
Neurocomputing 173 (2016) 864–874
Contents lists available at ScienceDirect
Neurocomputing
http://d
0925-23

n Corr
E-m

d.gao@f
gwh@cs
journal homepage: www.elsevier.com/locate/neucom
Discrete state transition algorithm for unconstrained integer
optimization problems

Xiaojun Zhou a,b,n, David Yang Gao b, Chunhua Yang a, Weihua Gui a

a School of Information Science and Engineering, Central South University, Changsha 410083, China
b School of Science, Information Technology and Engineering, Federation University Australia, Victoria 3353, Australia
a r t i c l e i n f o

Article history:
Received 9 March 2014
Received in revised form
8 June 2015
Accepted 17 August 2015

Communicated by W. Lu

“risk and restoration in probability” is proposed to capture global solutions with high probability. Finally,
Available online 28 August 2015

Keywords:
State transition algorithm
Integer optimization
Traveling salesman problem
Maximum cut problem
Discrete value selection
x.doi.org/10.1016/j.neucom.2015.08.041
12/& 2015 Elsevier B.V. All rights reserved.

esponding author. Tel.: þ86 13787052648.
ail addresses: michael.x.zhou@csu.edu.cn (X. Z
ederation.edu.au (D.Y. Gao), ychh@csu.edu.cn
u.edu.cn (W. Gui).
a b s t r a c t

A recently new intelligent optimization algorithm called discrete state transition algorithm is considered
in this study, for solving unconstrained integer optimization problems. Firstly, some key elements for
discrete state transition algorithm are summarized to guide its well development. Several intelligent
operators are designed for local exploitation and global exploration. Then, a dynamic adjustment strategy

numerical experiments are carried out to test the performance of the proposed algorithm compared with
other heuristics, and they show that the similar intelligent operators can be applied to ranging from
traveling salesman problem, boolean integer programming, to discrete value selection problem, which
indicates the adaptability and flexibility of the proposed intelligent elements.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

In this paper, we consider the following unconstrained integer
optimization problem

f xmin , 1() ()

where, x x x, , n
n

1= (…) ∈ .
Generally speaking, the above optimization problem is NP-

hard, which cannot be solved in polynomial time. A direct method
is to adopt the so-called “divide-and-conquer” strategy, which
separates the optimization problem into several subproblems and
then solve these subproblems step by step. Branch and bound
(B&B), branch and cut (B&C), and branch and price (B&P) belong to
this kind; however, these methods are essentially in exponential
time. An indirect method is to relax the optimization problem by
loosening its integrality constraints to continuity and then solve
the continuous relaxation problem or its Lagrangian dual problem,
including LP-based relaxation, SDP-based relaxation, and Lagran-
gian relaxation. Nevertheless, when rounding off the relaxation
solution, they may cause some infeasibility or can only get
approximate solutions, and when using Lagrangian dual, there
hou),
(C. Yang),
may exist duality gap between the primal and the dual problem
[4,6,8,11].

On the other hand, some stochastic algorithms, such as genetic
algorithm (GA) [1,21], simulated annealing (SA) [9,23], ant colony
optimization (ACO) [3,15], are also widely used for integer opti-
mization problems, which aim to obtain “good solutions” in rea-
sonable time. In terms of the concepts of state and state transition,
a new heuristic search algorithm called state transition algorithm
(STA) has been proposed recently, which exhibits excellent global
search ability in continuous function optimization [24–28]. In [20],
three intelligent operators (geometrical operators) named swap,
shift and symmetry have been designed for discrete STA to solve
the traveling salesman problem (TSP), and it shows that the dis-
crete STA outperforms its competitors with respect to both time
complexity and search ability. In [29], a discrete state transition
algorithm is successfully applied to the optimal design of water
distribution networks. To better develop discrete STA for medium-
size or large-size discrete optimization problems, in the study, we
firstly build the framework of discrete state transition algorithm
and propose five key elements for discrete STA, of which, the
representation of a decision variable, the local and global opera-
tors and the dynamic adjustment strategy are mainly studied. Four
geometrical operators named swap, shift, symmetry and substitute
are designed, which are intelligent due to their adaptability and
flexibility in various types of integer optimization. The mixed
strategies of “greedy criterion” and “risk and restoration in prob-
ability” are proposed, in which, “greedy criterion” and “restoration
in probability” are used to guarantee a good convergence

www.sciencedirect.com/science/journal/09252312
www.elsevier.com/locate/neucom
http://dx.doi.org/10.1016/j.neucom.2015.08.041
http://dx.doi.org/10.1016/j.neucom.2015.08.041
http://dx.doi.org/10.1016/j.neucom.2015.08.041
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.08.041&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.08.041&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neucom.2015.08.041&domain=pdf
mailto:michael.x.zhou@csu.edu.cn
mailto:d.gao@federation.edu.au
mailto:ychh@csu.edu.cn
mailto:gwh@csu.edu.cn
http://dx.doi.org/10.1016/j.neucom.2015.08.041

(1

(2

(3

(4

X. Zhou et al. / Neurocomputing 173 (2016) 864–874 865
performance, and “risk a bad solution in probability” aims to
escape from local optimality. Some applications ranging from
traveling salesman problem, boolean integer programming, to
discrete value selection problem are studied. Experimental results
have demonstrated the effectiveness and efficiency of the pro-
posed method.

The main contribution and novelty of this paper is three-fold,
which can be summarized as follows: (1) a systematic formulation
of discrete state transition algorithm is firstly proposed, including
the state space representation and five key elements; (2) a
dynamic adjustment strategy called “risk and restoration in
probability” is designed to improve the ability to escape from local
optima; (3) the proposed algorithm is successfully integrated with
several classical integer optimization problems.
(5

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
2. The framework of discrete state transition algorithm

If a solution to a specific optimization problem is described as a
state, then the transformation to update the solution becomes a
state transition. Without loss of generality, the unified form of
generation of solution in discrete state transition algorithm can be
described as

⎪

⎧⎨
⎩

x A x B u

y f x
,

2

k k k k k

k k

1

1 1

= () ⊕ ()
= () ()

+

+ +

where, xk
n∈ stands for a current state, corresponding to a solution

of a specific optimization problem; uk is a function of xk and historical
states; Ak (·), Bk (·) are transformation operators, which are usually
state transition matrixes; ⊕ is a operation, which is admissible to
operate on two states; f is the fitness function.

As an intelligent optimization algorithm, discrete state transi-
tion algorithm has the following five key elements:

) Representation of a solution: In discrete STA, we choose a special
representation, that is, the permutation of the set n1, 2, ,{ … },
which can be easily manipulated by some intelligent operators.
The reason that we call the operators “intelligent” is due to their
geometrical property (swap, shift, symmetry and substitute),
and an intelligent operator has the same geometrical function
for different types of problems. A big advantage of such a
representation and operators is that, after each state transfor-
mation, the newly created state is always feasible, avoiding the
trouble into rounding off a continuous solution into an integral
one.

