
398 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

Differential Evolution Algorithm With Strategy
Adaptation for Global Numerical Optimization

A. K. Qin, V. L. Huang, and P. N. Suganthan

Abstract—Differential evolution (DE) is an efficient and powerful
population-based stochastic search technique for solving optimiza-
tion problems over continuous space, which has been widely applied
in many scientific and engineering fields. However, the success of
DE in solving a specific problem crucially depends on appropriately
choosing trial vector generation strategies and their associated
control parameter values. Employing a trial-and-error scheme to
search for the most suitable strategy and its associated parameter
settings requires high computational costs. Moreover, at different
stages of evolution, different strategies coupled with different
parameter settings may be required in order to achieve the best
performance. In this paper, we propose a self-adaptive DE (SaDE)
algorithm, in which both trial vector generation strategies and their
associated control parameter values are gradually self-adapted by
learning from their previous experiences in generating promising
solutions. Consequently, a more suitable generation strategy along
with its parameter settings can be determined adaptively to match
different phases of the search process/evolution. The performance
of the SaDE algorithm is extensively evaluated (using codes avail-
able from P. N. Suganthan) on a suite of 26 bound-constrained
numerical optimization problems and compares favorably with the
conventional DE and several state-of-the-art parameter adaptive
DE variants.

Index Terms—Differential evolution (DE), global numerical
optimization, parameter adaptation, self-adaptation, strategy
adaptation.

I. INTRODUCTION

E VOLUTIONARY ALGORITHMs (EAs), inspired by
the natural evolution of species, have been successfully

applied to solve numerous optimization problems in diverse
fields. However, when implementing the EAs, users not only
need to determine the appropriate encoding schemes and
evolutionary operators, but also need to choose the suitable
parameter settings to ensure the success of the algorithm,
which may lead to demanding computational costs due to the
time-consuming trial-and-error parameter and operator tuning
process. To overcome such inconvenience, researchers have
actively investigated the adaptation of parameters and oper-
ators in EAs [1]–[3]. Different categorizations of parameter

Manuscript received January 16, 2007; revised July 20, 2007, March 24,
2008, and May 08, 2008. First published September 26, 2008; current version
published April 01, 2009. This work was supported by the A*Star (Agency for
Science, Technology and Research, Singapore) under Grant 052 101 0020.

The authors are with the School of Electrical and Electronic Engi-
neering, Nanyang Technological University, Singapore 639798, Sin-
gapore (e-mail: qinkai@pmail.ntu.edu.sg; huangling@pmail.ntu.edu.sg;
epnsugan@ntu.edu.sg).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TEVC.2008.927706

adaptation methods have been presented in [4]–[6]. Angeline
[4] summarized two types of parameter updating rules in an
adaptive EA, namely, absolute and empirical rules. Absolute
updating rules usually prespecify how the parameter modifi-
cations would be made, while empirical updating rules adapt
parameters according to the competition inherent in EAs. Liter-
ature [5] divided the parameter adaptation techniques into three
categories: deterministic, adaptive, and self-adaptive control
rules. Deterministic rules modify the parameters according to
certain predetermined rationales without utilizing any feedback
from the search process. Adaptive rules incorporate some form
of the feedback from the search procedure to guide the param-
eter adaptation. Self-adaptive rules directly encode parameters
into the individuals and evolve them together with the encoded
solutions. Parameter values involved in individuals with better
fitness values will survive, which fully utilize the feedback from
the search process. Generally speaking, self-adaptive rules can
also refer to those rules that mainly utilize the feedback from
the search process such as fitness values to guide the updating
of parameters.

The differential evolution (DE) algorithm, proposed by
Storn and Price [7], is a simple yet powerful population-based
stochastic search technique, which is an efficient and effective
global optimizer in the continuous search domain. DE has
been successfully applied in diverse fields such as mechanical
engineering [13], [14], communication [11], and pattern recog-
nition [10]. In DE, there exist many trial vector generation
strategies out of which a few may be suitable for solving a
particular problem. Moreover, three crucial control parameters
involved in DE, i.e., population size , scaling factor , and
crossover rate , may significantly influence the optimiza-
tion performance of the DE. Therefore, to successfully solve a
specific optimization problem at hand, it is generally required
to perform a time-consuming trial-and-error search for the most
appropriate strategy and to tune its associated parameter values.
However, such a trial-and-error searching process requires
high computational costs. Moreover, as evolution proceeds,
the population of DE may move through different regions in
the search space, within which certain strategies associated
with specific parameter settings may be more effective than
others. Therefore, it is desirable to adaptively determine an
appropriate strategy and its associated parameter values at
different stages of evolution/search process. In this paper, we
propose a self-adaptive DE (SaDE) algorithm to avoid the
expensive computational costs spent on searching for the most
appropriate trial vector generation strategy as well as its asso-
ciated parameter values by a trial-and-error procedure. Instead,
both strategies and their associated parameters are gradually

1089-778X/$25.00 © 2008 IEEE

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 07:59:14 UTC from IEEE Xplore. Restrictions apply.

QIN et al.: DIFFERENTIAL EVOLUTION ALGORITHM WITH STRATEGY ADAPTATION FOR GLOBAL NUMERICAL OPTIMIZATION 399

self-adapted by learning from their previous experiences in
generating promising solutions. Consequently, a more suitable
generation strategy along with its parameter settings can be de-
termined adaptively to match different search/evolution phases.
Specifically, at each generation, a set of trial vector generation
strategies together with their associated parameter values will
be separately assigned to different individuals in the current
population according to the selection probabilities learned from
the previous generations.

The remainder of this paper is organized as follows. The
conventional DE and related work are reviewed in Sections II
and III, respectively. Section IV describes the proposed
SaDE. Experimental results demonstrating the performance
of SaDE in comparison with the conventional DE and several
state-of-the-art adaptive DE variants over a suite of 26 bound
constrained numerical optimization problems are presented in
Section V. Section VI concludes this paper.

II. DE ALGORITHM

DE algorithm aims at evolving a population of -di-
mensional parameter vectors, so-called individuals, which en-
code the candidate solutions, i.e.,

towards the global optimum. The initial population
should better cover the entire search space as much as pos-
sible by uniformly randomizing individuals within the search
space constrained by the prescribed minimum and maximum
parameter bounds and

. For example, the initial value of the th pa-
rameter in the th individual at the generation is gener-
ated by

(1)
where represents a uniformly distributed random
variable within the range .

A. Mutation Operation

After initialization, DE employs the mutation operation to
produce a mutant vector with respect to each individual

, so-called target vector, in the current population. For
each target vector at the generation , its associated mu-
tant vector can be generated via
certain mutation strategy. For example, the five most frequently
used mutation strategies implemented in the DE codes1 are
listed as follows:

1) “DE/rand/1”:

(2)

2) “DE/best/1”:

(3)

3) “DE/rand-to-best/1”:

(4)

1Publicly available online at http://www.icsi.berkeley.edu/~storn/code.html

4) “DE/best/2”:

(5)

5) “DE/rand/2”:

(6)

The indices are mutually exclusive integers
randomly generated within the range , which are also dif-
ferent from the index . These indices are randomly generated
once for each mutant vector. The scaling factor is a positive
control parameter for scaling the difference vector. is
the best individual vector with the best fitness value in the pop-
ulation at generation .

