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Abstract
This paper presents a novel evolutionary optimization strategy based on the deran-
domized evolution strategy with covariance matrix adaptation (CMA-ES). This new
approach is intended to reduce the number of generations required for convergence
to the optimum. Reducing the number of generations, i.e., the time complexity of the
algorithm, is important if a large population size is desired: (1) to reduce the effect of
noise; (2) to improve global search properties; and (3) to implement the algorithm on
(highly) parallel machines. Our method results in a highly parallel algorithm which
scales favorably with large numbers of processors. This is accomplished by efficiently
incorporating the available information from a large population, thus significantly re-
ducing the number of generations needed to adapt the covariance matrix. The original
version of the CMA-ES was designed to reliably adapt the covariance matrix in small
populations but it cannot exploit large populations efficiently. Our modifications scale
up the efficiency to population sizes of up to

�����
, where

�
is the problem dimension.

This method has been applied to a large number of test problems, demonstrating that
in many cases the CMA-ES can be advanced from quadratic to linear time complexity.

Keywords
Evolution strategy, derandomized self-adaptation, covariance matrix adaptation, evo-
lution path, parallelization.

1 Introduction

One of the commonly proposed advantages of evolution strategies (ESs) is that they
can be easily parallelized, see e.g. Schwefel (1995) or Bäck, Hammel, and Schwefel
(1997). ESs with � offspring per generation (population size � ) are usually parallelized
by distributing the function evaluation for each of the offspring on a different proces-
sor. However, when the number of offspring is smaller than the number of available
processors, the advantage of using evolution strategies in parallel cannot be fully ex-
ploited. Consequently, when large numbers of processors are available, it is desirable
to develop an algorithm that can handle a large population efficiently.

c
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Our approach is based on a derandomized ES with covariance matrix adaptation
(CMA-ES). Experimental results (Hansen and Ostermeier, 1997, 2001) have shown the
advantageous convergence properties of the CMA-ES when compared to several other
evolution strategies for a wide class of problems. The primary feature of the CMA-ES is
its reliability in adapting an arbitrarily oriented scaling of the search space in small pop-
ulations. In particular, the algorithm is—apart from the initialization—independent of
any linear transformation of the coordinate system.

For our purposes, adaptation time is defined as the number of generations needed
to realize adaptive changes to get a (nearly) optimal covariance matrix under the given
function topology. When optimizing considerably complex (e.g., highly nonseparable)
functions, the adaptation time becomes the limiting factor for the performance of the
CMA-ES if the problem dimension � exceeds a certain threshold, typically � ����� . The
number of generations needed to adapt the covariance matrix of the search distribu-
tion to the function topology is the prominent factor for the overall performance in this
case. The reason is that in the CMA-ES ���	��
������� elements of the symmetric covariance
matrix � need to be adapted while the search process itself needs to adjust only � vari-
ables.1 It is interesting to note that for population sizes greater than � � the adaptation
time becomes practically independent of the population size. Thus, the performance in
number of function evaluations decreases linearly with increasing population. In other
words, the implementation of the original CMA-ES on highly parallel computer archi-
tectures, e.g., on Beowulf clusters with hundreds of processors, results in no substantial
advantage compared to the use of about twenty processors. On several complex func-
tions, the time complexity (Beyer 1996), i.e., the observed number of generations to
reach ��������� , is proportional to ��� , independent of the population size and the processor
number.

Hence, by simply increasing the number of offspring � , it is not possible to increase
the efficiency of the standard CMA-ES and consequently to use efficiently parallel com-
puter architectures. In this paper, we present a method for handling larger populations
efficiently so as to increase the adaptation speed of the covariance matrix adaptation.
This should be possible as a larger population can contain more information available
to be exploited to obtain a reduced adaptation time. Compared with the original adap-
tation mechanism, the proposed modification would usually require much fewer gen-
erations when � is large but could be slightly less effective within small populations.

The paper is organized as follows. First, Section 2 outlines the working principles
of the original algorithm, the CMA-ES. Then Section 3 presents the algorithmic modifi-
cations. Section 4 outlines the method of obtaining new strategy parameters. In Section
5, we present tests for the proposed methodology. We discuss the simulation results in
Section 6 and give our conclusions in Section 7.