) Sampling in a candidate set: When a transformation operator is
exerted on a current state, the next state is not deterministic,
that is to say, there are possibly different choices for the next
state. It is not difficult to imagine that all possible choices will
constitute a candidate set, or a “neighborhood”. Then we exe-
cute several times of transformation, called search enforcement
(SE) degree, on current state, to sample in the “neighborhood”.
Sampling is a very important factor in state transition algorithm,
which can characterize the search space and avoid enumeration.

) Local exploitation and global exploration: In continuous optimi-
zation, it is quite significant to design good local and global
operators. The local exploitation can guarantee high precision of
a solution and convergent performance of an algorithm, and the
global exploration can avoid getting trapped into local minima
or prevent premature convergence. In discrete optimization, it
is extremely difficult to define a “good” local optimal solution
due to its dependence on a problem's structure, which leads to
the same difficulty in the definition of local exploitation and
global exploration. Anyway, in discrete state transition algo-
rithm, we define a little change to current solution by a trans-
formation as local exploitation, while a big change to current
solution by a transformation as global exploration.

) Self-learning and regular communication: State transition algo-
rithm behaves in two styles, one is individual-based, the other is
population-based, which is certainly an extended version. The
individual-based state transition algorithm focuses on self-
learning, in other words, it focuses on designing operators and
dynamic adjustment (details given in the following). Undoubt-
edly, communication among different states is a promising
strategy for state transition algorithm, as indicated in [26].
Through communication, states can share information and
cooperate with each other. However, how to communicate
and when to communicate are key issues. In continuous state
transition algorithm, intermittent exchange strategy was pro-
posed, which means that states communicate with each other at
a certain frequency in a regular way.

) Dynamic adjustment: It is a potentially useful strategy for state
transition algorithm. In the iterative process of searching, the
fitness value can decrease sharply in the early stage, but it
stagnates in the late stage, due to the static environment. As a
result, some perturbation should be added to activate the
environment. In fact, dynamic adjustment can be understood
and implemented in various ways. For example, the alternative
use of different local and global operators is a dynamic adjust-
ment to some extent. Then, we can change the search enfor-
cement degree, vary the fitness function, reduce the dimension,
etc. Of course, “risk a bad solution in probability” is another
dynamic adjustment, which is widely used in simulated
annealing (SA). In SA, the Metropolis criterion [12] is used to
accept a bad solution: p E k Texp / B= (− Δ), where,

E f fx xk k1Δ = () − ()+ , kB is the Boltzmann probability factor, T is
the temperature to regulate the process of annealing. In the
early stage, temperature is high, and it has big probability to
accept a bad solution, while in the late stage, temperature is
low, and it has very small probability to accept a bad solution,
which is the key point to guarantee the convergence. We can
see that the Metropolis criterion has the ability to escape from
local optimality, but on the other hand, it will miss some “good
solutions” as well.

In discrete STA, a novel strategy, named “risk and restoration in
probability”, is proposed. Details can be found in the following
individual-based STA.

2.1. Individual-based discrete STA

In this part, we focus on the individual-based discrete STA, and
the main process of discrete STA is shown in the pseudocode as
follows:
repeat
[Best,fBest] ← swap(n,Best,fBest)
[Best,fBest] ← shift(n,Best,fBest)
[Best,fBest] ← symmetry(n,Best,fBest)
[Best,fBest] ← substitute(n,Best,fBest)
if fBest < fBest⁎ then ▹ greedy criterion

Best⁎ ← Best
fBest⁎ ← fBest

end if
if rand p1< then ▹ restoration in probability
Best ← Best⁎

fBest ← fBest⁎

end if
until the specified termination criteria are met
14:

X. Zhou et al. / Neurocomputing 173 (2016) 864–874866
To be specific, swap function in above pseudocode is given as
follows for example:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
State ← op_swap(n,Best)
[newBest,fnewBest] ← fitness(n,State)
if fnewBest < fBest then ▹ greedy criterion
Best ← newBest
fBest ← fnewBest

else
if rand p2< then ▹ risk in probability

Best ← newBest
fBest ← fnewBest
end if

end if
Fig. 2. Tie-breaking crossover in population-based discrete STA.
11:

From the pseudocode, we can find that, on the whole, “greedy
criterion” is adopted to keep the incumbent “Best⁎”; while partially
in the inner process, a bad solution “Best” is accepted in each state
transformation at a probability p2, and in the same time, the
“ Best⁎” is restored in the outer process at another probability p1.
The “risk a bad solution in probability” strategy aims to escape
from local optimality, while the “greedy criterion” and “restoring
the incumbent best solution in probability” are to guarantee a
good convergence performance. The flowchart of the individual-
based dynamic STA is illustrated in Fig. 1, and we can find that the
incumbent best “Best⁎” is kept in an external archive.

2.2. Population-based discrete STA

As indicated in [26], a population-based approach can improve
the performance of STA to a large extent. The crossover operation
is a typical way for individual states to communicate with each
other. Let x1 and x2 be individual components of old states, y1 and
Fig. 1. The flowchart of the individual-based discrete STA.
y2 are components of new states. In this paper, a simple crossover
operator is inherited as follows:

⎪

⎧⎨
⎩

y x x

y x x

1 ,

1 , 3

1 1 2

2 1 2

δ δ
δ δ

= + (−)
= (−) + ()

where, δ is a random variable, which obeys the 0–1 distribution.
The above crossover operation can be utilized directly for many

cases; however, for traveling salesman problem, a repairing pro-
cedure is necessary to generate a feasible solution. In this study,
we introduce the tie-breaking crossover [13], and the procedure
can be found in Fig. 2, in which, the crossover map is a random
ordering of the integers n0, 1, , 1… − ; the intermediate states are
multiplied by n and added to the corresponding numbers in the
crossover map; after a sort procedure, the new states are created
at last. The pseudocode of the kernel of population-based discrete
STA can be outlined in the following:
1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
[State,fState] ← initiation(n)
BState ← State, BfState ← fState
repeat

[State,fState,BState,BfState] ← self_learning()
if mod(iter,CF)¼¼0 then

[State,fState] ← communication(n)
end if
if fState < BfState then
BState ← State, BfState ← fState
end if
if rand < p1 then
State ← BState, fState ← fBState
end if
[Best⁎, fBest⁎] ← fitness(n,BState)

until the specified termination criteria are met
15:

where, self_learning means each state will be performed on several
state transformations (swap, shift, etc), which is similar to the
individual-based discrete STA; communication corresponds to the
crossover operation, and CF is the communication frequency. By
the way, “ ⁎” stands for some omitted parameters such as search
enforcement (SE), and number of states (SN).