B. Crossover Operation

After the mutation phase, crossover operation is ap-
plied to each pair of the target vector and its cor-
responding mutant vector to generate a trial vector:

. In the basic version, DE em-
ploys the binomial (uniform) crossover defined as follows:

if or

otherwise

(7)

In (7), the crossover rate is a user-specified constant
within the range , which controls the fraction of parameter
values copied from the mutant vector. is a randomly
chosen integer in the range . The binomial crossover
operator copies the th parameter of the mutant vector
to the corresponding element in the trial vector if

or . Otherwise, it is copied from
the corresponding target vector . There exists another
exponential crossover operator, in which the parameters of trial
vector are inherited from the corresponding mutant vector

starting from a randomly chosen parameter index till
the first time . The remaining parameters of
the trial vector are copied from the corresponding target
vector . The condition is introduced to ensure
that the trial vector will differ from its corresponding
target vector by at least one parameter. DE’s exponential
crossover operator is functionally equivalent to the circular
two-point crossover operator.

C. Selection Operation

If the values of some parameters of a newly generated trial
vector exceed the corresponding upper and lower bounds, we
randomly and uniformly reinitialize them within the prespeci-
fied range. Then, the objective function values of all trial vectors
are evaluated. After that, a selection operation is performed. The
objective function value of each trial vector is com-
pared to that of its corresponding target vector in the
current population. If the trial vector has less or equal objec-
tive function value than the corresponding target vector, the trial
vector will replace the target vector and enter the population of
the next generation. Otherwise, the target vector will remain in

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 07:59:14 UTC from IEEE Xplore. Restrictions apply.

400 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

TABLE I
ALGORITHMIC DESCRIPTION OF DE

the population for the next generation. The selection operation
can be expressed as follows:

if
otherwise.

(13)

The above 3 steps are repeated generation after generation

until some specific termination criteria are satisfied. The algo-

rithmic description of DE is summarized in Table I.

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 07:59:14 UTC from IEEE Xplore. Restrictions apply.

QIN et al.: DIFFERENTIAL EVOLUTION ALGORITHM WITH STRATEGY ADAPTATION FOR GLOBAL NUMERICAL OPTIMIZATION 401

III. PREVIOUS WORK RELATED TO DE

The performance of the conventional DE algorithm highly
depends on the chosen trial vector generation strategy and as-
sociated parameter values used. Inappropriate choice of strate-
gies and parameters may lead to premature convergence or stag-
nation, which have been extensively demonstrated in [8], [16],
[17], [24], and [29]. In the past decade, DE researchers have
suggested many empirical guidelines for choosing trial vector
generation strategies and their associated control parameter set-
tings. Storn and Price [15] suggested that a reasonable value for

should be between and , and a good initial choice
of was 0.5. The effective range of values was suggested
between 0.4 and 1. The first reasonable attempt of choosing

value can be 0.1. However, because the large value can
speed up convergence, the value of 0.9 for may also be a
good initial choice if the problem is near unimodal or fast con-
vergence is desired. Moreover, if the population converges pre-
maturely, either or can be increased.

It was recommended in [20] to use the trial vector genera-
tion strategy DE/current-to-rand/1 and parameter setting

. If the DE converges prematurely, one
should increase the value of and or decrease the value
of . If the population stagnates, one should increase the value
of or , or randomly choose within the range . If
none of the above configuration works, one may try the strategy
DE/rand/1/bin along with a small {\rm CR} value. Gämperle et
al. [17] examined different parameter settings for DE on Sphere,
Rosenbrock, and Rastrigin functions. Their experimental results
showed that the searching capability and convergence speed are
very sensitive to the choice of control parameters , , and

. They recommended that the population size be between
and , the scaling factor equal 0.6, and the crossover

rate be between .
Recently, Rönkkönen et al. [21] suggested using values be-

tween with being a good initial choice. The
values should lie in when the function is separable

while in when the function’s parameters are dependent.
However, when solving a real engineering problem, the charac-
teristics of the problem are usually unknown. Consequently, it
is difficult to choose the most appropriate value in advance.

In DE literatures, various conflicting conclusions have been
drawn with regard to the rules for manually choosing the
strategy and control parameters, which undesirably confuse
scientist and engineers who are about to utilize DE to solve
scientific and engineering problems. In fact, most of these
conclusions lack sufficient justifications as their validity is
possibly restricted to the problems, strategies, and parameter
values considered in the investigations.

Therefore, researchers have developed some techniques to
avoid manual tuning of the control parameters. For example,
Das et al. [29] linearly reduced the scaling factor with
increasing generation count from a maximum to a minimum
value, or randomly varied in the range . They also
employed a uniform distribution between 0.5 and 1.5 (with
a mean value of 1) to obtain a new hybrid DE variant [30].
In addition, several researchers [18], [24]–[26] focused on
the adaptation of the control parameters and . Liu and
Lampinen introduced fuzzy adaptive differential evolution

(FADE) using fuzzy logic controllers whose inputs incorporate
the relative function values and individuals of successive gen-
erations to adapt the parameters for the mutation and crossover
operations [18]. Based on the experimental results on test func-
tions, the FADE algorithm outperformed the conventional DE
on higher dimensional problems. Zaharie proposed a parameter
adaptation for DE (ADE) based on the idea of controlling
the population diversity, and implemented a multipopulation
approach [24]. Following the same ideas, Zaharie and Petcu
designed an adaptive Pareto DE algorithm for multiobjective
optimization and analyzed its parallel implementation [25].
Abbass [26] self-adapted the crossover rate of DE for multi-
objective optimization problems, by encoding the crossover
rate into each individual, to simultaneously evolve with other
parameter. The scaling factor is generated for each variable
from a Gaussian distribution .

Since our preliminary self-adaptive DE work presented in
[19], some new research papers focusing on the adaptation of
control parameters in DE were published. Omran et al. [27] in-
troduced a self-adapted scaling factor parameter analogous to
the adaptation of crossover rate in [26]. The crossover rate

in [27] is generated for each individual from a normal dis-
tribution . This approach (called SDE) was tested
on four benchmark functions and performed better than other
versions of DE. Besides adapting the control parameters or

, Teo proposed differential evolution with self adapting pop-
ulations (DESAP) [22], based on Abbass’s self-adaptive Pareto
DE. Recently, Brest et al. [28] encoded control parameters
and into the individuals and adjusted by introducing two
new parameters and . In their algorithm (called jDE), a
set of values were assigned to individuals in the population.
Then, a random number rand was uniformly generated in the
range of . If , the was reinitialized to a new
random value in the range of , otherwise it was kept
unchanged. The was adapted in the same manner but with
a different reinitialization range of . Brest et al. further
compared the performance of several self-adaptive and adaptive
DE algorithms in [42]. Recently, the self-adaptive neighborhood
search DE algorithm was adopted into a novel cooperative co-
evolution framework [39]. Moreover, researchers improved the
performance of DE by implementing opposition-based learning
[40] or local search [41].

