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A B S T R A C T

Power load forecasting is an important task of smart grid, which is of great significance to the sustainable
development of society. In this paper, a hybrid support vector regression (HSVR) is raised for the medium
and long term load forecasting. To further improve prediction accuracy, the coupling and interdependent
relationship between hyperparameters and model parameters in the optimization process is focused. A
hierarchical optimization method based on nested strategy and state transition algorithm (STA) is proposed to
find optimal parameters. The effectiveness of the proposed hierarchical optimization method is confirmed on
several benchmarks, and the resulting hierarchical optimization method based SVR is also successfully applied
to a real industrial power load forecasting problem in China.
1. Introduction

Nowadays, the external economy and environment have an in-
creasing impact on the power grid, and the construction is facing un-
precedented challenges. Studies on intelligent prediction methods and
optimization algorithms with a certain adaptive deterministic model
can not only improve the accuracy of prediction but improve intel-
ligence and efficiency of smart grid (Li, Yu, Huang, & He, 2018; Li,
Yu, Yu, Chen, & Wang, 2017; Silva, Khan, & Han, 2018). As non-
storable energy, electrical energy must be generated as soon as there is
a demand, so it is imperative to estimate the system load for power
companies ahead. Taking the nature of historical data and natural
environment into account, load data is non-stationary, nonlinear and
dynamic, but at the same time, some influencing factors are regular
that can be used to effectively predict the power.

In general, load forecasting can be divided into very short term
(1∼7 days ahead), short term (1∼4 weeks ahead), medium term (1∼12
months ahead) and long term (1∼20 years ahead) with different time
horizons (Abu-Shikhah & Elkarmi, 2011; Ghiassi, Zimbra, & Saidane,
2006; Han et al., 2018). Very short term load forecasting (VSTLF)
and short term load forecasting (STLF) are critical to daily scheduling,
economic and secure operation of power systems, which have been
intensively studied in recent decades. However, medium term load
forecasting (MTLF) and long term load forecasting (LTLF) offer useful
information for the planning of demand side management, and provide
significant benefits for firms operating (Ghiassi et al., 2006). Therefore,
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it is meaningful to pay more attention to medium and long term load
forecasting.

The key to achieving accurate prediction is to establish a reasonable
mathematical model, then choose an appropriate solution method and
implement with a specific algorithm. Accurate load forecasting is a
much more difficult problem. Especially changes within medium to
long term load often attribute to external factors such as temperature,
fuel prices, other economic variables and so forth. Classic statistical
forecasting methods, including regression analysis and gray forecasting
were applied on short-term load and energy consumption forecasting
in Huang and Shih (2003) and Yuan, Liu, and Fang (2016). These
approaches are commonly employed to handle sequences with linear
characteristics, but render inapplicable for complex nonlinear systems
in real life. In recent decades, big data analytics and machine learning
methods have been widely used and achieved better performance on
various regression issues in energy sector. Nowadays, complex and non-
linear relationships between the load and external factors for medium
and long term load forecasting can be modeled based on machine
learning methods. In Chen, Chang, and Lin (2004), to predict the
maximum daily load of the next month, a support vector machine
(SVM) model was raised. A hybrid model based on least-square sup-
port vector machine (LSSVM) and an autoregressive integrated moving
average (ARIMA) was proposed in Khalid and Javaid (2020) for a long
term electricity consumption forecasting in Turkey. Neural networks
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have been commonly conducted on combination with other methods
(evolution or fuzzy methods). In Ghiassi et al. (2006), a dynamic
artificial neural network (DAN2) system was presented for medium
term load modeling and forecasting. Various artificial neural network
(ANN) models were employed to quantify the required energy of the
existing building in Ilbeigi, Ghomeishi, and Dehghanbanadaki (2020).
In Chang, Fan, and Lin (2011), monthly load data and various ex-
ternal factors air pressure, temperature, humidity and daylight time
were considered, and a weighted fuzzy neural network (FNN) was
put forward for medium term forecasting. Data collection, modeling
considerations and forecasting results of the MTLF based on radial basis
function neural networks (RBFNN) were presented in Xia, Wang, and
Mcmenemy (2010).

In energy systems, machine learning models are significant for
predictive analytics of power distribution, usage and demand due to
the reliability, performance, accuracy, less computational complexity
and speed. Yet, the main shortcomings of neural networks are obvious,
albeit with the strong learning and generalization capability, neural
networks requires relatively large amount of training data for learning
the data pattern. The high time complexity and the convergence prob-
lem when dealing with data of a long period of time are also drawbacks
of the model. Moreover, its structure such as the number of hidden
layers, learning rate and so on is also much depending on experience,
which may effectively limit the interpretability. Accompanying the
mature nonlinear mapping capabilities and data processing character-
istics, SVR has received wide successful applications in improving load
forecasting accuracy (Ajmera, Singh, & Chauhan, 2016; Chen et al.,
2004; Khalid & Javaid, 2020). For a complex nonlinear regression prob-
lem, SVR performs linear regression in the high-dimensional feature
space created by a kernel function using insensitive loss. Kernel func-
tions can reduce computational complexity by mapping original space
points to another high dimensional characteristic space (Cherkassky,
1997). From that point, SVR contains a certain geometric interpretation
that offers several advantages over other approaches so that it pro-
vides broad application prospects in prediction (Suykens, De Brabanter,
Lukas, & Vandewalle, 2002).