1The optimization needs � �"!$# generations, independently of the chosen covariance matrix. The adap-
tation of the complete covariance matrix needs �%�&!�'(# . Therefore, for very large problem dimensions the
optimization goal can be reached before an effective adaptation of the distribution shape is achieved. In a
somewhat realistic scenario, let for example the number of generations required to reach )+*&,�-/. be equal to021(3 ! without adaptation. And let the optimization with adaptation take ! ' generations for the adaptation
itself and additionally ! generations to reach ) *",4-/. once the covariance matrix has been adapted, yielding! '	5 ! generations in total. What happens, if !76 021982021+:98 or

021+;
? ) *",4-/. is reached after the minimum of!<' 5 ! or

021 3 ! generations, that is after about
0(02198�021+=98

and
021(>

generations, respectively. The first two
numbers reflect mainly the adaptation time ! ' for !?6 0219@2021(: . For !A6 021+; the adaptation time is

021CB�D
and therefore the optimization goal is reached already with the original covariance matrix after

021 3 !E6 021 >
generations, before an effective adaptation has taken place. Empirical results for problems, where the condi-
tion number of the covariance matrix (that is the ratio of the largest to the smallest eigenvalue) is

021 =
, have

shown that the latter situation appears only if !�F 021(1(1 (as in the example) or does not happen at all, if the
adaptation time happens to be linear with ! (Hansen and Ostermeier 2001).
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2 Algorithm of the CMA-ES

Following Hansen and Ostermeier (2001), in the ������� �  -CMA-ES the � offspring of gen-
eration � 
 � are computed by

�	��
������ ��� ��� ��
�� 
�� ��
���� ��
���� ��
�"! ��
���"��# $% &')(+*-,/. �10325476
�98 � � �;:<:;:=� �>� (1)

where � ��� ��
�� � �
�
?
@�ACB 0�254D7EGF

� ��
�@ (2)

represents the center of mass of the selected individuals of generation � , and H ��
�I�J-K is the
set of indices of the selected individuals of generation � with L H ��
�I"J5K L � � . � ��
� is the
global step size.

The random vectors ! � from Equation (1) are M � , �ON  distributed ( � -dimensional
normally distributed with expectation zero and the identity covariance matrix) and
serve to generate offspring for generation � 
 � . Similar to Equation (2), we can calculate
their center of mass as: � ! � ��
���"�� � �

�
?
@PACB 0325QSRP4DGE7F

! ��
�����@ : (3)

The covariance matrix � ��
� of the random vectors � ��
� � ��
� ! ��
������ is a symmetrical
positive �UT � -matrix. The columns of the orthogonal matrix � ��
� represent normalized
eigenvectors of the covariance matrix. � ��
� is a diagonal matrix whose elements are the
square roots of the eigenvalues of � ��
� . Hence, the relation of � ��
� and � ��
� to � ��
�
can be expressed by

� ��
� � � ��
��� ��
�WV � ��
��� ��
�"XZY []\_^ � ��
��` ��
�@a� Vcb ��
��@d@ X �fe ` ��
��@ (4)

where ` ��
��@ represents the g -th column of � ��
� and h ` ��
��@ h � �
and b ��
�@d@ are the diag-

onal elements of � ��
� . Surfaces of equal probability density of the random vectors� ��
�"�i��
���! ��
��j�"�� k M V , ��� ��
� X are (hyper-)ellipsoids whose main axes correspond to
the eigenvectors of the covariance matrix. The squared lengths of the axes are equal to
the eigenvalues of the covariance matrix.

In the following, the two adaptation mechanism of the CMA-ES are described: (i)
the adaptation of the covariance matrix � ��
� and (ii) the adaptation of the global step
size � ��
� .

First, the evolution path l ��
���"�m is calculated by

l ��
��j�"�m � � �fnpo m  e l ��
�m 
rq o m e � � nso m  eut �� ��
� V � ��� ��
��j�"�� n � ��� ��
�� X# $=% &
� t � � ��
��"�v��
� � ! ����
��j�"��

(5)

and is used to build the covariance matrix of generation � 
 �
� ��
��j�"� � � �wnso=x �5y  e � ��
� 
 ox �5y e l ��
�����m V l ��
�����m XzY : (6)
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� is updated with a symmetric matrix of rank one (right summand in Equa-
tion (6)). Note here that using

o m � �
in Equation (5) reduces the evolution path tot � � � � ! � � which is the mean mutation step of the last generation multiplied by t � .

Choosing
o m�� �

makes the adaptation usually faster and more reliable as the corre-
lation between successive steps is exploited (Hansen and Ostermeier 2001). We even
found it advantageous to choose

o m�� �� because this setting achieves a linear scaling of
the strategy on � x�� �	�	
 (see Table 1 and Figure 4 below).