Remark 2.1. It should be noted that there are two main differ-
ences between individual-based discrete STA and individual-based
metaheuristics as well as population-based discrete STA and
population-based metaheuristics. The first one is how to generate
candidate solutions. In discrete STA, four special state transfor-
mation operators are designed, called swap, shift, symmetry and
substitute, respectively. Those transformation operators have dif-
ferent geometrical properties and they can make sure that, after

X. Zhou et al. / Neurocomputing 173 (2016) 864–874 867
each state transformation, the newly created state is always fea-
sible, which avoids the trouble into rounding off a continuous
solution into an integral one as other metaheuristics. Another
important difference in generating solutions is the sampling
mechanism used in discrete STA. In theory, the number of a
complete candidate solution set for a state transformation opera-
tor can be very large; however, to avoid enumeration, we execute
several times of state transformation (called search enforcement
(SE) degree), to sample in the solution set. The second one is how
to accept a new solution. In discrete STA, a novel accepting cri-
terion called “risk and restoration in probability” is proposed. In
the inner process, a relatively bad solution is accepted in prob-
ability, while in the outer process, the historical best solution is
restored in probability, which aims to jump out of local minima as
well as to maintain good convergence results.
3. Theoretical analysis of the discrete STA

In this section, we analyze the convergence performance, glo-
bal search ability, and time complexity of the discrete state tran-
sition algorithm.

Similarly to the continuous case, we give the definition of local
and global minima for unconstrained integer optimization as fol-
lows:

f x f x x, , 4an() ≤ () ∀ ∈ ()⁎

f x f x x x x x, 1, , 4bn() ≤ () ∀ | − | < ∈ ()⁎ ⁎ ⁎

If (4a) is satisfied, we say that x⁎ is a global minimizer, and if (4b) is
satisfied, the x⁎ is called a local minimizer.

Theorem 1. The sequence generated by discrete STA can converge to
a local minimizer.

Proof. Let us suppose the maximum number of iterations
(denoted by M) is big enough, considering that the “greedy cri-
terion” is used to keep the incumbent best Bestk

⁎, then we have
f Best f Bestk k1() ≤ ()+

⁎ ⁎ , that is to say, the sequence f Bestk{ ()}⁎ is a
monotonically decreasing sequence, and there must exist a num-
ber N M< , when k N> , updating of the incumbent best will no
longer happen, i.e., f Best f Best k N,k N() = () ∀ >⁎ ⁎ , where BestN

⁎ is the
solution in the Nth iteration. On the other hand, by the definition
of a local minimizer in (4b), we can find that every integral solu-
tion is a local minimizer. Let BestN

⁎ denote as the local minimum
solution x⁎, and then we have f Best f x 0N() − () =⁎ ⁎ . □

To show the discrete STA converges in probability to the set of
globally minimum states, let 0 denote the set of states in n at
which f (·) attains its global minimum value,

 

  

x f x f x , 0n

n

0

1 0

ε ε= { ∈ | () − () < } ∀ >

= ⧹

⁎

and assume that any state in n is reachable from any other state
in .

Theorem 2. The sequence generated by discrete STA can converge to
the global minimum in probability.

Proof. It is obvious to find that the random process
Best Best k: 0k= (≥)⁎ produced by the discrete STA is a discrete time
Markov chain. The one-step transition probability matrix at step k
is
 

 

 

 

P Best Best

P Best Best

P Best Best c

P Best Best c

1

0

1

k k

k k

k k

k k

1 0 0

1 1 0

1 0 1

1 1 1

(∈ | ∈) =

(∈ | ∈) =

(∈ | ∈) ≤

(∈ | ∈) ≥ −

+
⁎ ⁎

+
⁎ ⁎

+
⁎ ⁎

+
⁎ ⁎

where, c is the upper bound of the transition probability from 1 to
0. Due to the assumption of reachability, we can find that the
discrete Markov chain is irreducible and c 0, 1∈ (). By using the
similar methodology of Markov ergodic convergence theorem in
[7], we have

P Bestlim 1.
k k 0(∈) = □

→∞
⁎

Remark 3.1. The global search ability depends on the assumption
of reachability to a large extent. To meet the assumption required
by the analysis, two fundamental elements exist in discrete STA.
The first one is related to the global operators, which have the
functionality of bringing a big change to current solution. Another
is the ‘risk in probability’ strategy in dynamic discrete STA since a
relative bad solution is accepted in probability. Anyhow, the the-
oretical convergence result requires that the number of iterations
approaches to infinity. In practice, some additional strategies and
techniques need to be added to improve its practical search ability.

With respect to the time complexity of discrete STA, it should
be noted that the discrete STA aims to obtain a satisfactory solu-
tion in a reasonable amount of time. In the above pseudocodes as
described, it can be found that in the outer loop, there are M
iterations, while in the inner loop, there exist four times of SE
transformations, that is to say, the time complexity of the pro-
posed discrete STA is M SE(·).

Next, some applications are given to describe the details, from
the traveling salesman problem, boolean integer programming, to
discrete value selection problem.
4. Application for traveling salesman problem

Suppose n1, ,= { … } is the set of cities, the traveling sales-
man problem (TSP) can be described as: given a set of n cities and
the distance dij for each pair of cities i and j, find a roundtrip of
minimal total length visiting each city exactly once. Typically, the
traveling salesman problem is usually modeled as the following
two representations [17]:

(LP-TSP):

x d

x j

x i

x

S S S

x i j

min

s. t. 1,

1,

1,

,

0, 1 , , , 5

x i

n

j

n

ij ij

i

n

ij

j

n

ij

i S j S
ij

ij

1 1

1

1

ij
∑ ∑

∑

∑

∑ ∑

= ∀ ∈

= ∀ ∈

≥

∀ ⊂ ¯ ⊂ ⧹

∈ { } ∀ ∈ ()

= =

=

=

∈ ∈ ¯

where, the decision variable xij is defined by

⎧⎨⎩x
i j1 if city is followed by city 6a

0 otherwise 6b 6
ij =

()
() ()

(1

(2

(3

Fig. 4. Illustration of shift transformation for TSP.

X. Zhou et al. / Neurocomputing 173 (2016) 864–874868
(QP-TSP):

x d x x

x j

x i

x i j

min

s. t. 1,

1,

0, 1 , , , 7

x i

n

k

n

j

n

ij ik k j k j

i

n

ij

j

n

ij

ij

1 1 1
1 1

1

1

ij
∑ ∑ ∑

∑

∑

(+)

= ∀ ∈

= ∀ ∈

∈ { } ∀ ∈ ()

= = =
(+) (−)

=

=

here, the decision variable xij is defined by

⎧⎨⎩x
i j1 if city is in the th position 8a

0 otherwise 8b 8
ij =

()
() ()

We can find that the model of linear programming (LP) based TSP
is different from the model of quadratic programming (QP) based
TSP in two aspects. One is the definition of the decision variable xij,
the other is that (LP-TSP) has one more constraint than (QP-TSP).
Taking the difficulty of dealing with constraints into consideration,
in discrete STA, we use another simple representation which can
be easily manipulated by intelligent operators.

