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Abstract
Since the suggestion of a computing procedure of multiple Pareto-optimal solutions
in multi-objective optimization problems in the early Nineties, researchers have been
on the look out for a procedure which is computationally fast and simultaneously ca-
pable of finding a well-converged and well-distributed set of solutions. Most multi-
objective evolutionary algorithms (MOEAs) developed in the past decade are either
good for achieving a well-distributed solutions at the expense of a large computational
effort or computationally fast at the expense of achieving a not-so-good distribution
of solutions. For example, although the Strength Pareto Evolutionary Algorithm or
SPEA (Zitzler and Thiele, 1999) produces a much better distribution compared to the
elitist non-dominated sorting GA or NSGA-II (Deb et al., 2002a), the computational
time needed to run SPEA is much greater. In this paper, we evaluate a recently-
proposed steady-state MOEA (Deb et al., 2003) which was developed based on the
ε-dominance concept introduced earlier(Laumanns et al., 2002) and using efficient par-
ent and archive update strategies for achieving a well-distributed and well-converged
set of solutions quickly. Based on an extensive comparative study with four other state-
of-the-art MOEAs on a number of two, three, and four objective test problems, it is ob-
served that the steady-state MOEA is a good compromise in terms of convergence near
to the Pareto-optimal front, diversity of solutions, and computational time. Moreover,
the ε-MOEA is a step closer towards making MOEAs pragmatic, particularly allow-
ing a decision-maker to control the achievable accuracy in the obtained Pareto-optimal
solutions.

Keywords
Multi-objective optimization, evolutionary algorithms, genetic algorithms, Pareto-
optimal solutions, ε-dominance, computational effort, convergence measure, sparsity
measure, hyper-volume metric

1 Introduction

By definition, a search and optimization problem with multiple conflicting objectives
resorts to a set of optimal solutions known as the Pareto-optimal solutions. During the
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recent past, multi-objective evolutionary algorithms (MOEAs) have been gaining in-
creasing attention among researchers and practitioners mainly because of the fact that
they can be suitably applied to find multiple Pareto-optimal solutions in one single sim-
ulation run. This fact alone enables a user to have a less-subjective search in the first
phase of finding a set of well-distributed solutions. Instead of choosing a weight vector
emphasizing one objective over the other in a subjective manner, the goal in an MOEA
is to first find a set of well-distributed solutions close to the true Pareto-optimal front.
Once these solutions are found, in the next phase, some higher-level problem infor-
mation can be used to select one solution. This two-step procedure of multi-objective
problem solving has been discussed in detail in (Deb, 2001). By applying MOEAs to
different search and optimization problems, researchers have demonstrated that such
a procedure is more pragmatic and efficient compared to the preference-based classi-
cal approaches. This procedure is practical because the user gets an opportunity to
investigate a number of other trade-off solutions before choosing one particular op-
timal solution (see (Deb, 2001; Coello et al., 2002; Zitzler et al., 2001a)). The MOEA
search procedure is also algorithmically efficient because the discovery of one solution
close to the Pareto-optimal front will pull a number of other population members to-
wards the Pareto-optimal front, thereby making a parallel and simultaneous discovery
of multiple trade-off solutions. This feature has attracted numerous researchers to de-
velop different MOEAs (NSGA-II (Deb et al., 2002a), SPEA (Zitzler and Thiele, 1999),
SPEA2 (Zitzler et al., 2001b), PAES (Knowles and Corne, 2000), PESA (Corne et al.,
2000), and others). Computer codes (or pseudo-codes) of many of these MOEAs are
also available on the Internet (http://www.iitk.ac.in/pub.htm for NSGA-II and
http://www.tik.ee.ethz.ch/pisa for SPEA2 and others.)