Second, to adapt the global step size � , the evolution path l ��
������ is computed in
analogy to the evolution path l ��
���"� . The difference between the two evolution paths
is that l ��
������ is not scaled by � ��
� , resulting in

l ��
��j�"�� � � �wnso �  e l ��
�� 
 q o � e � � npo �  e t � � ��
� � ! � ��
������ :# $% &� � 0�254 * � 03254 6� R * � 03254 6� R�� �� 03254 V�� ��� 0325QSRP4� � � ��� 03254� X (7)

The length of the evolution path determines the step size for generation � 
 �

� ��
���"� � � ��
� e������ � �b � h"l ��
������ h n! " � " � # � (8)

where
 " � �%$'& L�L M � , ��N ;LdL ( is the expected length of a � , ��N  -normally distributed ran-

dom vector and b �*) �
is the damping parameter.

 " � is approximated by
 " �,+t � * �wn �- � 
 �� � ��. 6 (Ostermeier, 1997).

Equation (7) reveals that the lengths of the axes of the mutation ellipsoid do not
affect the global step size adaptation.

The strategy parameter setting is discussed in Hansen and Ostermeier (2001) in
detail and the default setting is used as follows:

o m � -� � - � o=x �5y � �� � �0/ � � . � o � � -� � - � b � � o � �� 
 � (9)

Initial values are l �21�� � , , l �21��� � , and the initial covariance matrix � �31O� is the
identity matrix N . The problem dependent initial values for � ���=�21��� and � �21�� are given in
Section 5.

3 Modified Algorithm

The adaptation of the
� . � �� elements of the covariance matrix requires a number of

function evaluations in the CMA-ES that scales between 47���� and 47���	�C (Hansen and
Ostermeier (2001)), depending on the function topology. In the original CMA-ES, the
covariance matrix is updated in every generation by adding the (weighted) outer prod-
uct of the evolution path which is a symmetrical � T � matrix of rank one.

The idea of the modification of the algorithm is to adapt the covariance matrix by
exploiting more of the information contained in larger populations. Instead of updating
the covariance matrix with rank one information, we include higher rank information.
This is achieved by modifying Equation (6), which describes the change of the covari-
ance matrix, (i.e., the change of the mutation distribution shape), and by changing the
strategy parameter

o=x �"y . The global step size adaptation (Equations (7) and (8)) remains
unchanged.
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The modification is obtained by adding to Equation (6) the following term:� ��
���"� � �
�
?
@PACB 0�25Q RG4D7E7F

� ��
� � ��
� ! ��
�����@ V � ��
� � ��
� ! ��
�����@ XzY

� � ��
��� ��
�
��� �� ?
@PACB 0�25Q RG4D7E7F

! ��
�����@ V<! ��
���"�@ X Y����� V � ��
��� ��
�"X Y (10)

that is a symmetrical � T � matrix with rank 	�
 \ ��� �2�� .
Equation (6) is replaced by the new adaptation of the covariance matrix:

� ��
����� � � �wnpox �5y  e � ��
�� 
 ox �"y V� x �5y e l ��
�����m V l ��
�����m X Y 
 � �wn � x �"y  e � ��
����� X (11)

where
��� � x �5y � � . Note that for � x �5y � � Equation (11) and Equation (6) are identical

and the original CMA-ES is recovered. Decreasing � x �"y changes the parameterized
algorithm continuously. In Section 6, results are presented for � x �5y � � and � x �5y � ��
and compared with the original CMA algorithm, where � x �5y � � .

The addition of
� ��
����� , a term with rank greater than one, for the update of �

allows to give a higher weight to the second term in Equation (11) by enlarging the
learning rate

o x �5y . The heuristic analysis to obtain the new
o x �5y is described in the next

section, resulting in

ox �5y � � x �"y �
���7
 t �  � 
 � �fn � x �"y �	�
 \�� � � �]� n �

���7
 �� � 
���� : (12)

Note, that for � x �"y � � the original
o=x �5y value is recovered.

Next, Equations (10) and (11) are analyzed in order to motivate the coefficients �� in
Equation (10) and � x �5y in conjunction with � �_n � x �"y  in Equation (11). To this effect, two
equivalent selection models can be considered: First, one can assume random selection,
that is, the selection is independent of the realized ! -vectors. This selection model tests
the stationarity of parameters, here the elements of � ��
� , and reveals systematic (i.e.,
non random) drifts unrelated to selection. We assume such drifts to be undesirable
in general. Second, one can assume � ��
� to be optimal in the sense that the selected
vectors � � ! @ ��g���H I"J-K , are M � , ��� ��
�  distributed just as before selection. This model
is suitable when the covariance matrix is properly adapted and it represents a fix point
of the adaptation iteration. Under both selection assumptions, the symmetric matrix

?
@PACB DGE7F ! @ � ! @  Y �

?
@�ACB D7EGF

�����
� �@ � � @ � � @ � e;e;e � @ � � @ �� @ � � @ � � �@ � e;e;e � @ � � @ �...