4.1. State transformation operators for TSP

As for a n-city traveling salesman problem, a permutation of
n1, 2, ,{ … } is used to represent a solution to the problem in dis-

crete STA. Based on the representation, three special transforma-
tion operators are proposed to illustrate local and global search:

) Swap transformation:

A mx x , 9k k
swap

a k1 = () ()+

where, Ak
swap n n∈ × is called swap transformation matrix, ma is

a constant integer called swap factor to control the maximum
number of positions to be exchanged, while the positions are
random. If ma¼2, we call the swap operator local exploitation,
and if m 3a ≥ , the swap operator is regarded as global
exploration in this case. Fig. 3 gives the function of the swap
transformation graphically when ma¼2. In this case, the state
transition process is as follows:

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

1
5
3
4
2
6

1 0 0 0 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0
0 0 0 0 0 1

1
2
3
4
5
6

= ×

) Shift transformation:

A mx x , 10k k
shift

b k1 = () ()+

where, Ak
shift n n∈ × is called shift transformation matrix, mb is a

constant integer called shift factor to control the maximum
length of consecutive positions to be shifted. By the way, the
Fig. 3. Illustration of swap transformation for TSP.
selected position to be shifted after and positions to be shifted
are chosen randomly. Similarly, shift transformation is called
local exploitation and global exploration when mb¼1 and
m 2b ≥ respectively. To make it more clearly, if mb¼1, we set
position 3 to be shifted after position 5, as described in Fig. 4. In
this case, we have

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

1
2
4
5
3
6

1 0 0 0 0 0
0 1 0 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 1 0 0 0
0 0 0 0 0 1

1
2
3
4
5
6

= ×

) Symmetry transformation:

A mx x , 11k k
sym

c k1 = () ()+

where, Ak
sym n n∈ × is called symmetry transformation matrix, mc

is a constant integer called symmetry factor to control the max-
imum length of subsequent positions as center. By the way, the
component before the subsequent positions and consecutive
positions to be symmetrized are both created randomly. Con-
sidering that the symmetry transformation can make big change
to current solution, it is intrinsically called global exploration. For
instance, if mc¼0, let choose component 3, then the subsequent
position or the center is {∅}, the consecutive positions are 4, 5{ },
and the function of symmetry transformation is given in Fig. 5.
Then, we have

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟

1
5
4
3
2
6

1 0 0 0 0 0
0 0 0 0 1 0
0 0 0 1 0 0
0 0 1 0 0 0
0 1 0 0 0 0
0 0 0 0 0 1

1
2
3
4
5
6

= ×

Remark 4.1. The transformation matrix comes from the identity
matrix by random elementary transformation. Taking the swap
operator for example, the swap transformation matrix can be
computed by the following pseudocode:
The above swap matrix has the effect to exchange any two random
positions for a solution.

4.2. TSP instances for test

To evaluate the performance of the individual-based discrete STA
(DSTAI) and the population-based discrete STA (DSTAII) as well as the

X. Zhou et al. / Neurocomputing 173 (2016) 864–874 869
previously proposed discrete STA (DSTA0) in [20] for traveling
salesman problem, some medium-size TSP instances are used for
test. We set m m m m p p2, 1, 0, 1, 0.1, 0.1,a b c d 1 2= = = = = =
SN¼10, SE¼20, CF¼1 and the maximum number of iterations at
1500.

The compared SA is a combination of a recently published one
from [5] and the other from [16], in which, there are three
mutations, namely, vertex insert (VI), block insert (BI) and block
reverse (BR), and the ratios of VI, BI and BR in the proposed
algorithm were designed for 10%, 1% and 89%, respectively. The
initial temperature for the SA is 2000, and the cooling rate is 0.97.
Since SA (simulated annealing) is individual based algorithm, the
maximum number of iterations of SA is set at 90,000 for fair
comparison.

Programs are run independently for 20 trails for each algo-
rithms in MATLAB R2010b (version of 7.11.0.584) on Intel(R) Core
(TM) i3-2310M CPU @2.10 GHz under Window 7 environment.
Some statistics as well as the “error” are computed for comparison,
where, “error” is defined by

error
best optimum

optimum
100%,= − ×

here, best is the best result achieved by discrete STA or SA, opti-
mum is the incumbent best result in TSPLIB [14]. Experimental
results for these TSP instances are given in Table 1.

As can be seen from Table 1, the DSTAI has almost the same
performance as the SA, while the DSTAII gets the best results, the
biggest error of which is almost no more than 1%, which testifies
the effectiveness of the proposed operators and strategies, namely,
the “risk and restoration in probability” can be comparable with
the Metropolis criterion in SA.
Table 1
Experimental results for TSP instances.

instance optimum algorithm best mean s.t. error (%)

kroA100.tsp 21,282 SA 2.1729e4 2.2635e4 778.7240 2.10
(n¼100) DSTA0 2.1853e4 2.3213e4 906.1100 2.69

DSTAI 2.1782e4 2.2835e4 715.8493 2.35
DSTAII 2.1294e4 2.1767e4 221.6416 0.0583

kroB100.tsp 22,141 SA 2.3032e4 2.3657e4 445.7826 4.03
(n¼100) DSTA0 2.3230e4 2.3794e4 517.0476 4.92

DSTAI 2.3012e4 2.3734e4 507.3792 3.93
DSTAII 2.2345e4 2.2880e4 302.1363 0.9229

kroC100.tsp 20,749 SA 2.1417e4 2.2223e4 522.2034 3.22
(n¼100) DSTA0 2.1275e4 2.2877e4 709.8698 2.53

DSTAI 2.1038e4 2.1891e4 536.8809 1.40
DSTAII 2.0907e4 2.1378e4 246.3382 0.76

kroD100.tsp 21,294 SA 2.1896e4 2.2911e4 483.0088 2.83
(n¼100) DSTA0 2.1945e4 2.3043e4 565.7970 3.06

DSTAI 2.1867e4 2.2665e4 592.5252 2.69
DSTAII 2.1380e4 2.1991e4 315.3214 0.40

kroE100.tsp 22,068 SA 2.2523e4 2.3125e4 389.4191 2.06
(n¼100) DSTA0 2.2692e4 2.3738e4 450.8241 2.83

DSTAI 2.2419e4 2.3371e4 678.6940 1.59
DSTAII 2.2311e4 2.2637e4 166.8205 1.10

Fig. 5. Illustration of symmetry transformation for TSP.
Remark 4.2. It should be noted that the results of SA in this paper
are different from those of SA in [5] for the same instances. The
reason is that we only use the mutation operators proposed in [5],
combing with a standard SA in [16], removing the two-stage
adaptive local search strategy. By the way, the proposed discrete
STA is not superior to the adaptive SA due to its additional stra-
tegies used.
5. Application for boolean integer programming

In boolean integer programming (BIP), a solution is comprised
of a series of boolean values (0, 1= { } or 1, 1= { − }). Swap,
shift and symmetry operators can also be applied to internal
transformation (operators aiming to change the internal compo-
nents of a sequence), and another operator called substitute is
designed for external transformation (operator aiming to bring
alien components into a sequence). It should be noted that

0, 1= { } is the same to 1, 1= { − } under such a circumstance,
although there exists a linear transformation relationship between
them in other studies.