As the last step of model design and the first step of training,
it is essential to find an appropriate parameter optimization method
and strategy. In SVR, inappropriate selections of adjustable kernel
parameters, regular term, and the error of regression function may
cause underfitting and overfitting to a certain extent. Cross-validation
and grid search are used to find best values in the entire parame-
ter space (Jimenez, Lazaro, & Dorronsoro, 2009; Maunder & Harley,
2011). Theoretically, if sufficient prior knowledge is provided, these
parameters can be easily and effectively determined according to the
appropriate scale of training datasets (Cherkassky & Ma, 2004). Never-
theless, for large scale datasets and high dimensional spaces, it is not
sufficient to perform the selection of hyperparameters through empiri-
cal values, which is also the main obstacle of parameters tuning. Until
recently, some parameters optimization procedures using evolutionary
algorithms arise frequently (Khalid & Javaid, 2020). Particle swarm
optimization (PSO) was used to optimize the kernel parameter and
regularization parameter of LSSVR in Li and Li (2019). In Wu, Tzeng,
and Lin (2009), a novel genetic algorithm (GA) was adapted to find
optimal type and parameter values of kernel function of SVR to increase
the accuracy of SVR. Chaos theory is combined with firefly algorithm to
optimize SVR hyperparameters in Kazem, Sharifi, Hussain, Saberi, and
Hussain (2013). Despite different SVR parameter setting methods have
been proposed in many studies, there are some drawbacks. On the one
hand, there are actually two types of parameters often require tuning,
namely, hyperparameters that need to be adjusted manually and model
general parameters that are continuously adjusted with training. Under
such a scenario, existing optimization methods are many focusing
on hyperparameters tuning or cast different optimization problems as
an entirety that gloss over an important issue: coupling relationship.
2

From the standpoint of this interdependent relationship, diversities s
between optimization problems is also ignored. On the other hand,
parameters tuning of SVR is a complex nonlinear multi-modal coupling
optimization problem, and it is necessary to increase the diversity of
solutions and reduce the possibility of falling into local optimum. It is
worth mentioning that state transition algorithm (STA) has designed
different state transformation operators including rotation, translation,
expansion and axesion and each operator in the algorithm can generate
geometric neighborhoods with regular shapes and controllable sizes.
From that point, this algorithm can guarantee the effectiveness and
diversity of candidate solutions, and finally converge to the global
optimal solution.

The entire parameter optimization is hierarchical. In some kernel-
based methods, through the ’kernel trick’ and regularized convex loss
function, the error minimization is finally transformed into a convex
optimization problem that is not difficult to handle (Bennett, Kunapuli,
Hu, & Pang, 2008). But it typically contains several hyperparameters
that should be specified in advance. In SVR, it is necessary to pick the
proper kernel function, regular term 𝐶, and 𝜀-tube before weight and
hreshold which are general parameters to be optimized. Subsequently,
educing the error of in-sample testing becomes the goal of hyperpa-
ameter tuning. Therefore, the choice of hyperparameters affects the
eneral parameters optimization and vice versa. The hyperparameter
uning task is constructed as a parameter optimization problem which
ontains general parameters optimization as a constraint. There are
ierarchical differences between the two that are interrelated as a
hole. In doing so, parameters tuning is viewed as a hierarchical
ptimization problem.

Hierarchical optimization is inspired by the bilevel optimization
hich can be perceived as a static version of a non-cooperative two-
erson game that is proposed in Stackelberg, Peacock, and Boulding
1952) by Von Stackelberg. Both upper and lower layers have their
wn objective functions and constraints. The objective function and
onstraints of upper layer are not only related to its decision variables,
ut also affected the optimal solutions of the follower and vice versa.
n this paper, a hierarchical optimization method in a nested manner
s proposed and a hierarchical optimization algorithm based on STA is
eveloped. The mathematical algorithm is used to reduce the enormous
omputational expense in lower layer and a new evolutionary based
ptimization technique STA is developed to adjusted hyperparameters
f the SVR model. We highlight contributions of this study as follows:

• The hybrid SVR model is established for electric load forecast-
ing. The parameters optimization of SVR is formulated as a hi-
erarchical optimization problem, and a structured hierarchical
optimization method is put forward.

• A nested optimization strategy based on STA is constructed for
hierarchical parameter optimization.

• The proposed method is extended to the optimization process of
parameters in SVR, which is successfully applied to industrial load
forecasting.

The remainder of this paper is organized as follows: In Section 2,
ybrid SVR model is established for electric load forecasting with
espect to characteristics of load datasets. Parameter tuning is casted as
hierarchical optimization problem and the corresponding hierarchical
ptimization model is established. In Section 3, the hierarchical param-
ter optimization framework based on nested strategy and STA are put
orward and applied to SVR’s parameters search. The proposed strategy
nd method are further supported by results on several benchmarks and
eal datasets in Section 4. The conclusion is drawn in Section 5.