...
. . .

...� @ � � @ � � @ � � @ � e;e;e � �@ � � ���� (13)

from Equation (10) has diagonal elements that are " �� distributed and off-diagonal el-
ements with expectation zero (Grimmett and Stirzaker 1998). With $���� @�ACB D7EGF � �@���� �� �! � � �<:;:<:;�2� , we have that$�" � ��
��j�"�$# � �

� � ��
� � ��
� �>N � � ��
� � ��
��  Y � � ��
� (14)
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under the given selection models. Equation (14) is the reason for choosing the co-
efficient �� in Equation (10). With $'& l ��
�����m ��l ��
�����m  Y ( � � ��
�� (Hansen 1998) and$'& � ��
���"� ( � � ��
� , we conclude from Equation (11) that $'& � ��
���"� ( � � ��
� . This is
the reason for choosing the coefficients � �fn � x �5y  in conjunction with � x �5y in Equation
(11). Their sum is equal to one.

4 Strategy Parameter Evaluation

The reliability and adaptation speed of the covariance matrix adaptation procedure can
be influenced by tuning the learning rate for the covariance matrix

o;x �5y . To enable the
comparison of algorithms with different � x �5y values,

o=x �5y has to be chosen appropri-
ately.

The following procedure is used to find a suitable
o x �5y as a function of two vari-

ables
o x �"y ��� ���� : Experiments on ellipsoidal functions ( ����� � � , see Table 1) are performed

where � � & ��� � ����� �9� � � � ��� � ��	 � ( , � � & � �2� ����� ( , and � � �C� . In each discrete point
��� @ ��� @  , the number of function evaluations to reach � ������� is minimized as a function
of the change rate

o x �5y , using nested intervals on the scaled parameter axis 
��� �m������ . In
our experience, this graph is unimodal and smooth and therefore easy to optimize. Us-
ing the number of function evaluations to reach � ������� as optimization criterion yields
similar results as minimizing the adaptation time. Additionally, only the convergence
phases (e.g. the rapid approaching to the optimum after the adaptation has taken place,
see Figure 1) are measured and the convergence rates are comparatively insensitive toox �5y once adaptation has taken place. Measuring the adaptation time is more difficult
to implement because the automatic identification when the adaptation is successfully
completed is not straightforward.

Because the graph that depicts the needed number of function evaluations versus

��� �m������ is considerably asymmetric (the left branch becomes infinitely steep), we set the
appropriate

o x �5y to be a factor of two to three smaller than the optimum
o x �5y . This is

the conservative and more reliable parameter choice. A function fitted through these
appropriate

o x �"y ��� @ ��� @  values roughly results in the default
o x �5y � �� � �0/ � � . for � x �5y ��

. For � x �5y � � , the function

o x �"y � 	 
 \ V � � � � n �
��� 
 �  � 
�� X (15)

is found by trial and error and fits the points reasonably well. To get a closed expression
for
o x �5y , we choose Equation (12) to set

o x �5y .
5 Test Functions

For the comparison of the two strategies, a test bed consisting of the functions shown in
Table 1 is used. Initial values are set to � ���=�21O�� ��� and � �21O� � � for all functions except
for Rosenbrock’s case where � ��� �31O�� � , and � �31O� � � : � .

Note that the functions ����� � � , � x�� �	�	
 , � � ��� � � � , and � ����� ��� have an axis ratio of
��� ��� ���

,
and � x�� � � ��� has an axis ratio of

�����9����� �
.

Except for �� � ! �9�"� and �$# ��� ��% , the functions as shown in Table 1 are completely
separable. Except for � ���'& � 
 � , they can be transformed into highly nonseparable func-
tions with identical topology using an orthogonal coordinate system transformation.
All results in this paper are independent of any orthogonal, i.e., angle preserving trans-
formation of the coordinate system. Therefore, all functions, except for �����(& � 
 � , must

6 Evolutionary Computation Volume 11, Number 1
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Name Function �C�������
Sphere �C���(& � 
 � � � �@ � ��� �@ �9� � ��1
Ellipsoid �$��� � � � � �@ � � �������  R�  R � �@ �9� � ��1
Cigar � x�� �	� 
 � � � � 
 � �@ � � �9� � � �@ �9� � ��1
Tablet �9� ��� � � � � �9� � � � � 
 � �@ � � � �@ �9� � ��1
Cigar-Tablet � x�� � � ��� � � � � 
 � � � �@ � � �9� - � �@ 
 �9��� � �� �9� � ��1
Two-Axes �9����� ��� � � 	 ��
 � �@ � � �9� �

� �@ 
 � �@ � 	 ��
 � � � �@ �9� � ��1
Different powers �� � ! �C��� � � �@ � � L � @ L � ��� 1 �  R�  R �9� � ��
Rosenbrock � # ��� ��% � � � � �@ � � � ��� � e � � �@ n � @ ��� 2� 
 � � @ n �  �9 �9� � ��1
Parabolic ridge � � � 
 ��� # � n � � 
 ��� � � �@ � � � �@ n ��� ��1
Sharp ridge �C� & � 
 � # � n � � 
 ��� � q � �@ � � � �@ n ��� ��1

Table 1: Test functions and stopping criteria. While the first six functions are convex
quadratic �  � ! �C��� , � # ��� ��% , and ��� & �	
 � # differ remarkably from a convex quadratic model.

be interpreted as highly nonseparable. For an arbitrary orthogonal coordinate system
transformation, which implements the actually nonseparable versions of these func-
tions, the reader is referred to Hansen and Ostermeier (2001).

Tests are carried out in the dimensions � � & � � � ����� ��� � � � ��� � ��	 � ( and for parent
numbers � � & �������	����� �����	����� ��� ��� � ����� ������� �$��� ��������� ��� ����� ( where the population size �
is set to � � . For ����� and ����� , one known theoretical optimum for � is � � � :�� � ,
while for ���� � � � optimal values can be considerably smaller (Beyer 1996, 2001).
To make the investigation as meaningful as possible, we choose the large but sensible� � � �$� .

6 Discussion of the Results

Three different strategy variants are presented: New-CMA, where � x �5y � �
; Orig-

CMA, where � x �"y � �
; and Hybr-CMA, where � x �5y � �� . Note that for � � �

, (i)
Hybr-CMA is identical to Orig-CMA, and (ii) New-CMA is identical to Orig-CMA witho m � �

and a smaller
o x �5y . The simulation results for the various strategies were ana-

lyzed using two different perspectives:

Serial performance. We analyzed the total number of function evaluations to reach
�C������� . This is the appropriate measure if optimization is performed on a single
processor or on a small number of processors that does not exceed the smallest
sensible population size � . In this case the number of functions evaluations is an
appropriate measure for the time to reach � ������� .

Parallel performance. We analyzed the number of generations to reach ��������� . This cor-
responds to the time complexity of the algorithm (Beyer 1996). When a larger
number of processors is available, it becomes interesting to evaluate the time com-
plexity, especially if � is equal to or smaller than the number of processors. In this
case, the number of generations is an appropriate measure for the time to reach
�C������� in a single run.

We will first discuss single optimization runs as shown in Figure 1. All three strate-
gies are shown on �����(& � 
 � , � x�� �	� 
 , and � ��� � � , where � � � � ��� , and � � � � . The standard

Evolutionary Computation Volume 11, Number 1 7
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Derandomized Evolution Strategy

� ��� � � .
The optimization using Orig-CMA on � ��� � � (upper right) shows a sharp transition

from the adaptation phase to a convergence phase after � � � generations. During the fol-
lowing convergence phase, the same progress as on � ���(& � 
 � is achieved. On New-CMA
and Orig-CMA, the transition from adaptation to convergence is much less sharp. Af-
ter about

� � � generations, the progress becomes quite close to the progress on � ���(& � 
 � ;
after about � � � generations, the adaptation is perfect, as revealed by the regular con-
figuration of the graphs representing the diagonal elements b @�@ . Comparing the runs
on � ��� � � with the runs on �����(& � 
 � , the additional adaptation time is about

� � � generations
for New-CMA and Hybr-CMA while it is about

� ���
generations for Orig-CMA. The

introduced modification reduces the adaptation time by a factor of four (for the given
� � � � �9� , and � � � � ). New-CMA and Hybr-CMA perform equally well.