5.1. State transformation operators for BIP

As we mentioned previously, the same intelligent operator has
the same geometrical property for different applications. It is not
difficult to imagine that the swap, shift and symmetry operators
for boolean integer programming have the same formulation as
that of traveling salesman problem. Let 0, 1= { }, the illustrations
of internal transformation are given from Figs. 6–8.

Next, let introduce the external transformation.
(4) Substitute transformation:

A mx x , 12k k
sub

d k1 = () ()+

where, Ak
sub n n∈ × is called substitute transformation matrix,md is

a constant integer called substitute factor to control the maximum
number of positions to be substituted. By the way, the positions
are randomly created. If md¼1, we call the substitute operator
local exploitation, and if m 2d ≥ , the substitute operator is regar-
ded as global exploration in this case. Fig. 9 gives the function of
the substitute transformation vividly when md¼1.

5.2. Maxcut instances for test

Let G V E,= () be an undirected graph with edge weight wij on
n V1+ = | | vertices and m E= | | edges, for each edge i j E,() ∈ , the
maximum cut problem (Maxcut) is to find a subset S of the vertex
set V such that the total weight of the edges between S and its
complementary subset S V S¯ = ⧹ is as large as possible.
Fig. 6. Illustration of swap transformation for BIP.

Fig. 7. Illustration of shift transformation for BIP.

Fig. 8. Illustration of symmetry transformation for BIP.

Fig. 9. Illustration of substitute transformation for BIP.

Table 2
Experimental results for Maxcut instances.

Instance Optimum Algorithm Best Mean s.t. Error

kroA100 5,897,392 GA 5,897,392 5.8622e6 4.5060e4 0
(n¼100) DSTAI 5,897,392 5.8879e6 2.9123e4 0

DSTAII 5,897,392 5897392 2.8666e�9 0

kroB100 5,763,047 GA 5,763,047 5.7444e6 2.4007e4 0
(n¼100) DSTAI 5,763,047 5.7529e6 2.0726e4 0

DSTAII 5,763,047 5,763,047 1.9110e�9 0

kroC100 5,890,760 GA 5,890,760 5.8678e6 3.3939e4 0
(n¼100) DSTAI 5,890,760 5.8706e6 3.1574e4 0

DSTAII 5,890,760 5,890,760 0 0

kroD100 5,463,250 GA 5,463,250 5.4387e6 3.3594e4 0
(n¼100) DSTAI 5,463,250 5.4410e6 3.4850e4 0

DSTAII 5,463,250 5,463,250 2.8666e�9 0

kroE100 5,986,591 GA 5,986,591 5.9372e6 5.9586e4 0
(n¼100) DSTAI 5,986,591 5.9585e6 4.9985e4 0

DSTAII 5,986,591 5,986,591 9.5552e�10 0

Fig. 10. Illustration of swap transformation for DVS.

X. Zhou et al. / Neurocomputing 173 (2016) 864–874870
LP based Maxcut model [10]: Considering a variable yij for each
edge i j E,() ∈ , and assuming yij to be 1 if (i,j) is in the cut, and
0 otherwise, the Maxcut can be modeled as the following linear
programming (LP) optimization problem:

W w yy

y

max

s. t. is the incidence vector of a cut. 13

i

n

i j i j E
ij ij

1

1

, ,

∑ ∑() =

()

=

+

< ()∈

Here the incidence vector yy ij
m= { } ∈ , where the m is the

number of edges in the graph.
Let CUT(G) denote the convex hull of the incidence vectors of

cuts in G. Since maximizing a linear function over a set of points
equals to maximizing it over the convex hull of this set of points,
we can rewrite (13) to the following:

W

G

y c y

y

max

s. t. CUT . 14

T() =

∈ () ()

where c wij
m= { } ∈ .

QP based Maxcut model [18]:
For a bipartition S S,(¯), with yi¼1 if i S∈ , and y 1i = − other-

wise, the Maxcut can also be formulated as the following integer
optimization problem:

W w y yy

y

max
1
4

1

s. t. 1, 1 . 15

i

n

j

n

ij i j

n

1

1

1

1

1

∑ ∑() = (−)

∈ { − } ()

=

+

=

+

+

Without loss of generality, if we fix the value of the last variable at
1, then the problem (15) is equivalent to the integer quadratic
programming problem

P Qx x x x c xmin : 1, 1 , 16T T n1
2

{ () = − ∈ { − } } ()

where, Q Q ij= { } is a symmetric matrix with
Q w i j n, 1, 2, ,ij ij= (= …), and w wc , ,n n n

T
1 1 1= − (…)(+) (+) . It is not

difficult to find that a optimal solution x⁎ to problem (16)
corresponds to a optimal solution x , 1()⁎ of original problem (15).

Considering that the QP based Maxcut model is easier to
manipulate for intelligent operators, it is adopted in discrete STA
for simple representation. We use a real coded integer genetic
algorithm [2] for comparison, in which, Laplace crossover (the
location parameter a¼0 and the scaling parameter b¼0.35) and
power mutation (the index of mutation p¼4) were used, and a
truncation procedure was applied to make sure the integrity of a
solution. More specifically, the crossover probability pc¼0.8 and
the mutation probability pm¼0.005. The parameters setting for
discrete STA is the same to that in TSP instances except the max-
imum number of iterations at 200 and CF 20= . The population size
for integer genetic algorithm (GA) is the same to the search
enforcement (SE) in STA, while the maximum iterations for GA is
set at four times as that of discrete STA. In the same way, we define
the following “error”:

error
optimum best

optimum
100%,= − ×

here, best is the best result achieved by discrete STA or integer GA,
optimum can be found in [18]. Experimental results for Maxcut
instances are given in Table 2.
As can be seen from Table 2, all of these algorithms have the
ability to achieve the global minimum for all of the instances. The
performance of GA and DSTAI is much the same, while DSTAII is
much superior than its competitors since it can find the global
minimum for every instance in each run.