IV. SADE ALGORITHM

To achieve the most satisfactory optimization performance by
applying the conventional DE to a given problem, it is common
to perform a trial-and-error search for the most appropriate trial
vector generation strategy and fine-tune its associated control
parameter values, i.e., the values of , , and . Obvi-
ously, it may expend a huge amount of computational costs.
Moreover, during different stages of evolution, different trial
vector generation strategies coupled with specific control pa-
rameter values can be more effective than others. Motivated
by these observations, we develop a SaDE algorithm, in which
both trial vector generation strategies and their associated con-
trol parameter values can be gradually self-adapted according
to their previous experiences of generating promising solutions.

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 07:59:14 UTC from IEEE Xplore. Restrictions apply.

402 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

The core idea behind the proposed SaDE algorithm is elucidated
as follows.

A. Trial Vector Generation Strategy Adaptation

DE realizations employing different trial vector generation
strategies usually performs differently when solving different
optimization problems. Instead of employing the computa-
tionally expensive trial-and-error search for the most suitable
strategy and its associated parameter values, we maintain a
strategy candidate pool including several effective trial vector
generation strategies with effective yet diverse characteristics.
During evolution, with respect to each target vector in the cur-
rent population, one strategy will be chosen from the candidate
pool according to a probability learned from its previous expe-
rience of generating promising solutions and applied to perform
the mutation operation. The more successfully one strategy be-
haved in previous generations to generate promising solutions,
the more probably it will be chosen in the current generation
to generate solutions. In the following, we investigate several
effective trial vector generation strategies commonly referred
to in DE literatures and choose some of them to construct the
strategy candidate pool.

• Strategies relying on the best solution found so far such as
“DE/rand-to-best/1/bin,” “DE/best/1/bin,” and “DE/best/2/
bin,” usually have the fast convergence speed and perform
well when solving unimodal problems. However, they are
more likely to get stuck at a local optimum and thereby
lead to a premature convergence when solving multimodal
problems.

• The “DE/rand/1/bin” strategy usually demonstrates slow
convergence speed and bears stronger exploration capa-
bility. Therefore, it is usually more suitable for solving
multimodal problems than the strategies relying on the best
solution found so far.

• The “DE/best/1/bin” strategy is a degenerated case of the
“DE/rand-to-best/1/bin” strategy with equal to 1.

• Two-difference-vectors-based strategies may result in
better perturbation than one-difference-vector-based
strategies. Storn [11] claimed that according to the central
limit theorem, the random variation of the summation of
difference vectors of all target vector pairs in the current
population was shifted slightly towards the Gaussian
direction, which is the most commonly used mutation

operator in EAs. The advantage of using two-differ-
ence-vectors-based strategies was also discussed in [35]
in the particle swarm optimization (PSO) context, which
empirically demonstrated that the statistical distribution of
the summation of all one-difference vectors had a triangle
shape, while the statistical distribution of the summation
of all two-difference vectors had a bell shape that was
generally regarded as a better perturbation mode.

• DE/current-to-rand/1 is a rotation-invariant strategy. Its ef-
fectiveness has been verified when it was applied to solve
multiobjective optimization problems [34].

Our preliminary study in [19] only included two trial vector
generation strategies into the strategy candidate pool, i.e., “DE/
rand/1/bin” and “DE/rand-to-best/2/bin,” which were frequently
employed in many DE literatures. We incorporate two addi-
tional strategies: “DE/rand/2/bin” and “DE/current-to-rand/1”
into the pool. The former strategy can have a better exploration
capability due to the Gaussian-like perturbation while the latter
one enables the algorithm to solve rotated problems more ef-
fectively. The four trial vector generation strategies constituting
the strategy candidate pool in the proposed SaDE algorithm are
listed as follows. The binomial-type crossover operator is uti-
lized in the first three strategies due to its popularity in many
DE literatures [7], [8], as shown in the equation at the bottom of
the page.

Generally speaking, a good candidate pool should be restric-
tive so that the unfavorable influences of less effective strate-
gies can be suppressed. Moreover, a set of effective strategies
contained in a good candidate pool should have diverse charac-
teristics, that is, the used strategies should demonstrate distinct
capabilities when dealing with a specific problem at different
stages of evolution. The theoretical study on the choice of the
optimal pool size and the selection of strategies used in the pool
are attractive research issues and deserve further investigations.

In the SaDE algorithm, with respect to each target vector
in the current population, one trial vector generation strategy
is selected from the candidate pool according to the proba-
bility learned from its success rate in generating improved
solutions within a certain number of previous generations. The
selected strategy is subsequently applied to the corresponding
target vector to generate a trial vector. More specifically, at
each generation, the probabilities of choosing each strategy in
the candidate pool are summed to 1. These probabilities are

DE/rand/1/bin:
if or
otherwise

DE/rand-to-best/2/bin:
if or
otherwise

DE/rand/2/bin:
if or
otherwise

DE/current-to-rand/1:

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 07:59:14 UTC from IEEE Xplore. Restrictions apply.

QIN et al.: DIFFERENTIAL EVOLUTION ALGORITHM WITH STRATEGY ADAPTATION FOR GLOBAL NUMERICAL OPTIMIZATION 403

Fig. 1. Success memory and failure memory.

gradually adapted during evolution in the following manner.
Assume that the probability of applying the th strategy in the
candidate pool to a target vector in the current population is

, where is the total number of strategies
contained in the pool. The probabilities with respect to each
strategy are initialized as , i.e., all strategies have the
equal probability to be chosen. We use the stochastic universal
selection method [31] to select one trial vector generation
strategy for each target vector in the current population. At the
generation , after evaluating all the generated trial vectors,
the number of trial vectors generated by the th strategy that
can successfully enter the next generation is recorded as
while the number of trial vectors generated by the th strategy
that are discarded in the next generation is recorded as .
We introduce success and failure memories to store these
numbers within a fixed number of previous generations hereby
named learning period (LP). As illustrated in Fig. 1, at the
generation , the number of trial vectors generated by different
strategies that can enter or fail to enter the next generation over
the previous LP generations are stored in different columns of
the success and failure memories. Once the memories overflow
after LP generations, the earliest records stored in the mem-
ories, i.e., or will be removed so that those
numbers calculated in the current generation can be stored in
the memories, as shown in Fig. 2.

After the initial LP generations, the probabilities of choosing
different strategies will be updated at each subsequent genera-
tion based on the success and failure memories. For example,
at the generation , the probability of choosing the th

strategy is updated by

where

(14)

where represents the success rate of the trial vectors gener-
ated by the th strategy and successfully entering the next gen-
eration within the previous LP generations with respect to gen-
eration . The small constant value is used to avoid
the possible null success rates. To ensure that the probabilities
of choosing strategies are always summed to 1, we further di-
vide by to calculate . Obviously, the larger
the success rate for the th strategy within the previous LP gen-
erations is, the larger the probability of applying it to generate
the trial vectors at the current generation is.