. The hierarchical optimization problem of hybrid SVR for power
oad forecasting

.1. Power load forecasting

Power load refers to the total electric energy drawn from power

ystem by user’s electrical equipment at a specific moment. On the basis
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of different entities, electric load can be divided into industrial load,
agricultural load, transportation load, and household consumption. The
industrial power load consumption mainly exists in light industry,
high energy-consuming industry, advanced manufacturing, and mining
industry. At present, China’s industrial electricity consumption has
accounted for 69% of total electric load that is still increasing with
continuous expansion of production. In addition, the production and
consumption of industrial power should be carried out simultaneously
on account of the power generation cannot be stored in large quantity.

Accordingly, forecasting in the smart grid plays an essential role
in power dispatch, efficient energy management and maintains the
balance between demand and supply of electricity (Bibri & Krogstie,
2017). The power consumption behaviors can be divided into two
types, one is independent of external variables (termed factors-
independent models), and the other is parameterized by external fac-
tors, such as weather, economic, time index (i.e. the month of year) and
random events (termed factors-dependent models) (Han et al., 2018).
Nevertheless, there are several shortcomings in factors-independent
models. For instance, due to factors-independent models that can-
not accurately reveal how external factors influence the variation of
electric load, these models are lack of interpretation, and factors-
dependent models may be superior to factors-independent because
available external variables can be used to provide prior knowledge.
The prediction is also not robust not to include external variables
as inputs. Historical power consumption data and multiple external
factors which are known to have a significant impact on the use of
load are fully considered in this study, and a reasonable forecasting
model of system to determine power load at a specific time in the
future is used for undermentioned load forecasting. A variety of factors
contribute to the following characteristics of datasets: (1) time series
characteristics, (2) non-linearity, (3) strong correlation, and (4) scale
difference. Moreover, with the different time scales, load data can be
divided into short, medium and long term, whereas senior managers are
more focusing on business strategy and development trends of industry
that makes medium and long term load forecasting more meaningful.
Fig. 1 shows two different time-scale datasets in industry. In the next
section, we introduce the way to deal with the problem.

2.2. Hybrid SVR

According to the time series characteristics, determine the original
space points 𝒙(𝑡). The sliding window size 𝑘 is set and 𝒙(𝑡 + 1) load
can be predicted from 𝒙(𝑡),𝒙(𝑡 − 1),… ,𝒙(𝑡 − 𝑘 + 1). Then, the new
training set is defined as 𝐷 =

{(

𝒙𝑖, 𝑦𝑖
)

, 𝑖 = 1,… , 𝑁
}

, where 𝑁 is the
samples size, 𝒙𝑖 ∈ 𝑅𝑛 is the 𝑛-dimensional input vector and 𝑦𝑖 ∈ 𝑅1

is the corresponding one-dimensional output value. SVR aims to find a
hyperplane and minimize the total deviation of all sample points from
this plane.

From that point, the expected hyperplane 𝑓 (𝒙) = 𝜔𝑇𝜑(𝒙) + 𝑏 should
be as close to 𝑦 as possible, including coefficient 𝜔 and 𝑏 that need
to be estimated according to datasets. The nonlinear function 𝜑(𝒙) is
used to map original samples to higher-dimensional space. 𝜉𝑖 and 𝜉∗𝑖 are
adopted to further avoid noise from datasets. Finally, the SVR model is
converted to an optimization problem:

min𝑅
(

𝜔, 𝑏, 𝜉𝑖, 𝜉∗𝑖
)

= 𝐶
𝑁
∑

𝑖=1

(

𝜉𝑖 + 𝜉∗𝑖
)

+ 1
2
‖𝜔‖2

s.t.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑦𝑖 − 𝑓
(

𝒙𝑖
)

≤ 𝜀 + 𝜉∗𝑖
𝑓
(

𝒙𝑖
)

− 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
𝜉𝑖, 𝜉∗𝑖 ≥ 0
𝐶 > 0

(1)

In addention to 𝜀-SVR, 𝜈-SVR that proposed by Scholkopf, Smola,
Williamson, and Bartlett (2000) solves regression problems by employ-
3

ing 𝜈 ∈ (0, 1) to regulate the number of support vectors as follows:
min𝑅
(

𝜔, 𝑏, 𝜉𝑖, 𝜉∗𝑖 , 𝜀
)

= 𝐶

(

𝜈𝜀 +
𝑁
∑

𝑖=1

(

𝜉𝑖 + 𝜉∗𝑖
)

)

+ 1
2‖𝜔‖

2

s.t.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑦𝑖 − 𝑓
(

𝒙𝑖
)

≤ 𝜀 + 𝜉∗𝑖
𝑓
(

𝒙𝑖
)

− 𝑦𝑖 ≤ 𝜀 + 𝜉𝑖
𝜉𝑖, 𝜉∗𝑖 ≥ 0
𝐶 > 0

(2)

Both SVR models have been successfully applied to predictions.
However, different time-scale datasets may bring forecasting difficulties
in this study. To enhance objectivity and accuracy, hybrid SVR (HSVR)
that is the weighted linear combination of 𝜀-SVR and 𝜈-SVR has been
proposed in Huang, Yang, Zhou, and Yang (2019).