Remark 5.1. When using the integer GA for the Maxcut problem,
we need to reformulate the model by a linear transformation,
namely

Integerx z z z2 1, 0 1, 17= − ≤ ≤ ∈ ()
6. Application for discrete value selection

Typically, the formulation of discrete value selection (DVS)
problem is different from the model in (1), because the domain is
defined as follows:

x u u u j m, , , , 1, , . 18i m j1∈ = { … } ∈ = … ()

By introducing a linear transformation

x u y ,
19

i
j

K

j ij
1

∑=
()=

where

y y1, 0, 1 ,
20j

K

ij ij
1

∑ = ∈ { }
()=

then the discrete value selection can be rewritten to the equivalent
constrained boolean integer programming problem [22].

In discrete STA, we only use the index of uj to represent a
solution, for example, a solution 1, 3, 2() is corresponding to
u u u, ,1 3 2(), which is easy to be manipulated by the intelligent
operators.

X. Zhou et al. / Neurocomputing 173 (2016) 864–874 871
6.1. Transformation operators for discrete value selection

The intelligent operators swap, shift, symmetry and substitute
for discrete value selection are similar to that in boolean pro-
gramming problem. As a result, only illustrations of these trans-
formations are given from Figs. 10–13.
6.2. The integer Rosenbrock function for test

The continuous Rosenbrock function has been widely studied
as a benchmark. Considering that the Rosenbrock function also has
many integer local minima, in this paper, it is the first time to use
it as a benchmark for integer optimization problem. The integer
Rosenbrock function is defined as

f x x x

x

x 100 1 ,

2, 1, 0, 1, 2 .

i

n

i i i

i

1

1

1
2 2 2∑() = [(−) + (−)]

∈ { − − }
=

−

+

It is not difficult to find that x x x, , n1= (…) for any
Fig. 11. Illustration of shift transformation for DVS.

Fig. 12. Illustration of symmetry transformation for DVS.

Fig. 13. Illustration of substitute transformation for DVS.

Table 3
Experimental results for integer Rosenbrock function.

n optimum algorithm best mean s.t. error

5 0 GA 0 0 0 0
DSTAI 0 0 0 0
DSTAII 0 0 0 0

10 0 GA 0 0 0 0
DSTAI 0 0 0 0
DSTAII 0 0 0 0

20 0 GA 0 0 0 0
DSTAI 0 0 0 0
DSTAII 0 0 0 0

50 0 GA 0 20.1000 61.8665 0
DSTAI 0 0 0 0
DSTAII 0 0 0 0

100 0 GA 0 50.2500 89.2966 0
DSSTA 0 0 0 0
DSTAII 0 0 0 0

200 0 GA 0 140.7500 132.0705 0
DSTAI 0 0 0 0
DSTAII 0 0 0 0

500 0 GA 1508 2.6594e3 1.0091e3 –

DSTAI 0 22.5000 46.3119 0
DSTAII 0 0 0 0
x i n0, 1, ,i = = … is a local minimum of the integer Rosenbrock
function.

The parameters setting is the same to that of Maxcut instances
except the maximum number of iterations, which is specified at 10
times of the problem dimension. The population size for integer
GA is the same to SE, while the maximum iterations of GA is four
times as that of discrete STA. Experimental results for integer
Rosenbrock function are given in Table 3.

As can be seen from Table 3, all of these algorithms do well in
the low dimensional cases. For large scale problem, discrete STA is
much superior to integer GA, but the DSTAI begins to have poor
performance when the dimension is larger than 500. On the other
hand, the results obtained by DSTAII are much more satisfactory.

Remark 6.1. When using the integer GA for the integer Rosen-
brock problem, we need to revise the constraints to

Integerx x2 2, 21− ≤ ≤ ∈ ()

6.3. Other examples

We continue to test some other discrete value selection
examples, which can be found in [19]. The maximum iterations are
100, 500 and 1000 for the following three examples respectively in
discrete STA. For integer GA, the maximum iterations are four
times that of discrete STA. For these examples, we define the fol-
lowing “error”:

error
optimum best

optimum
100%,= | − |

| |
×

where, best is the best result achieved by discrete STA or integer
GA.

Example 6.1.

f x Qx x c x

x

min

s. t. 0, 1, 2, , 10

T T
1

1
2

8

() = +

∈ { … }

where,

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Q

c

4 2 3 0 1 4 5 2
2 4 0 0 2 2 0 0
3 0 8 2 0 3 4 0

0 0 2 4 4 4 0 1
1 2 0 4 100 2 0 2
4 2 3 4 2 100 1 0
5 0 4 0 0 1 200 4
3 0 0 1 2 0 4 10

,

4 1 8 3 100 10 20 0 .T ()

=

− − −
− −
− −

− −
−

− −

= − − − − −

Example 6.2.

f x Qx x

x

min

s. t. 0, 1, 2, , 49

T
2

10

() =

∈ { … }

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Q

3 7 0 5 1 1 0 2 1 1 9 3 5 0 0 1 7 7 4 6
7 0 5 1 1 0 2 1 1 9 3 5 0 0 1 7 7 4 6 3
0 5 1 1 0 2 1 1 9 3 5 0 0 1 7 7 4 6 3 7
5 1 1 0 2 1 1 9 3 5 0 0 1 7 7 4 6 3 7 0

1 1 0 2 1 1 9 3 5 0 0 1 7 7 4 6 3 7 0 5
1 0 2 1 1 9 3 5 0 0 1 7 7 4 6 3 7 0 5 1
0 2 1 1 9 3 5 0 0 1 7 7 4 6 3 7 0 5 1 1
2 1 1 9 3 5 0 0 1 7 7 4 6 3 7 0 5 1 1 0

1 1 9 3 5 0 0 1 7 7 4 6 3 7 0 5 1 1 0 2
1 9 3 5 0 0 1 7 7 4 6 3 7 0 5 1 1 0 2 1
9 3 5 0 0 1 7 7 4 6 3 7 0 5 1 1 0 2 1 2

3 5 0 0 1 7 7 4 6 3 7 0 5 1 1 0 2 1 2 3
5 0 0 1 7 7 4 6 3 7 0 5 1 1 0 2 1 2 3 9
0 0 1 7 7 4 6 3 7 0 5 1 1 0 2 1 2 3 9 4
0 1 7 7 4 6 3 7 0 5 1 1 0 2 1 2 3 9 4 1
1 7 7 4 6 3 7 0 5 1 1 0 2 1 2 3 9 4 1 3
7 7 4 6 3 7 0 5 1 1 0 2 1 2 3 9 4 1 3 9
7 4 6 3 7 0 5 1 1 0 2 1 2 3 9 4 1 3 9 7
4 6 3 7 0 5 1 1 0 2 1 2 3 9 4 1 3 9 7 9
6 3 7 0 5 1 1 0 2 1 2 3 9 4 1 3 9 7 9 8