B. Parameter Adaptation

In the conventional DE, the choice of numerical values for
the three control parameters , , and highly depends
on the problem under consideration. Some empirical guidelines
for choosing reasonable parameter settings have been discussed
in Section III. In the proposed SaDE algorithm, we leave
as a user-specified parameter because it highly replies on the
complexity of a given problem. In fact, the population size
does not need to be fine-tuned and just a few typical values can
be tried according to the preestimated complexity of the given
problem. Between other two parameters, is usually more
sensitive to problems with different characteristics, e.g., the uni-
modality and multimodality, while is closely related to the
convergence speed. In our SaDE algorithm, the parameter
is approximated by a normal distribution with mean value 0.5
and standard deviation 0.3, denoted by . A set of
values are randomly sampled from such normal distribution and
applied to each target vector in the current population. It is easy
to verify that values of must fall into the range with
the probability of 0.997. By doing so, we attempt to maintain
both exploitation (with small values) and exploration (with
large values) power throughout the entire evolution process.
Following suggestions in [20], the control parameter in the
strategy “DE/current-to-rand/1” is hereby randomly generated
within so as to eliminate one additional parameter.

As demonstrated by a suite of extensive experiments in [8],
the proper choice of can lead to successful optimization
performance while a wrong choice may deteriorate the perfor-
mance. In fact, good values of generally fall into a small
range for a given problem, with which the algorithm can per-
form consistently well. Therefore, we consider gradually ad-
justing the range of values for a given problem according
to previous values that have generated trial vectors success-
fully entering the next generation. Specifically, we assume that

obeys a normal distribution with mean value and stan-
dard deviation , denoted by where

is initialized as 0.5. The should be set as a small value
to guarantee that most values generated by
are between , even when is near 0 or 1. Hence, the
value of is set as 0.1. Our experiments showed that minor
changes to the of the Gaussian distribution do not influence
the performance of SaDE significantly.

In our preliminary work in [19], the same value was
used for all the trial vector generation strategies. However, it
is possible that different strategies can perform well by using
different ranges of values. Hence, it is reasonable to adapt
the value of CRm with respect to each trial vector generation
strategy. Without loss of generality, with respect to the th

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 07:59:14 UTC from IEEE Xplore. Restrictions apply.

404 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

Fig. 2. Progress of success memory.

strategy, the value of is initialized to 0.5. A set of
values are randomly generated according to and
then applied to those target vectors to which the th strategy is
assigned. To adapt the crossover rate , we establish memo-
ries named to store those values with respect
to the th strategy that have generated trial vectors successfully
entering the next generation within the previous LP generations.
Specifically, during the first LP generations, values with
respect to th strategy are generated by . At
each generation after LP generations, the median value stored
in will be calculated to overwrite . Then,

values can be generated according to when
applying the th strategy. After evaluating the newly generated
trial vectors, values in that correspond to
earlier generations will be replaced by promising values
obtained at the current generation with respect to the th
strategy.

By incorporating the aforementioned trial vector generation
strategy and control parameter adaptation schemes into the con-
ventional DE framework, a SaDE algorithm is developed. In
the SaDE algorithm, both trial vector generation strategies and
their associated parameter values are gradually self-adapted by
learning their previous experiences of generating promising so-
lutions. Consequently, a more suitable strategy along with its
parameter setting can be determined adaptively to suit different
phases of the search process. Extensive experiments described
in Section IV verify the promising performance of the SaDE
to handle problems with distinct properties such as unimodality
and multimodality. The algorithmic description of the SaDE is
presented in Table II.

V. NUMERICAL EXPERIMENTS AND RESULTS

A. Test Functions

As discussed in [32], many benchmark numerical func-
tions commonly used to evaluate and compare optimization
algorithms may suffer from two problems. First, global op-
timum lies at the center of the search range. Second, local
optima lie along the coordinate axes or no linkage among
the variables/dimensions exists. To solve these problems, we
can shift or rotate the conventional benchmark functions. For
benchmark functions suffering from the first problem, we
may shift the global optimum to a random position so that
the global optimum position has different numerical values
for different dimensions, i.e., ,
where is the new function, is the old function,

is the old global optimum, and is the new global
optimum with different values for different dimensions and not
lying at the center of the search range. For the second problem,
we can rotate the function , where is an

TABLE II
ALGORITHMIC DESCRIPTION OF SADE

orthogonal rotation matrix, to avoid local optima lying along
the coordinate axes while retaining the properties of the test
function. We hereby shift nine commonly used benchmark

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 07:59:14 UTC from IEEE Xplore. Restrictions apply.

QIN et al.: DIFFERENTIAL EVOLUTION ALGORITHM WITH STRATEGY ADAPTATION FOR GLOBAL NUMERICAL OPTIMIZATION 405

functions , and further rotate three of
them .

Two composition functions and are chosen from [32],
which are constructed by using some basic benchmark func-
tions to obtain more challenging problems. Gaussian function
is used to combine the simple benchmark functions and blur the
functions’ structures. The composition functions are asymmet-
rical multimodal problems, with different properties in different
areas. The detailed principle of constructing this class of func-
tions is presented in [32], which is not repeated here.

In the following, 14 test functions are listed, among which
functions are unimodal and functions are mul-
timodal. These 14 test functions are dimensionwise
scalable.

1) Shifted sphere function

the shifted global optimum

2) Shifted Schwefel’s Problem 1.2

the shifted global optimum

3) Rosenbrock’s function

4) Shifted Schwefel’s Problem 1.2 with noise in fitness

the shifted global optimum

5) Shifted Ackley’s function

the shifted global optimum

6) Shifted rotated Ackley’s function2

the shifted global optimum

7) Shifted Griewank’s function

the shifted global optimum

8) Shifted rotated Griewank’s function

the shifted global optimum

9) Shifted Rastrigin’s function

the shifted global optimum

10) Shifted rotated Rastrigin’s function

the shifted global optimum

11) Shifted noncontinuous Rastrigin’s function

for

the shifted global optimum

2������� means the condition number of rotation matrix�.

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 07:59:14 UTC from IEEE Xplore. Restrictions apply.

406 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

TABLE III
GLOBAL OPTIMUM, SEARCH RANGES, AND INITIALIZATION RANGES OF THE TEST FUNCTIONS

12) Schwefel’s function

13) Composition function 1 (CF1) in [32].
The function (CF1) is composed by using ten sphere
functions. The global optimum is easy to find once the
global basin is found. The details of constructing such
functions are presented in [32] and [37].

14) Composition function 6 (CF6) in [32].
The function (CF6) is composed by using ten dif-
ferent benchmark functions, i.e., two rotated Rastrigin’s
functions, two rotated Weierstrass functions, two rotated
Griewank’s functions, two rotated Ackley’s functions, and
two rotated Sphere functions.
To make our test suite more comprehensive, we also chose
an additional set of 12 test functions from [33] and [38].

15) Schwefel’s Problem 2.22

16) Schwefel’s Problem 2.21

17) Generalized penalized function 1

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 07:59:14 UTC from IEEE Xplore. Restrictions apply.