In addition, following parameters are critical to HSVR:

Hyperparameters:

• The regularization coefficient 𝐶. It can be viewed as a tradeoff
parameter between accuracy and model complexity.

• The width of 𝜀-tube. Regression model tolerates 𝜀 deviation be-
tween 𝑓 (𝒙) and 𝑦 at most, consequently, a proper 𝜀 value can
effectively reduce noise effect.

• Kernel functional parameter 𝛾. It is noted that the radial basis
function (RBF) which is widespread with high performance in
developing forecasting models will be used as the kernel function
in this study. Parameter 𝛾 is related to the function width, in
charge of determining individual impact on the rest of training
set.

• Parameter of 𝜈-SVR. 𝜈 of 𝜈-SVR can regulate the number of sup-
port vectors through varying from 0 towards 1 in the optimization
process.

• Weights of 𝜀-SVR and 𝜈-SVR. Weight value 𝑘 controls the weights
of two types of regression models.

Model parameters:

• The regression model’s linear combination weight vector 𝑤 and
bias 𝑏.

These parameters and corresponding combinations affect model’s
complexity and forecasting accuracy. Moreover, the mutual influence
between these parameters may introduce uncertainties alike. Therefore,
it is essential to find a proper solution approach for parameter tuning.

2.3. Hierarchical optimization problem formulation

Aforementioned difficulties in parameters tuning can be settled to
some extent by casting a hierarchical optimization formulation. The
prerequisite for updating general parameters of this model is that
relevant hyperparameters are known, thereafter, the error obtained by
in-sample testing becomes the target of hyperparameter tuning. General
parameters optimization problem acts as a parameterized constraint
to hyperparameter tuning, and their hierarchy and relevance post this
problem as a typical hierarchical structure optimization problem.

HSVR is the weighted linear combination of the two SVRs. To
facilitate understanding, 𝜀-SVR is taken as an example, the original
regression problem can be defined as:

min𝑅 = 𝐶
𝑁

𝑁
∑

𝑖=1
𝐽
(

𝑦𝑖, 𝑓
(

𝒙𝑖
))

+ 1
2
‖𝜔‖2 (3)

Lower layer convex optimization is parameterized by minimizing
1
2‖𝜔‖

2 for maximizing the interval. To make majority of samples fall
into 𝜀-tube, let 𝐽 as the loss function where 𝐶 and 𝜉 are regularization
coefficient and relaxation variable respectively.
𝐽𝜀(𝑦, 𝑓 (𝒙)) = max{|𝑓 (𝒙) − 𝑦| − 𝜀, 0} = 𝜉 (4)
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Fig. 1. Medium and long term power load datasets.
To guarantee the minimum error of regression problem, the upper
evel optimization is defined as follows:

min
,𝜀,𝛾

𝐹 = 1
𝑁

𝑁
∑

𝑖=1

(

𝜔𝑇𝜑
(

𝒙𝑖
)

+ 𝑏 − 𝑦𝑖
)2 (5)

With respect to previous analysis, upper layer hyperparameters 𝐶,
, 𝛾, and lower layer general parameters 𝜔, 𝑏 typically require tuning,

so that corresponding objective functions and constraints are listed to
complete the optimization formulation. The hierarchical SVR is defined
as follows:

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

min𝐶,𝜀,𝛾 𝐹 = 1
𝑁

𝑁
∑

𝑖=1
(𝜔𝑇𝜑(𝒙𝑖) + 𝑏 − 𝑦𝑖)2

s.t. 𝐶, 𝜀, 𝛾 ≥ 0

min𝜔,𝑏 𝑓 = 𝐶
𝑀
∑

𝑗=1
(𝜉𝑗 ) +

1
2
‖𝜔‖2

s.t.
⎧

⎪

⎨

⎪

⎩

𝑦𝑗 − 𝜔𝑇𝜑(𝒙𝑗 ) − 𝑏 − 𝜀 ≤ 𝜉𝑗
𝜔𝑇𝜑(𝒙𝑗 ) + 𝑏 − 𝑦𝑗 − 𝜀 ≤ 𝜉𝑗
𝜉𝑗 ≥ 0

(6)

The above formulation requires to minimize the loss function 𝐹 in
he upper layer while maximize the interval in the lower layer which
s instantiated as 𝑓 .

In the optimization process, the upper layer 𝐶, 𝜀 and 𝛾 act as
arameters which are passed to the lower layer. After finding optimal
olutions for the lower layer 𝜔 and 𝑏, the optimal lower layer vectors
re fed back to 𝐹 as parameters. Then, the leader determines the search
ode through evolutionary algorithms to obtain satisfactory solutions.
cting iteratively by passing and feeding back, the final lower layer
ptimal solutions and corresponding upper layer vectors constitute the
easible solution set.

