reformulated opti-
mization problem is highly nonlinear and nonconvex, only STA can achieve the global solution of the real system with high
precision, that is to say, STA has much stronger global search ability and much higher calculation accuracy than its compet-
itors. Anyway, both GA and PSO have also found the approximately global solution, as indicated in Table 6, since the best of
GA and PSO are approaching zero closely. However, the mean, the worst and the st.dev are much far away from zeroes, which
indicates that GA and PSO are not stable for this identification problem. On the other hand, the worst of STA is very small,
which demonstrates that STA is much more appropriate. Fig. 5 depicts the trajectories of parameters K; T , and s, and it is
shown that STA can converge to the neighborhood of global solutions at 20 iterations.

Again, with the estimated parameters, an off-line PID controller is applied to this time-delay system. In this experiment,
the relative variables are given by
Kp 2 ½0;1�; Ki 2 ½0;1�; Kd 2 ½0;1�; yr ¼ 1; N ¼ 1500:
As shown in Table 7, the GA and STA can find a PI controller for the time-delay system, since under the PI controller, the
MSE is smaller than that of PID controller obtained by PSO. Table 8 indicates that STA has the capacity to find the minimum
MSE in a much higher probability. Fig. 6 depicts the convergence of PID controller parameters Kp; Ki and Kd with GA, PSO and
STA, respectively, and it is shown that STA can find the optimal parameters in a much faster way.

5. Conclusion

In this paper, a new optimization algorithm named STA is applied to solve the problems of parameter estimation and con-
troller design for nonlinear systems. As a optimizer, STA is used to achieve the accurate model, and then it is adopted to ob-
tain the optimal off-line PID controller. The experimental results have confirmed the validity of proposed algorithm. By
comparison with GA and PSO, it is found that STA has stronger global search ability and is more stable in statistics. With
regard to the convergence rate, it is also discovered that STA is much faster than its competitors. As a novel optimization
method, these applications of STA show that it is a promising alternative approach for system identification and control.
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