It is clear from the existing studies that there are two distinct goals in the devel-
opment of an MOEA: (i) convergence to the true Pareto-optimal front and (ii) main-
tenance of a well-distributed set of non-dominated solutions. Although a third goal
of achieving both the above tasks in a computationally fast manner is also an impor-
tant matter, this goal has often been ignored in most studies in the past. It is now
well-established that the computation of a well-diversified set of Pareto-optimal solu-
tions is usually time-consuming (Deb et al., 2002b; Laumanns et al., 2002). MOEAs can
be clearly classified into two distinct groups. Some MOEAs use a quick-and-dirty di-
versity preservation operator, thereby finding a reasonably good distribution quickly,
whereas some other MOEAs use a more computationally expensive diversity preser-
vation operator in order to obtain a better distribution of solutions. For example, the
modified non-dominated sorting genetic algorithm (NSGA-II) (Deb et al., 2002a) uses a
crowding approach for diversity preservation that requires a computational complexity
of O(N log N), where N is the population size. On the other hand, the strength Pareto
evolutionary algorithm (SPEA) (Zitzler and Thiele, 1999) uses a clustering approach
involving Euclidean distance computations that requires a computational complexity
of O(N3). Although in two-objective optimization problems, the diversity obtained by
these two MOEAs was reported to be almost similar (Deb et al., 2002a), a remarkably
large difference was evident in solving three or more objective problems (Deb et al.,
2002b; Khare et al., 2003) . The SPEA produced a much better distribution at the ex-
pense of a large computational effort.

Recently, the authors proposed a steady-state MOEA (Deb et al., 2003) based on
the ε-dominance concept (Laumanns et al., 2002) and demonstrated its working prin-
ciple with a few proof-of-principle results. In this paper, we address the tripartite task
of convergence, maintenance of diversity, and computational efficiency desired in an
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MOEA further and extensively evaluate the ε-MOEA procedure on standard test prob-
lems (having up to four objectives) and compared with four commonly-used MOEAs.
The ε-dominance does not allow two solutions with a difference less than εi in the i-th
objective to be non-dominated to each other, thereby allowing a good diversity to be
maintained in a population. Besides, the method is quite pragmatic because it allows
the user to choose a suitable εi depending on the desired resolution in the i-th objective.
In the ε-MOEA, two populations (EA and archive) are evolved simultaneously and in-
dependently. Using one solution each from both populations, two offspring solutions
are created. Each offspring is then used to update both parent and archive populations.
The archive population is updated based on the ε-dominance concept, whereas a usual
domination concept is used to update the parent population. Since the ε-dominance
concept reduces the cardinality of the Pareto-optimal set and since a steady-state EA is
suggested, the maintenance of a diverse set of solutions is possible with a small com-
putational time.

In the remainder of the paper, we briefly discuss a clustered version of NSGA-
II and then present the ε-MOEA approach in detail. Thereafter, these two MOEAs
are compared along with the original NSGA-II and a couple of other state-of-the-art
MOEAs – SPEA2 (Zitzler et al., 2001b) and the Pareto envelope based selection algo-
rithm or PESA (Corne et al., 2000) – on a number of two, three and four objective test
problems. Finally, we detail a number of important conclusions about the performance
of each MOEA which result from the study.

2 A Good Distribution Versus a Quick Computation Time

Besides the convergence to the Pareto-optimal front, one of the equally important goals
of multi-objective optimization is to find and maintain a widely distributed set of so-
lutions. Since the Pareto-optimal front can be a convex, non-convex, disconnected, or
piece-wise continuous hyper-surface, there are differences of opinion about defining a
diversity measure denoting the true spread of a finite set of solutions on or close to the
Pareto-optimal front. Although the task is easier for a two objective space, the diffi-
culty arises in the case of higher-dimensional objective spaces. This is the reason why
researchers have developed different diversity measures, such as the hyper-volume
measure (Zitzler and Thiele, 1999), the spread measure (Schott, 1995), the chi-square
deviation measure (Srinivas and Deb, 1994), the R-measures (Hansen and Jaskiewicz,
1998), and others. In maintaining diversity among population (or archive) members,
several researchers have used different diversity-preserving operators, such as clus-
tering (Zitzler and Thiele, 1999), crowding (Deb et al., 2002a), pre-specified archiving
(Knowles and Corne, 2000), and others. Interestingly, these diversity-preserving oper-
ators produce a trade-off between the achievable diversity and the computational time.