On � x�� �	� 
 (lower right of Figure 1), Hybr-CMA outperforms the other strategies, as
in this case it combines their advantages: Compared to Orig-CMA, it uses additional
vectors of the same generation for the update of the covariance matrix � . Compared to
New-CMA, it uses additional information about correlations between vectors of past
generations (i.e., the evolution path) for the update of � . Either of these additions re-
duces the adaptation time by a factor of roughly

� : � (for the given � � � � ���
, and

� � � � ). Note that the level of the plateaus where the function values remain con-
stant for a while is independent of the strategy variant (and has a comparatively large
variance). Orig-CMA shows a slightly slower convergence speed in the convergence
phase than Hybr-CMA and New-CMA for both � ���'& � 
 � and � x�� �	�	
 . This difference in-
creases with increasing � and will be discussed in the next section, where we evaluate
the performance differences on �����(& � 
 � in detail.

6.1 Serial Performance on Sphere

The differences in serial performance between Orig-CMA and Hybr-CMA on � ���'& � 
 � are
shown in Figure 2, upper left.3 For � � ��� � the performance of Orig-CMA and Hybr-
CMA are similar as expected. For larger population sizes Hybr-CMA becomes faster
than Orig-CMA by a factor of up to three. This effect cannot be attributed to a faster
adaptation of the distribution shape because on � ���(& � 
 � the shape is already optimal at
the beginning. The reason for the better performance of Hybr-CMA is the faster adap-
tation of the overall step length, i.e., the overall variance of the distribution. Originally,
the cumulative path length control (Equations (7) and (8)) facilitates the adaptation of
the global step size, that is, the overall step length. The parameter that tunes the adap-
tation speed ( b � in Equation (8)) was (i) chosen conservatively resulting in a somewhat
slower but more robust algorithm (Hansen and Ostermeier 2001, Section 5.1) and (ii)
chosen for small population sizes that realize smaller progress rates per generation
than larger populations and therefore demand slower adaptation rates. Consequently,
for � ) � and � x �"y � �

the distribution adaptation in Equation (11) can successfully
contribute to the adaptation speed of the overall step length in Hybr-CMA, because
the change rate

o x �5y �� �� . This is the presumable reason for the observed speed-up on
� ���(& � 
 � .

Even though this effect appears to be advantageous at first sight, it is in principle
disadvantageous if the distribution adaptation significantly influences the magnitude

3Note that one expects linear graphs for any function that can be expressed by ���(!�� , where � 8�� con-
stant.

�
determines the slope of the graph and � the vertical position. For

� 6 0 (linear scaling) and
� 6	�

(quadratic scaling), dotted lines are drawn in all figures. When we interpret the slopes, we neglect the irreg-
ular effects observed in small dimensions.
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Figure 2: Number of function evaluations (left) and number of generations (right)
versus the problem dimension for the sphere function (above) and the ellipse func-
tion (below). The Orig-CMA (

n n n
) and the Hybr-CMA (—) are plotted for � �

	 ��� ��� � ����� ��	 � � � � � ������� if curves are far apart, or for � � 	 ��� � ��� ��� .
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Derandomized Evolution Strategy

of the overall step length. While the path length control is shown to adapt nearly op-
timal step lengths even for � ) �

(at least for � � � , Hansen 1998), the distribution
adaptation as described in Equation (11) acquires small step lengths too rapidly, if the
optimal step length remains constant over time (i.e., in a stationary environment unlike
on � ���(& � 
 � ). When the optimal step length decreases over time, as on � ���(& � 
 � , this can be
an advantage. However, it is not desirable, in general, to use an algorithm that adapts
much too small variances. This suggests an upper limit for sensible population sizes
for Hybr-CMA, arguably at � + �9� � .

6.2 Serial Performance on Other Functions

In this section, we discuss the serial performance of the strategy variants on the re-
maining functions. Comparing New-CMA with the other strategy variants where
� � 	 reveals a significant difference on � x�� � �	
 (Figure 3). While Orig-CMA and Hybr-
CMA need about � ��� � function evaluations to reach � ������� (compare Figure 4, upper
left), New-CMA needs about

� � � ��� function evaluations. Using the evolution path l m
in Equation (11) in addition with an accumulation parameter of

o m � �� in Equation
(5) yields this impressive speed-up of Orig-CMA and Hybr-CMA. Although detected
in earlier investigations (Hansen and Ostermeier 2001), this speed-up is noteworthy
in that a completely adaptable covariance matrix with

� . � �� free parameters can be
adapted to certain topologies in 4 ���� function evaluations. Since this observation on
� x�� �	� 
 is the only major difference between Hybr-CMA and New-CMA that we have
seen, the latter algorithm is excluded from the remaining discussion.