=

− − − − − − − −
− − − − − − − −

− − − − − − − −
− − − − − − − −

− − − − − − − −
− − − − − − − −

− − − − − − − −
− − − − − − − −

− − − − − − − −
− − − − − − −
− − − − − −

− − − − −
− − − − −

− − − − −
− − − − − −

− − − − − − −
− − − − − − −

− − − − − − −
− − − − − − −
− − − − − −

Table 4
Experimental results for other DVS examples.

instances optimum algorithm best mean s.t. error

f1 �620 GA �620 �616.6750 12.8106 0
DSTAI �620 �620 0 0
DSTAII �620 �620 0 0

f2 �70,429 GA �70,429 �6.4980e4 6.1412e3 0
DSTAI �70,429 �6.9909e4 2.3264e3 0
DSTAII �70,429 �70429 0 0

f3 �1,439,658 GA �1,407,590 �1.2397e6 9.9237e4 2.23%
DSTAI �1,439,658 �1.3486e6 9.8920e4 0
DSTAII �1,439,658 �1.3871e6 6.9660e4 0

X. Zhou et al. / Neurocomputing 173 (2016) 864–874872
where,

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

Q

1 2 2 8 5 1 4 0 0 8
2 2 0 5 4 4 4 5 0 5

2 0 2 3 7 0 3 7 5 0
8 5 3 1 3 1 7 1 7 2
5 4 7 3 1 0 4 2 4 2

1 4 0 1 0 1 9 5 2 0
4 4 3 7 4 9 3 1 2 0

0 5 7 1 2 5 1 0 3 2
0 0 5 7 4 2 2 3 2 3
8 5 0 2 2 0 0 2 3 3

=

− − − −
− − − − − −

− −
− − − − −

− − − −
− −

− − − −
− − −

−
− − −
Example 6.3.

f x Qx x c x

x

min

s. t. 0, 1, 2, , 99

T T
3

20

() = +

∈ { … }

where,
and

c 5 2 1 3 5 4 1 0 9 4 7 4 3 5 8 1 1 5 6 9T ()= − − − − − − −

As can be seen from Table 4, the discrete STA outperforms
integer GA for all the three cases on the whole. For the former two
examples, all of these algorithms have the capability to obtain the
global optimum. However, for the last example, only discrete STA
can achieve the global optimum, which indicates its superiority to
its competitor, and it also shows that population-based STA has
better performance than individual-based STA.
7. Conclusion

In this paper, a new intelligent optimization algorithm named
discrete state transition algorithm is studied for integer optimi-
zation problem. It is the first time to build the framework for

X. Zhou et al. / Neurocomputing 173 (2016) 864–874 873
discrete state transition algorithm, and five key elements are dis-
cussed to better develop the algorithm. The representation of a
feasible solution and the dynamic adjustment strategy are mainly
studied. Various applications have shown the adaptability and
flexibility of the designed intelligent operators and experimental
results have testified the effectiveness and efficiency of the pro-
posed algorithm and strategies.

On the other hand, it should be noted that the proposed dis-
crete STA is not good enough, especially for the traveling salesman
problem. In future, we will extend the proposed discrete STA to
more efficient ones by using additional strategies to improve the
global search ability and reduce the computational cost.
Acknowledgments

We would also like to thank the anonymous reviewers for their
valuable comments and suggestions that helped improve the
quality of this paper. This work was supported by the National
Science Foundation for Distinguished Young Scholars of China
(61025015), the Foundation for Innovative Research Groups of the
National Natural Science Foundation of China (61321003), the
National Natural Science Foundation of China (Grant No.
61503416) and the State Key Program of National Natural Science
of China (Grant Nos. 61533020 and 61533021).
References

[1] Z.H. Ahmed, Genetic algorithm for the traveling salesman problem using
sequential constructive crossover operator, Int. J. Biom. Bioinform. 3 (6) (2010)
96–105.

[2] K. Deep, K.P. Singh, M.L. Kansal, C. Mohan, A real coded genetic algorithm for
solving integer and mixed integer optimization problems, Appl. Math. Com-
put. 212 (2) (2009) 505–518.

[3] M. Dorigo, L.M. Gambardella, Ant colony system: a cooperative learning
approach to the traveling salesman problem, IEEE Trans. Evol. Comput. 1 (1)
(1997) 53–66.

[4] K. Darby-Dowman, J.M. Wilson, Developments in linear and integer pro-
gramming, J. Oper. Res. Soc. 53 (2002) 1065–1071.

[5] X.T. Geng, Z.H. Chen, W. Yang, D.Q. Shi, K. Zhao, Solving the traveling salesman
problem based on an adaptive simulated annealing algorithm with greedy
search, Appl. Soft Comput. 11 (4) (2011) 3680–3689.

[6] A.M. Geoffrion, R.E. Marsten, Integer programming algorithms: a framework
and state-of-the-art survey, Manag. Sci. 18 (9) (1972) 456–491.

[7] B. Hajek, Cooling schedules for optimal annealing, Math. Oper. Res. 13 (2)
(1988) 311–329.

[8] M. Jünger, Th.M. Liebling, D. Naddef, G.L. Nemhauser, W.R. Pulleyblank,
G. Reinelt, G. Rinaldi, L.A. Wolsey, 50 Years of Integer Programming 1958–
2008, Springer, New York, 2010.

[9] S. Kirkpatrick, C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing,
Science 220 (4590) (1983) 671–680.

[10] K. Krishnan, J.E. Mitchell, A semidefinite programming based polyhedral cut
and price approach for the maxcut problem, Comput. Optim. Appl. 35 (2006)
51–71.

[11] D. Li, X.L. Sun, Nonlinear Integer Programming, Springer, New York, 2006.
[12] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, E. Teller, Equation of

state calculations by fast computing machines, J. Chem. Phys. 21 (6) (1953)
1087–1092.

[13] P.W. Poon, J.N. Carter, Genetic algorithm crossover operators for ordering
applications, Comput. Oper. Res. 22 (1) (1995) 135–147.

[14] G. Reinelt, TSPLIB-A traveling salesman problem library, ORSA J. Comput. 3 (4)
(1991) 376–384.

[15] M. Schlüter, J.A. Egea, J.R. Banga, Extended ant colony optimization for non-
convex mixed integer nonlinear programming, Comput. Oper. Res. 36 (2009)
2217–2229.

[16] A. Seshadri, Simulated annealing for travelling salesman problem, 2006.
〈http://www.mathworks.com/matlabcentral/fileexchange〉.

[17] K. Smith, An argument for abandoning the traveling salesman problem as a
neural-network benchmark, IEEE Trans. Neural Netw. 7 (6) (1996) 1542–1544.