The clustering approach of SPEA forms N clusters (where N is the archive size)
from N ′(> N) population members by initially assuming each of N ′ members to be a
separate cluster. Thereafter, all

(
N ′

2

)
Euclidean distances in the objective space are com-

puted. Then, the two clusters with the smallest distance are merged together to form
one bigger cluster. This process reduces the number of clusters to N ′ − 1. The inter-
cluster distances are computed again1 and another merging is done. This process is
repeated until the number of clusters is reduced to N . With multiple population mem-
bers occupying two clusters, the average distance of all pair-wise distances between
solutions of the two clusters is used. Figure 1 illustrates this procedure. For the two

1A special book-keeping procedure can be used to eliminate further computation of pair-wise Euclidean

Evolutionary Computation Volume 13, Number 4 503



K. Deb, M. Mohan, and S. Mishra

Cluster 1

Cluster 2

Cluster 3

f2

f1

Figure 1: The clustering approach used
in SPEA.
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Figure 2: The crowding approach used
in NSGA-II.

clusters shown in dashed lines, the average Euclidean distance among the solutions of
two clusters is computed as shown in the figure. The average distance is computed for
all pairs of clusters and the two clusters with the smallest average distance are merged
together, as shown in the figure. If (N ′ −N) is of the order of N (the archive size), then
the procedure requires O(N3) computations in each iteration. Since this procedure is
repeated in every iteration of SPEA, the computational overhead as well as the stor-
age requirements for implementing the clustering concept are large. However, since
the clustering is implemented based on the Euclidean distance among solutions, the
resulting distribution of clustered solutions is usually good.

On the other hand, NSGA-II uses a crowding operator, in which N ′ (as large as
2N , where N is the population size) solutions are processed objective-wise. In each ob-
jective direction, the solutions are first sorted in the ascending order of objective value.
Thereafter, for each solution an objective-wise crowding distance is assigned equal to the
difference between normalized objective value of the neighboring solutions. Figure 2
shows the hyper-boxes used to calculate the crowding distance of each solution on a
non-dominated front. The overall crowding distance is equal to the sum of the crowd-
ing distances from all objectives (computed as the half of the perimeter of the enclosing
hyper-box). Once all distance computations are achieved, the solutions are sorted in
the descending order of crowding distance and the first N solutions are chosen. This
procedure requires O(N log N) computations. Although the objective-wise distance
computation in NSGA-II makes the algorithm computationally faster, the diversity in
solutions achievable by NSGA-II is not expected to be as good as that achievable with
SPEA.

3 Two Approaches for a Better Spread

Here, we discuss in detail a simple modification to the NSGA-II procedure and an
ε-dominance based MOEA introduced by the authors recently (Deb et al., 2003) for
the main purpose of achieving a better distribution of Pareto-optimal solutions.

3.1 Clustered NSGA-II (C-NSGA-II)

The first approach is a straightforward replacement of NSGA-II’s crowding method
by the clustering one as used in SPEA. After the parent and offspring population are

distances.
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combined into a bigger population of size 2N and this combined population is sorted
into different non-domination levels, only N good solutions are required to be chosen
based on their non-domination levels and nearness to each other (Deb et al., 2002a).
This procedure is illustrated in Figure 3. For the scenario depicted in the figure, the

distance
sorting

Crowding
sorting

Non−dominated

F

F1

2

3

tR

F

Rejected

P(t)

Q(t)

P(t+1)

n’
N’

Figure 3: NSGA-II procedure.