. The proposed hierarchical parameter optimization method

In this study, the proposed hierarchical optimization method con-
4

ains two important parts. Firstly, it attempts to handle the upper and
Fig. 2. The hierarchical parameter optimization method.

lower parameter optimization problems in a nested manner. Mean-
while, many new challenges have been encountered so that a hier-
archical optimization strategy cooperated with STA is proposed. The
conceptual framework of the proposed method is shown in Fig. 2.

3.1. Nested strategy

In this case, tuning different types of parameters is a hierarchical
optimization problem with the nested characteristic, that is, different
layers of issues involve one layer nested in the other. For a brief
overview, a set of feasible candidates of lower layer optimization task
are affected by the given upper layer decisions while the feasible
vectors available to either layer is interdependent.

Hierarchical optimization formulation reveals the ‘‘nested’’ connec-
tion in parameters tuning problems, which may cause some difficulties:
Firstly, the incomplete understanding of the upper layer task by the
lower layer may lead to the uncertainty of results. Besides, the upper
layer optimization problem is non-convex, nonlinear and easy to yield
a local optimal solution, which plays the leading role in the entire
optimization process. In addition, even if constituent functions of either

layer satisfies the convexity assumption, the task may still act as
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Fig. 3. The flowchart of STA.

the non-convex optimization. In brief, due to asymmetry, uncertainty
and non-convexity, the hierarchical optimization problem is difficult
to solve. Moreover, the leader–follower hierarchical relationship and
cyclical iteration of optimization also involve high time complexity in
the solution process.

Apparently, classical approaches show great limitations in dealing
with these difficulties, while kinds of evolutionary approaches have
been employed to tackle these problems. At present, nested evolu-
tionary strategies are presented for achieving the hierarchical optimal
performance (Sinha, Malo, Frantsev, & Deb, 2014), which are imple-
mented in primarily two ways in terms of evolutionary algorithms: The
evolutionary algorithm was applied at upper layer and the classical al-
gorithm was used on the parameters of lower layer. In Mathieu, Pittard,
and Anandalingam (1994), the upper layer used genetic algorithm,
and the lower layer used linear programming. Another nested strategy
was proposed in Li and Wang (2007) where simplex-based crossover
strategy was used at upper layer and the lower layer used one of the
classic algorithms. Finally, it is proved that the idea can be effectively
used to solve the optimization task. The other one is implementing
evolutionary algorithms on both layers. Wang, Ma, and Chen (2017)
proposed a new algorithm which is constructed by combining two
sole improved fruit fly optimization algorithms, and Li, Tian, and Min
(2006) used a nested PSO to solve the problem. The effectiveness of
this technique has been demonstrated on some standard test problems
with a small number of variables.

In this study, an evolutionary algorithm is selected to optimize the
upper layer objective function while the mathematical programming is
employed to optimize the lower layer. According to the mechanism of
hierarchical optimization, the upper layer optimization task takes the
dominant place while the lower layer is secondary. Instead of spending
time and efforts to find optimal solutions of the lower layer, we rather
prefer to get better optimization results for the upper layer based on
satisfactory solutions of lower layer. Otherwise, although evolutionary
algorithms that allow a wide exploration in feasible regions may find
global optimal solutions, the underlying computational expense is huge.
The lower layer calculation speed should be accelerated while the
upper evaluation time should be appropriately decreased to effec-
tively reduce the time complexity. Therefore, we develop a hierarchical
method relying on a nested strategy where evolutionary algorithm
is developed to optimize the upper layer and obtain the global op-
timal solutions leading the entire optimization problem while lower
5

layer applies the mathematical algorithm to improve computational
efficiency.

3.2. Hierarchical parameter optimization strategy based on STA

3.2.1. A brief description of STA
A structured intelligent algorithm—state transition algorithm (STA)

(Zhou, Yang, & Gui, 2012) is used in this study. STA can achieve
optimality, rapidity and convergence in optimization process for global
optimization. Due to its effective global search capability, stability
and flexibility, STA shows fantastic performance in many practical
applications (Zhou, Huang, Huang, Yang, & Gui, 2020; Zhou, Wang,
Huang, & Yang, 2020; Zhou, Yang, & Gui, 2018; Zhou, Yang, Xie, Yang,
& Huang, 2019).

In view of STA, candidate solutions to a specific optimization prob-
lem can be described as different states, and the procedure of updating
solutions can be treated as state transition. By evaluating and updating
candidates, the current best solution can be reserved. With iteratively
update over time, solutions are gradually transferred to the optimal
state by particular transformation operators. In the continuous STA, the
unified form of solution generation is shown as follows:
{

𝒙𝑘+1 = 𝐴𝑘𝒙𝑘 + 𝐵𝑘𝒖𝑘
𝑦𝑘+1 = 𝑓 (𝒙𝑘+1)

(7)

where 𝐴𝑘 and 𝐵𝑘 are the specific state transformation operators, 𝒙𝑘 is a
state that can be interpreted as a solution to the optimization task and
the fitness function is 𝑓 .