Comparing the serial performance of Orig-CMA and Hybr-CMA, the most promi-
nent effect is the dependency on � . The smallest � , � � 	 , (and even a smaller � for
� � � ) performs best in all cases. For example, if � � � � the decline of the serial per-
formance between � � 	 and � � 	 � amounts roughly to a factor between

�
(e.g., on

�C� & � 
 � # ) and
���

(e.g., on �  � ! �C��� ) for Orig-CMA and between
� : � (e.g., on ������� ��� ) and �

(on � x�� �	�	
 ) for Hybr-CMA. These results clearly favor Hybr-CMA and presumably they
change in favor of larger values of � for noisy functions.

Considering the serially optimal � � 	 , the performance difference between Orig-
CMA and Hybr-CMA is small. For more than half of the functions, the difference is
less than

� ��� . Differences of up to � � � can be observed on � � ��� � � � , �$ � ! �9�"� , � � & �	
 � # ,
� ����� ��� , and � � �	
 ��� # , but only on the latter two is Orig-CMA faster. This leads to the
conclusion that the test suite is not able to reveal significant differences in the overall
serial performance for � � � and � � 	 , but reveals slightly different performance
profiles.

While the differences between Orig-CMA and Hybr-CMA appear to be marginal
for � � 	 , the picture changes—in favor of Hybr-CMA—when the population size is
increased. For � � 	 , the scaling of the needed function evaluations with respect to the
problem dimension (i.e., the slope of the graphs) is linear on � ���'& � 
 � , �C� � 
 ��� # and � x�� � �	
 ,
but it is usually subquadratic and at most quadratic as on � � & � 
 � # . For � � � , the scal-
ing of Hybr-CMA becomes nearly quadratic, regardless of whether the scaling is linear
or quadratic for � � 	 (see in particular � � & �	
 � # and �$ � ! �C��� ). This is in contrast to
Orig-CMA where the scaling always deteriorates when � is increased to � � � and can
even become cubic as on �� � ! �C��� . As a result, Hybr-CMA never performs worse (and
often much better) than Orig-CMA when � � � . This clear advantage can of course
be expected only if � � � , e.g., � + � ��� , as chosen in our investigations. Conclud-
ing these observations, Hybr-CMA has an undoubtedly better serial performance than
Orig-CMA if � � � .

Evolutionary Computation Volume 11, Number 1 11
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Figure 3: Number of function evaluations (left) and number of generations (right) ver-
sus the problem dimension for the cigar function. The Orig-CMA (

n�n n
) and the

New-CMA (—) are plotted for � � 	_�2� ��� � ��� � ��	 � � � � � ������� .
6.3 Parallel Performance

Parallel performance comes into play if � is made considerably large. For this rea-
son, we concentrate the discussion of parallel performance on the cases where � � �
and � � ����� . The differences in performance between Orig-CMA and Hybr-CMA dis-
cussed above translate to the parallel case. Hybr-CMA outperforms Orig-CMA on ev-
ery test function, if ��� 	 (assuming � + � ��� ). The parallel performance of Orig-CMA
does not change dramatically when � is increased. The improvement never exceeds
a factor of two in dimensions up to 	 � , with one exception: On ����& �	
 � # , the scaling
of the number of generations with the problem dimension improves with increasing
� (Figure 7).4 Consequently, for � � 	 � the performance improvement is already far
more than one order of magnitude. This is a little surprising because the adaptation
rate
o x �5y is constant with respect to the generation number. We ascribe this effect to the

larger step sizes that are adapted for larger � in conjunction with a smaller distance
to the ridge peak due to the intermediate recombination. The larger the relation be-
tween the mean step length and the mean distance to the ridge peak, i.e., the larger� ��
� � q � �@ � � � �@ , the faster the distribution should be adapted.

In contrast to Orig-CMA, where the parallel performance is less dependent on � ,
Hybr-CMA shows a vigorous improvement when � is increased. For example, increas-
ing � from � to 	 � improves the parallel performance by a factor greater than four on
� ��� � � , �  � ! �C��� , �9����� ��� and ��� & �	
 � # (increasing in improvement order). Note that we could

4The unsteady course of the graphs reveals the large variance of these simulations.
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Figure 4: Number of function evaluations (left) and number of generations (right)
versus the problem dimension for the cigar function (above) and the tablet func-
tion (below). The Orig-CMA (

n n n
) and the Hybr-CMA (—) are plotted for � �

	 ��� ��� � ����� ��	 � � � � � ������� if curves are far apart, or for � � 	 ��� � ��� ��� .
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Figure 5: Number of function evaluations (left) and number of generations (right)
versus the problem dimension for the cigar-tablet function (above) and the two-axes
function (below). The Orig-CMA (