first two non-dominated fronts are directly copied to the new population P (t + 1),
while all members of the third non-dominated front cannot be copied, due to lack of
available population slots. The required number of solutions (N ′) from the third front
are chosen in order to have the maximum diversity (in terms of the crowding distance)
among the chosen solutions. This is where the original NSGA-II uses a computation-
ally effective crowding procedure, described in the previous section (Figure 2). In the
clustered NSGA-II approach, we replace the crowding procedure with the clustering
approach described in Figure 1. In this procedure, the solutions in the last permissible
non-dominated level (the third front for the scenario in Figure 3) are considered for the
clustering procedure. Let us suppose that the number of population slots remaining
to be filled is N ′ and the solutions in the last permissible non-domination level from
the combined population is n′. By definition, n′ ≥ N ′. To choose N ′ solutions from
n′, we form N ′ clusters from n′ solutions and choose one representative solution from
each cluster. Ideally the solutions marked with a box in Figure 3 can be chosen as a
representative solution of each box. In this procedure, the extreme solution of each
extreme cluster can be chosen and the solution close to the center of a cluster can be
chosen from intermediate clusters. The clustering algorithm used in this study is sim-
ilar to that used in SPEA (Zitzler and Thiele, 1999). Although this requires a larger
computational time, the clustered NSGA-II is expected to find a better distributed set
of Pareto-optimal solutions than the original NSGA-II, but at the expense of a larger
computational overhead.

3.2 A Steady-State ε-MOEA

The above algorithm is a generational evolutionary algorithm in which all N popula-
tion members (offspring) are created before comparing them with parent solutions. In
the context of single-objective EAs, it has been adequately shown that computational
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speed can be achieved by using a steady-state EA in which every offspring is com-
pared with the parent population as soon as it is created (Goldberg and Deb, 1991).
This way, the parent population gets updated in a steady-state manner, thereby pro-
viding better chances of creating good offspring solutions. Unfortunately, there are not
many steady-state MOEAs in the literature and authors have proposed an ε-MOEA re-
cently (Deb et al., 2003). Here, we elaborate this method and later evaluate its efficiency
by comparing it with a number of state-of-the-art MOEAs. The ε-MOEA procedure is
presented below:

Step 1 Randomly initialize a population P (0). The
non-dominated solutions of P (0) are copied to
an archive population E(0). Set the iteration
counter t = 0.

Step 2 One solution p is chosen from the population
P (t) using the pop selection procedure.

Step 3 One solution e is chosen from the archive
population A(t) using an archive selection
procedure.

Step 4 One offspring solutions c is created using p
and e.

Step 5 Solution c is included in P (t) using a
pop acceptance procedure.

Step 6 Solution c is included in A(t) using a
archive acceptance procedure.

Step 7 If termination criterion is not satisfied,
set t = t + 1 and go to Step 2, else report A(t).

It is clear from the above algorithm that the ε-MOEA uses two co-evolving populations:
an EA population P (t) and an archive population A(t) (where t is the iteration counter).
Figure 4 illustrates the algorithm. The MOEA begins with an initial population P (0).
The archive population E(0) is assigned with the ε-non-dominated solutions of P (0).
Thereafter, two solutions, one each from P (t) and A(t) are chosen for mating and an
offspring solution c is created. Thereafter, the solution c can enter each of the two
populations with different strategies. Here, we discuss the selection and acceptance
procedures which can be used in the ε-MOEA:

Pop selection procedure To choose a solution from P (t), two population members
from P (t) are picked up at random and a domination check (in the ‘usual’ sense,
shown on left in Figure 4 for minimization of objectives) is made. If one solu-
tion dominates the other, the former is chosen. Otherwise, the event indicates that
these two solutions are non-dominated to each other and in such a case we simply
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Figure 4: ε-MOEA procedure. In showing the dominated regions, the minimization of
an objective function is assumed.

choose one of them at random.

Archive selection procedure To choose a solution e from A(t), several strategies in-
volving a certain relationship with the chosen p can be made. Here, we randomly
pick a solution from A(t).