Four special state transformation operators are employed to gener-
ate the candidate solution set for both local and global search. These
operators shown in Fig. 3 are the core of STA, which can generate
candidates in the solution space. The first two operators represent
rotation and translation transformation, which can realize local search,
while the remains operators act as the expansion and axesion transfor-
mation in charge of global search. Corresponding to above operators,
𝛼 (rotation factor), 𝛽 (translation factor), 𝛾 (expansion factor) and 𝛿
(axesion factor) are positive.

It is worth mentioning that parameters tuning of SVR is a com-
plex nonlinear multi-modal coupling optimization problem, and each
operator in this algorithm can generate geometric neighborhoods with
regular shapes and controllable sizes. From that point, this algorithm
can guarantee the effectiveness and diversity of candidate solutions. In
addition, the STA uses different operators alternate rotation in a timely
manner so that can quickly find the global optimal solution in the sense
of probability.

In brief, an optimization problem can be solved by STA through
several kinds of state transformation operations. Based on the given
initial solutions, candidates are generated by sampling and running
certain state operators. Comparing with previous solutions, the ‘greedy
criterion’ is used to select and update current solutions. This process is
repeated for several times until the specified termination condition is
met.

3.2.2. The proposed hierarchical parameter optimization algorithm
The main idea of this hierarchical optimization is combining conver-

gence and globality of STA and rapidity of mathematical programming,
which can handle difficulties of non-convexity and computational com-
plexity theoretically. The pseudocode of this algorithm is shown in
Algorithm 1.
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Algorithm 1 The proposed hierarchical parameter optimization
algorithm
Require:
1: Initialize parameters of STA: 𝛼, 𝛽, 𝛾, 𝛿 and 𝑆𝐸;
2: Initialize iteration 𝑁 ;
Ensure:
3: Optimal solutions;
4: while Iteration 𝑁 is not met do
5: Generate 𝑆𝐸 candidate states 𝑋 by a certain state transforma-

tion operator;
6: while The lower layer optimization objective is not met do
7: Select 𝑋 as parameters to update 𝑌 by mathematical

programming;
8: Obtain and fix optimal parameter values of 𝑌 ;
9: end while

10: Get the solution set (𝑋, 𝑌 );
11: end while

3.3. Hierarchical parameter optimization method for SVR

In Section 2, different types of parameters optimization in HSVR is
a typical hierarchical optimization task. Next, we will use the proposed
method to optimize different types of parameters.

Step1: Choose parameters for STA. Parameters of this algorithm are
chosen in this stage, such as transformation factors 𝛼 = 1, 𝛽 = 1, 𝛾 = 1,
𝛿 = 1 and 𝑆𝐸 = 20. The maximal number of iterations is 100.

Step2: Initialization. Set upper layer decision variables 𝑋 ≜ {𝐂, 𝜀, 𝛾}.

Step3: Train and optimize lower layer parameters. According to the
goal of maximizing the interval, upper layer decision variables act as
parameters to optimize 𝑌 ≜ {𝜔,𝐛} in lower layer.

Step4: Train and optimize upper layer parameters. Consider 𝑌 as upper
layer parameters.

Step4a: Generate neighborhoods for the upper layer through
state transition operators.
Step4b: Update current solutions. Comparing current solutions
with collected samples of optimal solutions, gather a certain
number of candidates from neighborhoods through a sampling
mechanism. The ‘greedy criterion’ is posed as the update mech-
anism to replace current solutions.

Step5: Check the stop condition. Values of 𝑋 are fixed and passed as the
best to the lower layer, if the stop condition is satisfied, optimization
process is terminated and the final optimal solution (𝑋, 𝑌 ) is output.
Otherwise, return to Step 3. Finally, this method optimizes parameters
of the HSVR for industrial power load forecasting and the framework
is shown in Fig. 4.

4. Experiment and discussion

4.1. Benchmark experiments

In this section, the proposed hierarchical optimization algorithm
based on STA is compared with the hierarchical strategy with other
evolutionary algorithms(PSO and GA). In Table 1, four benchmark test
problems shown in Sinha, Lu, Deb, and Malo (2020) and Oduguwa and
Roy (2002) are selected. The experiment is performed with the fixed
number of iterations(50) in 10 independent runs and the results are
presented in Fig. 5 and Table 2.

The test problem 1 in Oduguwa and Roy (2002) is used as an
example. At the best solution 𝑋 = (0.4022, 0.8011) and 𝑌 = (1.9996,
0.0000), the upper layer objective function is 𝐹 = −3.9193 as well as
6

Fig. 4. The flowchart of HSVR-STA.

Table 1
Test problems.