QIN et al.: DIFFERENTIAL EVOLUTION ALGORITHM WITH STRATEGY ADAPTATION FOR GLOBAL NUMERICAL OPTIMIZATION 407

18) Generalized penalized function 2

19) Kowalik’s function

20) Six-hump camel-back function

21) Branin function

22) Hartman’s function 1

23) Hartman’s function 2

24) Shekel’s family

with and for and

B. Algorithms for Comparison

Experiments were conducted on a suite of 26 numerical func-
tions to evaluate nine algorithms including the proposed SaDE

algorithm. For functions , both 10-dimensional (10-D)
and 30-dimensional (30-D) functions were tested. The max-
imum number of function evaluations (FEs) is set to 100 000
when solving 10-D problems, and 300 000 when solving 30-D
counterpart. For the remaining functions , the function
dimensions are listed in Table III, and the maximum number of
FEs is set to 500 000 [38]. All experiments were run 30 times,
independently. The nine algorithms in comparison are listed as
follows:

• DE/rand/1/bin: ;
• DE/rand/1/bin: ;
• DE/rand/1/bin: ;
• DE/rand-to-best/1/bin: ;
• DE/rand-to-best/2/ bin with ;
• SaDE algorithm;
• adaptive DE algorithm [24];
• SDE algorithm [27];
• jDE [28].
Here, “DE/rand/1/bin” is chosen because it employs a

most commonly used trial vector generation strategy, with
three commonly suggested sets of control parameters:
1) ; 2) ; and
3) [15], [21], [33]. “DE/rand-to-best/1/bin”
and “DE/rand-to-best/2/bin” employ more reliable trial vector
generation strategies, and the control parameters are both set as

in our experiments [8], [9].
We also choose three most representative adaptive DE vari-

ants proposed recently to compare with our proposed SaDE al-
gorithm. The population sizes are all set to 50 and the learning
periods are 50 for both 10-D and 30-D functions.

C. Experimental Results and Discussions

Tables IV and V report the mean and standard deviation of
function values as well as the success rates by applying the nine
algorithms to optimize the 10-D and 30-D numerical functions

, respectively. The best results are typed in bold. The
success of an algorithm means that this algorithm can result in
a function value no worse than the prespecified optimal value,
i.e., for all problems with the number of FEs
less than the prespecified maximum number. The success rate
is calculated as the number of successful runs divided by the
total number of runs.

Figs. 3 and 4 illustrate the convergence characteristics in
terms of the best fitness value of the median run of each
algorithm for functions – with . Because the
convergence graphs of the 30-D problems are similar to their
10-D counterparts, they are omitted here.

For functions – , because most algorithms can locate
the global optima with 100% success rate within the specified
maximum FEs, it is unnecessary to present the mean and stan-
dard deviation of function values. Instead, to compare the con-
vergence speed, we report the average number of function eval-
uations (NFE) required to find the global optima when an algo-
rithm solves the problem with 100% success rate.

1) Comparing SaDE With Conventional DE: In this section,
we intend to show how well the proposed SaDE algorithm per-
forms when compared to the conventional DE.

For the 10-D – , Tables IV and VI show that and
are easily optimized by five DE variants and the SaDE algorithm
with 100% success rate. Except these two functions, the

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 07:59:14 UTC from IEEE Xplore. Restrictions apply.

408 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

TABLE IV
RESULTS FOR 10-D PROBLEMS

performances of DE/rand/1 and DE/rand/1
are almost contrary. For example, DE/rand/1/bin

obtains better results on unimodal functions and
where DE/rand/1/bin performs poorly. On the

contrary, DE/rand/1/bin performs efficiently and
robustly on multimodal functions , and , while
DE/rand/1/bin fails totally on , and , only

TABLE V
RESULTS FOR 30-D PROBLEMS

13% success rate on . Therefore, different values of for
DE/rand/1/bin demonstrate diverse performances on different
problems. DE/rand-to-best/1/bin and DE/rand-to-best/2/bin are
more reliable than DE/rand/1/bin. However, they also totally or
partially fail in optimizing some problems where SaDE can lo-
cate the global optima in every run. Overall, SaDE obtains a
smaller mean value and a higher success rate than the five DE
variants for all problems.

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 07:59:14 UTC from IEEE Xplore. Restrictions apply.

QIN et al.: DIFFERENTIAL EVOLUTION ALGORITHM WITH STRATEGY ADAPTATION FOR GLOBAL NUMERICAL OPTIMIZATION 409

Fig. 3. Median convergence characteristics of rand/1 �� � ���, rand/1 �� � ���, rand/1 � � ������ � ���, rand-to-best/1, rand-to-best/2, and SaDE
on 10-D test functions � –� . (a) � : sphere; (b) � : Schwefel’s 1.2; (c) � : Rosenbrock; (d) � : Schwefel’s Problem 1.2 with noise in fitness; (e) � : Ackley;
(f) � : rotated Ackley; (g) � : Griewank; (h) � : rotated Griewank; (i) � : Rastrigin; (j) � : rotated Rastrigin; (k) � : noncontinuous Rastrigin; (l) � : Schwefel;
(m) � : composition function 1; and (n) � : composition function 6.

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 07:59:14 UTC from IEEE Xplore. Restrictions apply.

410 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

Fig. 4. Median convergence characteristics of SaDE, ADE (Zaharie), SDE, and jDE on 10-D test functions � –� . (a) � : sphere; (b) � : Schwefel’s 1.2; (c) � :
Rosenbrock; (d) � : Schwefel’s Problem 1.2 with noise in fitness; (e) � : Ackley; (f) � : rotated Ackley; (g) � : Griewank; (h) � : rotated Griewank; (i) � :
Rastrigin; (j) � : rotated Rastrigin; (k) � : noncontinuous Rastrigin; (l) � : Schwefel; (m) � : composition function 1; and (n) � : composition function 6.

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 07:59:14 UTC from IEEE Xplore. Restrictions apply.

QIN et al.: DIFFERENTIAL EVOLUTION ALGORITHM WITH STRATEGY ADAPTATION FOR GLOBAL NUMERICAL OPTIMIZATION 411

TABLE VI
COMPARISON OF �������� � 	�
�� � 	���� ������� � 	�
�� � 	�
�� ������� � 	����� � 	���, RAND-TO-BEST/1, RAND-TO-BEST/2, AND SADE

Furthermore, the convergence map of DE/rand/1/bin
, DE/rand/1/bin ,

DE/rand/1/bin , DE/rand-to-best/1/bin
, DE/rand-to-best/2/bin

, and SaDE in Fig. 3 shows that the SaDE algorithm always
converges faster than others on six problems ,
and , while slightly slower than DE/rand-to-best/1/bin

or DE/rand/1/bin
on the remaining problems. It can be observed that on

DE/rand/1/bin , DE/rand-to-best/1/bin
and DE/rand/1/bin

converge fast, followed by SaDE. This is because a small
value (or) is an effective value to optimize

Rastrigin problem, while our SaDE with an initial
needs some generations to self-adapt the parameters to suitable
values. This issue will be discussed in Section V-D.

For the 30-D problems – , DE/rand/1/bin
has great difficulty in finding the global optima on all prob-
lems. DE/rand/1/bin yields 100% success rate for

, and . The SaDE algorithm performs much
better with success rates of 100% on most problems, and 90%
on where other DE variants totally fail in finding the global
optima. When the dimension of variable was increased to 30,
some problems such as functions , and become so
difficult that all the six approaches could not find the optimal
solutions within the maximum FEs. Regarding the speed of

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 07:59:14 UTC from IEEE Xplore. Restrictions apply.