Pop acceptance procedure The decision whether the offspring c will replace any pop-
ulation member can be made using different strategies. Here, we compare the
offspring with all population members. If the offspring dominates one or more
population members, then the offspring replaces one of them (chosen at random).
On the other hand, if any population member dominates the offspring, it is not
accepted. When both the above tests fail (that is, the offspring is non-dominated
to the population members), the offspring replaces a randomly chosen population
member, thereby ensuring that the EA population size remains unchanged.

Archive acceptance procedure For the offspring c to be included in the archive pop-
ulation, the offspring is compared with each member of the archive using
ε-dominance criterion (Laumanns et al., 2002). We describe the procedure in the
following paragraph.

Every solution in the archive is assigned an identification array (B =
(B1, B2, . . . , BM )T , where M is the total number of objectives) as follows:

Bj(f) =
{ �(fj − fmin

j )/εj�, for minimizing fj ,
�(fj − fmin

j )/εj�, for maximizing fj . (1)

where fmin
j is the minimum possible value of the j-th objective and εj is the allow-

able tolerance in the j-th objective below which two values are insignificant to the user.
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This εj value is the same as the ε used in the ε-dominance definition (Laumanns et al.,
2002). The identification array divides the whole objective space into hyper-boxes, each
having εj size in the j-th objective. Figure 5 illustrates that the solution P ε-dominates
the entire region ABCDA (in the minimization sense), whereas the original dominance
definition allows P to dominate only the region PECFP. For brevity, the rest of the dis-
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Figure 5: The ε-dominance concept (for minimizing f1 and f2).

cussion is confined to minimization cases alone. However, a similar analysis can be
followed for maximization or mixed cases as well. The identification array of P is the
coordinates of point A in the objective space. With the identification arrays calculated
for the offspring ci and each archive member a, we use the following procedure (see
Figure 6 for an illustration of each of the four cases which may appear): If the identi-
fication array Ba of any archive member a dominates that of the offspring ci, then it
means that the offspring is ε-dominated by this archive member and so the offspring
is not accepted. This case is illustrated in Figure 6(a). On the other hand, if Bci of the
offspring dominates the Ba of any archive member a, the archive member is deleted
and the offspring is accepted (Figure 6(b)). If neither of the above two cases occur, then
it means that the offspring is ε-non-dominated with the archive members. We separate
this case into two. If the offspring shares the same B vector with an archive member
(meaning that they belong to the same hyper-box), then they are first checked for the
usual non-domination. If the offspring dominates the archive member or the offspring
is non-dominated to the archive member but is closer to the B vector (in terms of the
Euclidean distance) than the archive member, then the offspring is retained. These two
cases are illustrated in Figure 6(c). Solutions 1 and 2 in Figure 5 also illustrate the lat-
ter case. These two solutions occupy the same hyper-box (or have the same B vector)
and they are non-dominated according to the usual definition. Since solution 1 has a
smaller distance to the B vector, it is retained and solution 2 is deleted. In the event
of an offspring not sharing the same B vector with any archive member, the offspring
is accepted. This is illustrated in Figure 6(d). It is interesting to note that the former
condition ensures that only one solution with a distinct B vector would exist in each
hyper-box. This means that each hyper-box on the Pareto-optimal front can be occu-
pied by only one solution, thereby providing two properties: (i) well-distributed solu-
tions can be maintained and (ii) the final archive size amounting to the total number of
Pareto-optimal solutions will be bounded. For this reason, no specific upper limit on
the archive size needs to be pre-fixed. The archive will get bounded according to the
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Figure 6: Four cases of accepting a child in the archive are illustrated.

chosen ε-vector.
The above procedure is continued for a specified number of iterations and the

final archive members are reported as the obtained solutions. A careful observation
will reveal the following properties of the ε-MOEA procedure:

1. It is a steady-state MOEA.

2. It emphasizes non-dominated solutions.

3. It maintains the diversity in the archive by allowing only one solution to be present
in each pre-assigned hyper-box on the Pareto-optimal front.