n n n
) and the Hybr-CMA (—) are plotted for

� � 	 ��� ����� ����� ��	 � � � � � ������� if curves are far apart, or for � � 	_��� � �����	� .
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Figure 6: Number of function evaluations (left) and number of generations (right) ver-
sus the problem dimension for the different powers function (above) and the Rosen-
brock’s function (below). The Orig-CMA (

n n n
) and the Hybr-CMA (—) are plotted

for � � 	_�2� ��� � ��� � ��	 � � � � � ������� if curves are far apart, or for � � 	 ��� � ��� ��� .
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Figure 7: Number of function evaluations (left) and number of generations (right) ver-
sus the problem dimension for the parabolic ridge function (above) and the sharp ridge
function (below). The Orig-CMA (

n n n
) and the Hybr-CMA (—) are plotted for

� � 	 ��� ����� ����� ��	 � � � � � ������� if curves are far apart, or for � � 	_��� � �����	� .
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never reasonably expect an improvement by a factor greater than eight in this example.
However, the most impressive result concerns the parallel performance of Hybr-

CMA where � � � . When � � ��� � , in Orig-CMA the number of generations scales
(nearly) quadratically with � on all functions except on � ���'& � 
 � . The same holds for
Hybr-CMA for � � 	 . However, when � is increased to be proportional to � in Hybr-
CMA, the number of generations scales linearly with the problem dimension for convex
quadratic test functions. The scaling is even slightly sublinear for � ���'& � 
 � , � � ��� � � � , and
�C� & � 
 � # and it is (slightly) worse than linear on ��� �	
 ��� # and � # ��� ��% (and arguable on
�  � ! �C��� ), but we have no good explanation for these differences. Nevertheless, the
roughly linear scaling for � � � on most test functions is the main improvement of the
new Hybr-CMA compared to Orig-CMA.

7 Conclusions

We have presented a highly parallel evolutionary algorithm derived from the deran-
domized evolution strategy with covariance matrix adaptation. In order to exploit the
often emphasized feature of evolution strategies being easily parallelizable, we devised
a technique that can optimize in fewer number of generations than the original strategy.

Reviewing the results from Section 6, we have achieved our goal for population
sizes up to � � ��� � . Choosing � x �5y � �� and � + � ��� , the proposed algorithm seems
to efficiently exploit the information prevalent in the population and it reveals mainly
linear time complexity for population sizes proportional to � and up to

�9� � , if fully
parallelized. This implies that we were able to reduce the time complexity of the adap-
tation from 47��� �  to 47���� .

For � � �
, the expanded algorithm is identical with the original one. With in-

creasing � , the performance improves remarkably compared to the original algorithm.
In our tests, the expanded algorithm, with � x �5y � �� , reveals no serious disadvantage
compared to the original one. For population sizes larger than

�9� � the adjustment of
the overall step length becomes problematic. Two problems can be identified.

� For large population sizes and large adaptation rates
o;x �5y the covariance matrix

adaptation contributes remarkably to the change of the overall step length. Un-
fortunately, the covariance adaptation mechanism tends to adapt a far too small
overall variance, if � � �

. This effect could be avoided by choosing smaller
o x �5y

values, at the cost of a slower adaptation of the distribution shape. Alternatively,
the covariance matrix � could be renormalized after each update to prevent the
matrix elements from diminishing continuously. Even though it is not elegant, this
method may be effective.

� The cumulative path length control ceases to work properly when the popula-
tion size becomes too large. As the population size increases, the possible rate of
change of the overall step length should also increase in order to realize the opti-
mal progress rates, e.g., on the sphere function. Within small populations change
rates can be achieved as fast as necessary on the sphere function, if b � + �m � and
q � � � �m � � � . Faster changes rates do not seem to be possible because the mo-
mentum term l � tends to become unstable for smaller values of b � . Even worse,
a larger population size itself appears to have a similar destabilizing effect that
would suggest choosing b � to be even larger, resulting in an even slower change
rate. At the moment, we have no explanation for this behavior and no solution at
hand.
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This suggests replacing the cumulative path length control for population sizes
larger than

��� � . However, as it turns out, it is difficult to find a reasonable adap-
tation mechanism even for smaller population sizes if � ) �

and if intermediate
multi-recombination is applied.5 To our knowledge, the only solution is a hierar-
chical approach, in which a few populations with different step sizes run in paral-
lel. However, the question remains open as to the size of the change rates that can
actually be achieved with this approach.

Future work could focus on the principle limitations of any implementable global step
size control in dependency of � . It would be interesting to exploit theoretical results that
reveal the limits of what we can achieve when searching for better adaptation mecha-
nisms for large � .
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