412 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

Fig. 5. Empirical distribution of normalized success performance on all 26 test problems.

different algorithms in reaching the optimal solutions, we fur-
ther compare the NFEs on problems with 100% success rate in

Table VI, and find that SaDE converges the fastest among these
algorithms on eight problems except .

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 07:59:14 UTC from IEEE Xplore. Restrictions apply.

QIN et al.: DIFFERENTIAL EVOLUTION ALGORITHM WITH STRATEGY ADAPTATION FOR GLOBAL NUMERICAL OPTIMIZATION 413

TABLE VII
RESULTS OF SADE AND FADE ALGORITHMS

TABLE VIII
SADE’S RESULTS WITH DIFFERENT LEARNING PERIOD (LP) ON TEST FUNCTIONS � � � , AND � (10-D)

For the test problems – , both SaDE and DE/rand/1/bin
successfully solve all problems in each

run, while SaDE shows an overall better convergence speed than
DE/rand/1/bin .

2) Comparing SaDE With Other Adaptive DE Variants: The
performance of the SaDE is compared with three other adaptive
DE variants: ADE [24], SDE [27], and jDE [28] on 10-D and
30-D problems – .

For 10-D problems, the best results of unimodal functions
– are obtained by SaDE and jDE, where SaDE demon-

strates a slight superiority on efficiency, which can be observed
from the convergence graphs [Fig. 4(a)–(d)]. Among the mul-
timodal functions, Ackley and rotated Ackley are easily
solved by all the adaptive DE variants with 100% success rate.
For Griewank and Rastrigin, before rotation, SaDE, ADE,
and jDE have high success rates as shown in Table IV. After ro-
tation (and), only SaDE and jDE successfully find the
global optimum on in some run, and SaDE offers a higher
success rate than jDE. is so difficult that no algorithm could
find the global optimum. For the last two composition problems

and , SaDE is able to locate the optimal solutions with
smaller standard deviations and higher success rates, demon-
strating better efficiency and stability than the other three algo-
rithms.

From the results of 30-D problems shown in Table V, we
can observe that the algorithms achieved similar ranking as in
the 10-D problems, and were not very successful in optimizing

, and . However, with respect to the mean and standard
deviations, SaDE obtains smallest values on and , and
the second smallest values on where jDE gets the smallest
values.

3) Overall Performance Comparison: In this part, we intend
to further compare the overall performances of nine algorithms
on all functions by plotting empirical distribution of normal-
ized success performance [36]. The success performance is de-
fined as success performance (SP) mean (FEs for successful
runs)*(# of total runs)/(# of successful runs).

We first calculated the success performance of nine algo-
rithms on each test function, and then normalized the SP by di-
viding all SPs by the SP of the best algorithm on the respective
function. Results of all functions are used where at least one al-
gorithm was successful in at least one run. Therefore, for 10-D

– problems, we plot the results of all functions except ,
and exclude functions , and for 30-D – prob-
lems. The test problems – are all plotted. Small values of
SP and large values of the empirical distribution in graphs are
preferable. The first one that reaches the top of the graph will be
regarded as the best algorithm.

From Fig. 5, we can observe that SaDE outperforms other
approaches on overall performance on test
problems.

4) Comparison With FADE: The FADE algorithm was tested
on a set of standard test functions in [18], including 2, 3, 30, and
50 dimensions. Because the low-dimensional (2 or 3) test func-
tions are easy to solve for both conventional DE and FADE, we
hereby only compare our SaDE with the FADE algorithm on
50-D test functions chosen from [18]. The parameter settings
are the same as in [18]: population size , and max-
imum generations are listed in Table VII. The averaged results
of 100 independent runs are summarized in the table (results for
FADE are taken from [18]), which show that the proposed SaDE
algorithm obviously performs better than the FADE algorithm.

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 07:59:14 UTC from IEEE Xplore. Restrictions apply.

414 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

Fig. 6. Self-adaptation characteristics of ��� on Rosenbrock and Rastrigin
functions (10-D). (a) Rosenbrock function. (b) Rastrigin function.

D. Analysis of Self-Adaptation Property of SaDE

1) Self-Adaptation of Crossover Probability: Usually, when
DE solves problems, there is no specific value of and

, which is effective in all search phases. Instead, possibly
several combinations of different and values can be
effective in different search phases. However, Rosenbrock and
Rastrigin function are exceptional. From the experiments of
DE/rand/1/bin on these two functions, we know that usually
DE/rand/1/bin with a large could obtain a good result on
Rosenbrock function and a small is beneficial to Rastrigin
function, which could also be concluded from comparing the
results of DE/rand/1/bin and . As we know
the suitable values for Rosenbrock and Rastrigin functions,
we can observe the variation of values in SaDE algorithm
to check whether the self-adaptation of is effective.

Because the value in SaDE is mostly depended on the
mean value of normal distribution, we plot the value

Fig. 7. Self-adaptation characteristics of strategies (10-D). (a) Griewank.
(b) Rotated Griewank.

when the SaDE algorithm optimized Rosenbrock and Rastrigin
functions as the generation increases in Fig. 6. We found that for
Rosenbrock function, the CRm values of strategy “rand/1/bin,”
“rand-to-best/2/bin,” and “rand/2/bin” keep increasing during
evolution, as we expected. On the contrary, for Rastrigin func-
tion, the values of three strategies all keep decreasing
during evolution. Therefore, we can say that our proposed SaDE
algorithm self-adapts the crossover probability effectively.

2) Self-Adaptation of Trial Vector Generation Strategy: To
investigate the self-adaptive selection of trial vector generation
strategy in SaDE algorithm, we plot the variations of the four
different strategies’ probabilities as the evolution progresses. As
we know that the strategy “current-to-rand” is rotationally in-
variant [20] and has superior performance on rotated problem
as stated in Section II, this strategy should occupy more propor-
tion if it yields good results when dealing with rotated problems.
As shown in Fig. 7, for Griewank’s function, the strategy “cur-
rent-to-rand” occupied a very small proportion during the whole
evolution progress. At the beginning, we assign each strategy
equal probability. Because the strategy “current-to-rand” could

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 07:59:14 UTC from IEEE Xplore. Restrictions apply.

QIN et al.: DIFFERENTIAL EVOLUTION ALGORITHM WITH STRATEGY ADAPTATION FOR GLOBAL NUMERICAL OPTIMIZATION 415

Fig. 8. SaDE’s results with different learning period LP on 11 test functions (10-D).

not yield better results, our self-adaptive mechanism of learning
is unlikely to choose the strategy “current-to-rand” in next few
generations. As this strategy always performed badly, its pro-
portion almost lowered to 0. The individuals were mostly mu-
tated by the other three strategies that always occupy propor-

tions above 0.25 as shown in Fig. 7. After 800 generations, the
algorithm converged, and these four strategies performed com-
petitively so as to all occupy around 0.25 proportion. On the
contrary, after we rotated the Griewank’s function, the strategy
“current-to-rand” demonstrated a good performance at the be-

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 07:59:14 UTC from IEEE Xplore. Restrictions apply.

416 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 13, NO. 2, APRIL 2009

ginning so as to occupy a higher proportion in 300 generations.
During about 300–550 generations, the proportion of strategy
“current-to-rand” slightly decreased under 0.25 because rela-
tively inferior solutions are found by this strategy during this
stage of evolution. After 550 generations, strategy “current-to-
rand” occupied a higher proportion again until the algorithm
converged and four strategies were almost stable.