4. It is an elitist approach.

A C code implementing the ε-MOEA procedure is available at
http://www.iitk.ac.in/kangal/soft.htm. The objective space is divided
into a number of grids (or hyper-boxes) and the diversity is maintained by ensuring
that a grid or hyper-box can only be occupied by one solution. Although, PAES and its
variants (Knowles and Corne, 2000) are developed with the similar idea, we discuss in
the following section that ε-MOEA is a more general concept.

3.3 Differences with Other Grid-Like MOEAs

Although the above steady-state ε-MOEA may look similar to the multi-parent PAES
(Knowles and Corne, 2000), there are some differences. The PAES also divides the en-
tire objective space into a number of hyper-boxes. In a steady-state approach, each
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offspring is compared with a continuously updated archive population for its inclu-
sion. In the event of the offspring being non-dominated with the archive population, it
is compared with the hyper-box having the maximum number of solutions in it. If the
offspring resides in a less crowded hyper-box, it is accepted and a member from the
maximally-crowded hyper-box is deleted at random. The ε-dominance concept imple-
mented here with the B-vector domination-check does not allow two non-dominated
solutions with a difference less than εi in the i-th objective to be both present in the final
archive. On the other hand, PAES allows more than one member to be present in each
hyper-box. Figure 5 can be used to show that fewer non-dominated solutions will be
obtained with the ε-MOEA approach than PAES. The procedure will not only allow a
reduction in the size of the final Pareto-optimal set, but it also has a practical signifi-
cance. Since a user is not interested in obtaining solutions with a difference less than
εi in the i-th objective, the above procedure allows the user to find solutions according
to his/her desire. Even though the actual number of solutions to be obtained by the
ε-MOEA procedure is unknown, it is bounded. Because of this reason, the overall com-
putational time is expected to be smaller. For the same reason, for a fixed population
size, ε-MOEA is also likely to find a better spread of solutions than PAES.

The archive update strategy is also similar to that in another study (Laumanns
et al., 2002), except in the case when two solutions have the same B vector. Here, a
solution non-dominated to an existing archive member but sharing a common hyper-
box can still be chosen if it is closer to its B vector. The earlier study only accepted an
offspring if it dominated the existing member. Here we have presented a steady-state
MOEA procedure with an EA population update strategy, an archive update strategy,
and a sound recombination plan.

4 Simulation Results

The original study (Deb et al., 2003) performed a limited simulation study compar-
ing ε-MOEA with only NSGA-II and the clustered NSGA-II and performing only one
simulation run from a particular initial population and using only a few two and three-
objective test problems. In this section, we investigate the performance of ε-MOEA in
more elaborate fashion:

1. The ε-MOEA is compared with SPEA2, PESA, NSGA-II, and clustered NSGA-II.
These algorithms are commonly-used and have demonstrated their abilities in con-
verging and maintaining diversity of Pareto-optimal solutions.

2. The ε-MOEA is applied on 12 test problems (five two-objective ZDT problems, six
three-objective DTLZ problems, and one four-objective DTLZ problem).

3. Three performance metrics are used to measure the progress in convergence, main-
tenance of diversity and computational time.

4. In each case, mean and standard deviation of each of the three performance metrics
are compared among all five MOEAs.

SPEA2 (Zitzler et al., 2001b) is an advanced and modified version of SPEA (Zit-
zler and Thiele, 1999). The SPEA2 uses an improved fitness assignment scheme and
a somewhat faster k-th nearest neighbor approach for maintaining diverse solutions,
instead of the clustering procedure used in SPEA. In the SPEA2 used here, we keep the
sizes for the EA and archive populations the same. We have assigned this size identical
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to the NSGA-II population size (N ). As per the suggestion of the developers, for the
nearest neighbor approach, we have set k =

√
2N .