Problem Formulation Setting

TP1

min
𝑥≥0

𝐹 (𝑥, 𝑦) = −8𝑥1 − 4𝑥2 + 4𝑦1 − 40𝑦2 − 4𝑦3
min
𝑦≥0

𝑓 (𝑥, 𝑦) = 𝑥1 + 2𝑥2 + 𝑦1 + 𝑦2 + 2𝑦3

s.t.
⎧

⎪

⎨

⎪

⎩

𝑦2 + 𝑦3 − 𝑦1 ≤ 1
2𝑥1 − 𝑦1 + 2𝑦2 − 0.5𝑦3 ≤ 1
2𝑥2 + 2𝑦1 − 𝑦2 − 0.5𝑦3 ≤ 1

𝑛 = 2, 𝑚 = 3

TP2

min
𝑥

𝐹 (𝑥, 𝑦) = 𝑟𝑥⊤𝑥 − 3𝑦1 − 4𝑦2 + 0.5𝑦⊤𝑦

min
𝑦≥0

𝑓 (𝑥, 𝑦) = 0.5𝑦⊤𝐻𝑦 − 𝑏(𝑥)⊤𝑦

s.t.
{

−0.333𝑦1 + 𝑦2 − 2 ≤ 0
𝑦1 − 0.333𝑦2 − 2 ≤ 0

𝑟 = 0.1 𝐻 =
[

1 3
3 10

]

𝑏(𝑥) =
[

−1 2
3 −3

]

𝑥

𝑛 = 2, 𝑚 = 2

TP3
min
𝑥

𝐹 (𝑥, 𝑦) = (𝑥 − 1)2 + (𝑦 − 1)2

min
𝑦

𝑓 (𝑥, 𝑦) = 0.5𝑦2 + 500𝑦 − 50𝑥𝑦 𝑛 = 1, 𝑚 = 1

TP4

min
𝑥≥0

𝐹 (𝑥, 𝑦) = (𝑥 − 1)2 + 2𝑦1 − 2𝑥

min
𝑦1 ,𝑦2≥0

𝑓 (𝑥, 𝑦) =
(

2𝑦1 − 4
)2 +

(

2𝑦2 − 1
)2 + 𝑥𝑦1

s.t.

⎧

⎪

⎪

⎨

⎪

⎪

⎩

4𝑥 + 5𝑦1 + 4𝑦2 ≤ 12
4𝑦2 − 4𝑥 − 5𝑦1 ≤ −4
4𝑥 − 4𝑦1 + 5𝑦2 ≤ 4
4𝑦1 − 4𝑥 + 5𝑦2 ≤ 4

𝑛 = 1, 𝑚 = 2

the lower layer objective function is 𝑓 = −2.0087. Comparing with the
reference results and results of hybrid model with GA or PSO, solutions
found by these algorithms are not the global optimal solution while the
proposed algorithm can solve this problem to some extend.

From Table 2 and Fig. 5, we can see that problems 1∼4 solved by the
proposed algorithm are equal to or better than the results in references
and other evolutionary algorithms. Table 3 indicates the comparison
between the best and worst results found by the proposed algorithm
in 10 independent runs. We find that the worst solution is the same
or very close to the optimal solution, which shows the stability of this
algorithm. The numerical experiments presented here are preliminary
while additional testing on practical and synthetic problems are carried
out in the next section.

4.2. Industrial power load forecasting

To validate the advantage of HSVR model and the proposed pa-
rameter optimization method, in this section, this method is conducted
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Table 2
Comparison of the best results found by proposed algorithm and the reference results.

No. 𝐹 (𝑥∗ , 𝑦∗) 𝑓 (𝑥∗ , 𝑦∗)

GA PSO STA Ref GA PSO STA Ref

TP1 −28.4129 −28.7481 −29.2 −29.2 3.0477 3.2130 3.2 3.2
TP2 −3.8310 −3.9182 −3.9193 −3.6 −0.3739 −1.9048 −2.0087 −2
TP3 81.3283 81.3283 81.3279 82.44 −0.3532 −0.3123 −0.3360 0.271
TP4 −1.1976 −1.0895 −1.2099 −1.2091 7.5738 7.2104 7.6173 7.6145
Fig. 5. The upper fitness value changes with the number of iterations.
Table 3
The best and worst results found by proposed algorithm.

No. 𝐹 (𝑥∗ , 𝑦∗) 𝑓 (𝑥∗ , 𝑦∗)

STA-Best STA-Worst STA-Best STA-Worst

TP1 −29.2 −29.1984 3.2 3.1999
TP2 −3.9193 −3.9193 −2.0087 −2.0087
TP3 81.3279 81.3279 −0.3360 −0.3359
TP4 −1.2099 −1.2095 7.6173 7.6172

on solving real-world prediction tasks, namely, two cases of power
consumption forecasting from industry in a province of China as shown
in Fig. 1 from Section 2. Historical load data and multiple external
factors that are known to have a significant impact on power usage
are used to train this method.

To be specific, the monthly data set contains data of more than
10 years (132 months) from January 2010 to December 2020. Each
7

sample includes total monthly electrical load, monthly mean of monthly
maximum and minimum temperature. Moreover, under the action of
several months of the year, the pseudo-periodicity of electric load is 12
months. Due to external factors, the pseudo-periodicity changes causing
a random variation of pseudo-periodicity in electric load. Although
the load patterns are different, most of the patterns follow similar
trends. Therefore, exploiting the characteristic of pseudo-periodicity,
the month of the year is used as the independent variable in this
study to increase the input dimension of datasets and the complexity
of prediction models. The data set is divided into two parts: training
set and test set. The training set is made up of 108 months of data
from January 2010 to December 2018 and the test set is made up of
2 years (24months) of data from January 2019 to December 2020. The
yearly data set contains data of 25 years from 1995 to 2019. Each
sample includes 3 dimensional attributes, namely total yearly electrical
load, gross domestic product (GDP) and average retail price of fuel



Sustainable Cities and Society 71 (2021) 102937Z. Wang et al.

a

u

R

𝛿
a

l
t
o
t
a
r

Fig. 6. Prediction results on the Monthly and Yearly test datasets.
Table 4
Datasets classification for training and testing.