E. Parameter Study

1) Learning Period (LP): The learning period parameter LP
needs to be optimized. In this section, we use 10-D test functions

– to investigate the impact of this parameter on SaDE al-
gorithm. The SaDE algorithm runs 30 times on each function
with five different learning periods LP of 20, 30, 40, 50, and 60.
Because functions , and are solved with 100%
success rate with five different LP values, we here omit the re-
sults of mean and standard deviation for these functions; only
the results of , and are shown in Table VIII. However,
for functions , and , we investigate the influence
of LPs on convergence speed of SaDE algorithm, by comparing
the FEs that SaDE algorithm cost to obtain the global optimum
with different LPs.

Fig. 8 shows the box plots of FEs that SaDE algorithm re-
quires to reach the global optimum with five different LPs. The
box has lines at the lower quartile, median, and upper quartile
values. The whiskers are lines extending from each end of the
box to show the extent of the remaining data. Outliers are data
with values beyond the ends of the whiskers. If there is no data
outside the whisker, a dot is placed at the bottom whisker. From
Fig. 8, we found that SaDE algorithm succeeds on all functions
with similar FEs by using five different LPs. Therefore, the con-
vergence speed of SaDE algorithm is less sensitive to the param-
eter LP parameter values between 20 and 60.

VI. CONCLUSION

This paper presented a SaDE algorithm, which eliminates the
time-consuming exhaustive search for the most suitable trial
vector generation strategy and the associated control parame-
ters and . In SaDE, trial vector generation strategies to-
gether with their two control parameters will be probabilisti-
cally assigned to each target vector in the current population
according to the probabilities gradually learned from the ex-
perience to generate improved solutions. We have investigated
the self-adaptive characteristics of the value and trial vector
generation strategies. Experiments showed that the SaDE algo-
rithm could evolve suitable strategies and parameter values as
evolution progresses. The sensitivity analysis of LP parameter
indicated that it had insignificant impact on the performance of
the SaDE.

We have compared the performance of SaDE with the con-
ventional DE and three adaptive DE variants over a suite of 26
bound constrained numerical optimization problems, and con-
cluded that SaDE was more effective in obtaining better quality
solutions, which are more stable with the relatively smaller stan-
dard deviation, and had higher success rates.

REFERENCES

[1] A. Tuson and P. Ross, “Adapting operator settings in genetic algo-
rithms,” Evolut. Comput., vol. 6, no. 2, pp. 161–184, 1998.

[2] J. Gomez, D. Dasgupta, and F. Gonzalez, “Using adaptive operators in
genetic search,” in Proc. Genetic Evolut. Comput. Conf., Chicago, IL,
Jul. 2003, pp. 1580–1581.

[3] B. R. Julstrom, “What have you done for me lately? Adapting operator
probabilities in a steady-state genetic algorithm,” in Proc. 6th Int. Conf.
Genetic Algorithms, Pittsburgh, PA, Jul. 15–19, 1995, pp. 81–87.

[4] P. J. Angeline, “Adaptive and self-adaptive evolutionary computation,”
in Computational Intelligence: A Dynamic System Perspective, M.
Palaniswami, Y. Attikiouzel, R. J. Marks, D. Fogel, and T. Fukuda,
Eds. New York: IEEE Press, 1995, pp. 152–161.

[5] J. E. Smith and T. C. Fogarty, “Operator and parameter adaptation in
genetic algorithms,” Soft Comput., vol. 1, no. 2, pp. 81–87, Jun. 1997.

[6] A. E. Eiben, R. Hinterding, and Z. Michalewicz, “Parameter control in
evolutionary algorithms,” IEEE Trans. Evolut. Comput., vol. 3, no. 2,
pp. 124–141, Jul. 1999.

[7] R. Storn and K. V. Price, “Differential evolution-A simple and efficient
heuristic for global optimization over continuous Spaces,” J. Global
Optim., vol. 11, pp. 341–359, 1997.

[8] K. Price, R. Storn, and J. Lampinen, Differential Evolution—A Prac-
tical Approach to Global Optimization. Berlin, Germany: Springer-
Verlag, 2005.

[9] V. Feoktistov, Differential Evolution: In Search of Solutions. Berlin,
Germany: Springer-Verlag, 2006.

[10] J. Ilonen, J.-K. Kamarainen, and J. Lampinen, “Differential evolution
training algorithm for feed-forward neural networks,” Neural Process.
Lett., vol. 7, no. 1, pp. 93–105, 2003.

[11] R. Storn, “On the usage of differential evolution for function optimiza-
tion,” in Proc. Biennial Conf. North Amer. Fuzzy Inf. Process. Soc.,
Berkeley, CA, 1996, pp. 519–523.

[12] R. Storn, “Differential evolution design of an IIR-filter,” in Proc. IEEE
Int. Conf. Evolut. Comput., Nagoya, Japan, May 1996.

[13] T. Rogalsky, R. W. Derksen, and S. Kocabiyik, “Differential evolution
in aerodynamic optimization,” in Proc. 46th Annu. Conf. ofCan. Aero-
naut. Space Inst., Montreal, QC, Canada, May 1999, pp. 29–36.

[14] R. Joshi and A. C. Sanderson, “Minimal representation multisensor
fusion using differential evolution,” IEEE Trans. Syst. Man Cybern. A,
Syst. Humans, vol. 29, no. 1, pp. 63–76, Jan. 1999.

[15] R. Storn and K. Price, “Differential evolution-a simple and efficient
adaptive scheme for global optimization over continuous spaces,”
TR-95-012, 1995 [Online]. Available: http://http.icsi.berkeley.edu/
~storn/litera.html

[16] J. Lampinen and I. Zelinka, “On stagnation of the differential evolution
algorithm,” in Proc. 6th Int. Mendel Conf. Soft Comput., P. Ošmera,
Ed., 2002, pp. 76–83.

[17] R. Gämperle, S. D. Müller, and P. Koumoutsakos, “A parameter study
for differential evolution,” in Advances in Intelligent Systems, Fuzzy
Systems, Evolutionary Computation, A. Grmela and N. E. Mastorakis,
Eds. Interlaken, Switzerland: WSEAS Press, 2002, pp. 293–298.

[18] J. Liu and J. Lampinen, “A fuzzy adaptive differential evolution algo-
rithm,” Soft Comput., vol. 9, no. 6, pp. 448–462, Apr. 2005.

[19] A. K. Qin and P. N. Suganthan, “Self-adaptive differential evolution
algorithm for numerical optimization,” in Proc. IEEE Congr. Evolut.
Comput., Edinburgh, Scotland, Sep. 2005, pp. 1785–1791.

[20] K. V. Price, “An introduction to differential evolution,” in New Ideas
in Optimization, D. Corne, M. Dorigo, and F. Glover, Eds. London,
U.K.: McGraw-Hill, 1999, pp. 79–108.

[21] J. Rönkkönen, S. Kukkonen, and K. V. Price, “Real-parameter opti-
mization with differential evolution,” in Proc. IEEE Congr. Evolut.
Comput., Edinburgh, Scotland, Sep. 2005, pp. 506–513.