[18] Z.B. Wang, S.C. Fang, D.Y. Gao, W.X. Xing, Canonical dual approach to solving
the maximum cut problem, J. Glob. Optim. 54 (2012) 341–351.

[19] Z.Y. Wu, G.Q. Li, J. Quan, Global optimality conditions and optimization
methods for quadratic integer programming problems, J. Glob. Optim. 51
(2012) 549–568.

[20] C.H. Yang, X.L. Tang, X.J. Zhou, W.H. Gui, Discrete state transition algorithm for
traveling salesman problem, Control Theory Appl. 30 (8) (2013) 1040–1046.
[21] T. Yokota, M. Gen, Y.X. Li, Genetic algorithm for non-linear mixed integer
programming problems and its applications, Comput. Ind. Eng. 30 (4) (1996)
905–917.

[22] C.J. Yu, K.L. Teo, Y.Q. Bai, An exact penalty function method for nonlinear
mixed discrete programmming problems, Optim. Lett. 7 (1) (2013) 23–38.

[23] D.F. Zhang, Y.K. Liu, R.M. Hallah, S.C.H. Leung, A simulated annealing with a
new neighborhood structure based algorithm for high school timetabling
problems, Eur. J. Oper. Res. 203 (2010) 550–558.

[24] X.J. Zhou, C.H. Yang, W.H. Gui, Initial version of state transition algorithm, in:
International Conference on Digital Manufacturing and Automation (ICDMA),
2011, pp. 644–647.

[25] X.J. Zhou, C.H. Yang, W.H. Gui, A new transformation into state transition
algorithm for finding the global minimum, in: International Conference on
Intelligent Control and Information Processing (ICICIP), 2011, pp. 674–678.

[26] X.J. Zhou, C.H. Yang, W.H. Gui, State transition algorithm, J. Ind. Manag. Optim.
8 (4) (2012) 1039–1056.

[27] X.J. Zhou, D.Y. Gao, C.H. Yang, A comparative study of state transition algo-
rithm with harmony search and artificial bee colony, Adv. Intell. Syst. Comput.
212 (2013) 651–659.

[28] X.J. Zhou, C.H. Yang, W.H. Gui, Nonlinear system identification and control
using state transition algorithm, Appl. Math. Comput. 226 (2014) 169–179.

[29] X.J. Zhou, D.Y. Gao, A.R. Simpson, Optimal design of water distribution net-
works by a discrete state transition algorithm, Eng. Optim., http://dx.doi.org/
10.1080/0305215X.2015.1025775.
Xiaojun Zhou received his Bachelor's degree in Auto-
mation in 2009 from Central South University, Chang-
sha, China and received the Ph.D. degree in Applied
Mathematics in 2014 from Federation University Aus-
tralia. He is currently a lecturer at Central South Uni-
versity, Changsha, China. His main interests include
modeling, optimization and control of complex indus-
trial process, optimization theory and algorithms, state
transition algorithm, duality theory and their
applications.
David Yang Gao is the Alex Rubinov Professor of
Mathematics at Federation University Australia and a
research professor of engineering science at the Aus-
tralian National University. His research has been
mainly focused on duality principles in mathematical
physics and general complex systems. He has published
nine books (including one monograph and one hand-
book) and about 140 scientific and philosophic papers.
His main research contributions include a canonical
duality-triality theory, which can be used to model
complex phenomena within a unified framework. This
theory has been used successfully for solving a large

class of nonconvex/nonsmooth problems in nonlinear

sciences as well as a series of well-known NP-hard problems in global optimization
and computational science. The main part of the canonical duality theory, i.e., the
complementary-dual variational principle he proposed in 1997 solved a 50-years
open problem in nonlinear elasticity and is playing an important role in large
deformation solid mechanics and nonlinear finite element analysis.
Chunhua Yang received her M.Eng. in Automatic Con-
trol Engineering and her Ph.D. in Control Science and
Engineering from Central South University, China in
1988 and 2002 respectively, and was with the Electrical
Engineering Department, Katholieke Universiteit Leu-
ven, Belgium from 1999 to 2001. She is currently a full
professor in the School of Information Science & Engi-
neering, Central South University. Her research inter-
ests include modeling and optimal control of complex
industrial process, intelligent control system, and fault-
tolerant computing of real-time systems.

http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref1
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref1
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref1
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref1
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref5
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref5
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref5
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref5
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref6
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref6
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref6
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref6
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref7
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref7
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref7
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref8
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref8
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref8
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref8
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref9
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref9
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref9
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref10
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref10
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref10
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref11
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref11
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref11
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref12
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref12
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref12
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref13
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref13
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref13
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref13
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref14
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref15
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref15
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref15
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref15
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref16
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref16
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref16
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref17
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref17
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref17
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref19
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref19
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref19
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref19
http://www.mathworks.com/matlabcentral/fileexchange
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref21
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref21
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref21
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref23
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref23
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref23
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref24
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref24
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref24
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref24
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref25
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref25
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref25
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref26
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref26
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref26
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref26
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref100
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref100
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref100
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref28
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref28
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref28
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref28
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref31
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref31
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref31
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref32
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref32
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref32
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref32
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref33
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref33
http://refhub.elsevier.com/S0925-2312(15)01213-8/sbref33
dx.doi.org/10.1080/0305215X.2015.1025775
dx.doi.org/10.1080/0305215X.2015.1025775

X. Zhou et al. / Neurocomputing 173 (2016) 864–874874
Weihua Gui received the degree of the B.Eng. (Auto-
matic Control Engineering) and the M.Eng. (Control
Science and Engineering) from Central South Uni-
versity, Changsha, China in 1976 and 1981, respectively.
From 1986 to 1988 he was a visiting scholar at Uni-
versitat-GH-Duisburg, Germany. He is a member of the
Chinese Academy of Engineering and has been a full
professor in the School of Information Science & Engi-
neering, Central South University, Changsha, China,
since 1991. His main research interests are in modeling
and optimal control of complex industrial.

	Discrete state transition algorithm for unconstrained integer optimization problems
	Introduction
	The framework of discrete state transition algorithm
	Individual-based discrete STA
	Population-based discrete STA

	Theoretical analysis of the discrete STA
	Application for traveling salesman problem
	State transformation operators for TSP
	TSP instances for test

	Application for boolean integer programming
	State transformation operators for BIP
	Maxcut instances for test

	Application for discrete value selection
	Transformation operators for discrete value selection
	The integer Rosenbrock function for test
	Other examples

	Conclusion
	Acknowledgments
	References