Dataset Data samples Input features variables Training data duration Test data duration

Month 132 15 January 2010∼December 2018 January 2019∼December 2020
Year 25 3 1995∼2009 2010∼2019
T
C

commodity. The data set is also divided into training set (1995∼2009)
nd test set (2010∼2019)(see Table 4).

To assess the performance of forecasting values, the following eval-
ation indicators are commonly used:

MSE =

√

√

√

√
1
𝑁

𝑁
∑

𝑖=1
(𝑦𝑖 − 𝑦𝑖)2 (8)

MAE = 1
𝑁

𝑁
∑

𝑖=1
∣ 𝑦𝑖 − 𝑦𝑖 ∣ (9)

R2 = 1 −
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
∑𝑁

𝑖=1(𝑦𝑖 − 𝑦𝑖)2
(10)

where 𝑦𝑖 and 𝑦𝑖 represent the actual and predicted values respectively,
𝑁 is the test dataset size and 𝑖 is the index value of test instances.
Furthermore, 20 repeated experiments are conducted on a personal
computer with 2.4 GHz CPU and 8GB RAM, and the average of evalu-
ation results are used as the final result. Operators’ factors 𝛼, 𝛽, 𝛾 and

are given as 1 while 𝑘 is defined as 0.5 to control weights of 𝜀-SVR
nd 𝜈-SVR.

The HSVR model is compared with 𝜀-SVR, 𝜈-SVR and other deep-
earning models (such as ANN and RNN), and the proposed optimiza-
ion method (HSVR-STA) is compared with the single layer parameter
ptimization approach. During the test phase, the following compara-
ive curves of actual and forecast values in monthly and yearly datasets
re presented on Figs. 6(a) and 6(b). The comprehensive evaluation
8

esults of the experiment is shown in Table 5.
able 5
omparison results of different methods on datasets.
Dataset Method MAE RMSE R2

Month

𝜀-SVR 9.3891 14.3541 0.6814
𝜈-SVR 9.5776 13.7917 0.6913
HSVR 8.4027 13.6916 0.6959
ANN 8.6778 16.7256 0.6184
RNN 9.8771 15.2949 0.6130
HSVR-STA 8.2319 12.6010 0.7598

Year

𝜀-SVR 96.7963 93.8935 0.6985
𝜈-SVR 85.9889 109.4589 0.6561
HSVR 60.0047 70.3142 0.8573
ANN 108.1154 127.6541 0.6348
RNN 114.0184 128.7730 0.7298
HSVR-STA 28.3358 31.6916 0.9931

Firstly, we can see that the weighted linear combination model of
𝜀-SVR and 𝜈-SVR is similar to or better than each of them in these two
cases, and the MAE obtained by the proposed HSVR model for monthly
and yearly test datasets are 8.4027 and 60.0047, which are much lower
than that obtained by ANN and RNN models. Hence, the proposed
hybrid model is very effective for these two cases. Secondly, in HSVR,
forecasting results obtained by the hierarchical parameter optimization
method are closer to the original data according to Fig. 6. As shown in
Table 5, RMSE and MAE obtained by the proposed optimization method
for monthly and yearly test datasets are lower than other models, which

are also much lower than that obtained by the hybrid model with single
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layer optimization approach, and the correlation index 𝑅2 are 0.7598
and 0.9931 respectively, which reveals a significant improvement in
accuracy. Noted that, the hierarchical parameter optimization method
based on HSVR can provide more stable and accurate forecasting using
less training data in comparison with ANN and RNN. In comparison
to the single layer optimization procedure, employing STA to optimize
upper layer parameters and referring the hierarchical process to real-
ize parameter optimization of the model can obtain better prediction
results. The proposed hierarchical optimization approach might thus
be possible a specialized model parameter optimization method that
has significantly influence on power load forecasting. The comprehen-
sive results show that the proposed parameter optimization method
significantly improves the model performance.

5. Conclusion

Electrical load forecasting is an important part of power system
which is of great significance to the national economy and sustainable
development of society. In this study, a hybrid SVR is constructed for
industrial power load forecasting and parameter tuning task of SVR
is formulated as a hierarchical optimization problem. A hierarchical
parameter optimization approach based on nested strategy and STA is
proposed to find optimal hyperparameters and model parameters. Nu-
merical results on several benchmark functions have demonstrated the
convergence and effectiveness of the proposed algorithm. Finally, the
proposed method based on SVR has offered significant improvement in
the industrial power load forecasting.
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