[22] J. Teo, “Exploring dynamic self-adaptive populations in differential
evolution,” Soft Comput., vol. 10, no. 8, pp. 637–686, 2006.

[23] M. M. Ali and A. Torn, “Population set-based global optimization algo-
rithms: Some modifications and numerical studies,” Comput. Operat.
Res., vol. 31, no. 10, pp. 1703–1725, 2004.

[24] D. Zaharie, “Control of population diversity and adaptation in differen-
tial evolution algorithms,” in Proc. Mendel 9th Int. Conf. Soft Comput.,
R. Matousek and P. Osmera, Eds., Brno, Czech Republic, Jun. 2003,
pp. 41–46.

[25] D. Zaharie and D. Petcu, “Adaptive pareto differential evolution and its
parallelization,” in Proc. 5th Int. Conf. Parallel Process. Appl. Math.,
Czestochowa, Poland, Sep. 2003, pp. 261–268.

[26] H. A. Abbass, “The self-adaptive Pareto differential evolution algo-
rithm,” in Proc. Congr. Evolut. Comput., Honolulu, HI, May 2002, pp.
831–836.

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 07:59:14 UTC from IEEE Xplore. Restrictions apply.

QIN et al.: DIFFERENTIAL EVOLUTION ALGORITHM WITH STRATEGY ADAPTATION FOR GLOBAL NUMERICAL OPTIMIZATION 417

[27] M. G. H. Omran, A. Salman, and A. P. Engelbrecht, “Self-adaptive dif-
ferential evolution,” in Lecture Notes in Artificial Intelligence. Berlin,
Germany: Springer-Verlag, 2005, pp. 192–199.

[28] J. Brest, S. Greiner, B. Boskovic, M. Mernik, and V. Zumer,
“Self-adapting control parameters in differential evolution: A compar-
ative study on numerical benchmark problems,” IEEE Trans. Evolut.
Comput., vol. 10, no. 6, pp. 646–657, Dec. 2006.

[29] S. Das, A. Konar, and U. K. Chakraborty, “Two improved differential
evolution schemes for faster global search,” in ACM-SIGEVO Proc.
Genetic Evolut. Comput. Conf., Washington, DC, pp. 991–998.

[30] U. K. Chakraborty, S. Das, and A. Konar, “Differential evolution with
local neighborhood,” in Proc. Congr. Evolut. Comput., Vancouver, BC,
Canada, 2006, pp. 2042–2049.

[31] J. E. Baker, “Reducing bias and inefficiency in the selection algorithm,”
in Proc. 2nd Int. Conf. Genetic Algorithms, Cambridge, MA, 1987, pp.
14–21.

[32] J. J. Liang, P. N. Suganthan, and K. Deb, “Novel composition test func-
tions for numerical global optimization,” in Proc. IEEE Swarm Intell.
Symp., Pasadena, CA, Jun. 2005, pp. 68–75.

[33] J. Vesterstrøm and R. Thomson, “A comparative study of differential
evolution, particle swarm optimization, and evolutionary algorithms
on numerical benchmark problems,” in Proc. IEEE Congr. Evolut.
Comput., Portland, OR, June 2004, pp. 1980–1987.

[34] A. Iorio and X. Li, “Solving rotated multi-objective optimization prob-
lems using differential evolution,” in Proc. Australian Conf. Artif. In-
tell., Cairns, Dec. 2004, pp. 861–872.

[35] W. J. Zhang and X. F. Xie, “DEPSO: Hybrid particle swarm with differ-
ential evolution operator,” in Proc. IEEE Int. Conf. Syst. Man Cybern.,
Washington, DC, 2003, pp. 3816–3821.

[36] N. Hansen, “Compilation of results on the 2005 CEC benchmark func-
tion set,” May 4, 2006 [Online]. Available: http://www.ntu.edu.sg/
home/epnsugan/index_files/CEC-05/compareresults.pdf

[37] P. N. Suganthan, N. Hansen, J. J. Liang, K. Deb, Y.-P. Chen, A.
Auger, and S. Tiwari, “Problem definitions and evaluation criteria
for the CEC 2005 special session on real-parameter optimization,”
Nanyang Technol. Univ., Singapore, Tech. Rep. KanGAL #2005005,
May 2005, IIT Kanpur, India.

[38] X. Yao, Y. Liu, and G. Lin, “Evolutionary programming made faster,”
IEEE Trans. Evolut. Comput., vol. 3, no. 2, pp. 82–102, Jul. 1999.

[39] Z. Y. Yang, E. K. Tang, and X. Yao:, “Large scale evolutionary opti-
mization using cooperative coevolution,” Inf. Sci., accepted for publi-
cation.

[40] S. Rahnamayan, H. R. Tizhoosh, and M. M. A. Salama, “Opposition-
based differential evolution,” IEEE Trans. Evolut. Comput., vol. 12, no.
1, pp. 64–79, Feb. 2008.

[41] N. Noman and H. Iba, “Accelerating differential evolution using an
adaptive local search,” IEEE Trans. Evolut. Comput., vol. 12, no. 1, pp.
107–125, Feb. 2008.

[42] J. Brest, B. Boskovic, S. Greiner, V. Zumer, and M. S. Maucec, “Perfor-
mance comparison of self-adaptive and adaptive differential evolution
algorithms,” Soft Comput., vol. 11, no. 7, pp. 617–629, May 2007.

A. K. Qin received his B.E. Degree from Depart-
ment of Automatic Control Engineering of Southeast
University, Nanjing, P.R. China in 2001. He com-
pleted his Ph.D. degree in the School of Electrical
and Electronic Engineering, Nanyang Technological
University, Singapore in 2007. His research interests
include pattern recognition, machine learning, neural
network, genetic and evolutionary algorithms, com-
puter vision and bioinformatics.

V. L. Huang received the B. E. degree from
Huazhong University of Sci. & Tech. Wuhan, P. R.
China in 2002. She has been worked toward the Ph.D.
degree in the School of Electrical and Electronic
Engineering, Nanyang Technological University,
Singapore since 2004. Her research interests include
evolutionary algorithms, differential evolution, and
applications of evolutionary algorithms.

P. N. Suganthan received the B.A degree, Post-
graduate Certificate and M.A. degree in electrical
and information engineering from the University
of Cambridge, UK in 1990, 1992 and 1994, re-
spectively. He obtained his Ph.D. degree from the
School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore in
1996. He was a predoctoral Research Assistant in the
Department of Electrical Engineering, University of
Sydney in 1995–96 and a lecturer in the Department
of Computer Science and Electrical Engineering,

University of Queensland in 1996–99. Between 1999 and 2003, he was an
Assistant Professor in the School of Electrical and Electronic Engineering,
Nanyang Technological University, Singapore where he is now an Associate
Professor. He is an associate editor of the IEEE Transactions on Evolutionary
Computation and Pattern Recognition Journal. His research interests include
evolutionary computation, applications of evolutionary computation, neural
networks, pattern recognition and bioinformatics. He is a senior member of the
IEEE.

Authorized licensed use limited to: Central South University. Downloaded on January 22,2022 at 07:59:14 UTC from IEEE Xplore. Restrictions apply.