The PESA is a population-version of PAES, in which emphasis is given to solutions
residing in a less-crowded hyper-box in both the selection and the offspring-acceptance
operators. As suggested in (Corne et al., 2000), we have used an EA population size
of 10 and an archive population size of 100 in all the problems discussed in this study.
The PESA requires the user to set a hyper-box size parameter. Based on some trail-and-
error experiments, we have set 32×32 hyper-boxes for two-objective problems, 6×6×6
for three-objective problems, and 12 × 12 × 12 × 12 for the four-objective problem.

The details of the test problems can be found elsewhere (Deb, 1999; Deb et al.,
2002b). DTLZ8 is a constrained optimization problem which is also included in the
set of test problems. The problems involve as large as 30 decision variables. Since all
test problems involve real-valued decision variables, we have used the SBX recombina-
tion operator (Deb and Agrawal, 1995) and the polynomial mutation operator (Deb and
Goyal, 1996) to create an offspring solution. Recent studies (Ziztler et al., 2003; Knowles
and Corne, 2002) suggest the use of binary performance indicators for an appropriate
evaluation of two sets of non-dominated data. Although we acknowledge the impor-
tance of using binary performance indicators, due to computational complexities in-
volved in them, in this study we use two unary performance indicators (distance from
the true Pareto-optimal set and a sparsity measure), each independently indicating the
quality of solutions for two different goals of multi-objective optimization: (i) extent
of convergence and (ii) extent of sparsity. We also use the hyper-volume measure (Zit-
zler and Thiele, 1999) for finding a combined convergence and diversity estimate for
some test problems. Since all the problems considered in this paper are test problems,
the exact knowledge of the Pareto-optimal front is available beforehand. For the con-
vergence metric, we calculate H uniformly distributed (on the f1-f2-· · ·-fM−1-plane)
solutions (the set P ∗) on the Pareto-optimal front. For each such point in the (M − 1)-
dimensional plane, fM is calculated from the known Pareto-optimal front description.
Then, the Euclidean distance of each obtained solution from the nearest solution in P ∗

is computed. The average of the distance value of all obtained solutions is defined as
the convergence measure here. The sparsity metric calculation is a somewhat involved
and is described in detail while discussing the three-objective optimization results. For
a fair comparison, each algorithm is run for a fixed number of solution evaluations.
Importantly, we also present the computational time needed to run each MOEA on the
same computer (a 1.7 GHz Pentium IV processor).

4.1 Two-Objective Test Problems

First, we consider five two-objective ZDT test problems (Deb, 1999; Zitzler et al., 2000),
each providing a different kind of difficulty for MOEAs.

4.1.1 ZDT1 Test Problem

The 30-variable (n = 30) ZDT1 problem has a convex Pareto-optimal front. We use a
population size of N = 100 and the real-parameter SBX recombination operator with
pc = 1 and ηc = 15, and a polynomial mutation operator with pm = 1/n and ηm = 20
(Deb, 2001). In order to investigate the effect of ε (ε1 = ε2 = ε is assumed here) used
in the ε-MOEA, we use different ε values and count the number of solutions found
in the archive after 20,000 solution evaluations in each case. Figure 7 shows that as ε
increases, the number of obtained solutions varies almost proportional to 1/ε. For an
equally-sloped Pareto-optimal straight line in the range f1 ∈ [0, 1], we would expect 1/ε
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solutions to appear in the archive. But in the case of a non-linear Pareto-optimal front,
one would expect a smaller number of solutions in the archive. This will be clear from
Figure 8, which shows the distribution of solutions obtained with ε = 0.05. The boxes
within which a solution lies are also shown in the figure. It is interesting to note that all
solutions are ε-non-dominated with respect to each other and in each of the expected
boxes only one solution is obtained. In the boxes with f1 ∈ [0, 0.05], one Pareto-optimal
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Figure 7: The number of solutions versus ε
on ZDT1.
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Figure 8: ε-MOEA distribution on ZDT1
with ε = 0.05.

solution in the minimum f2 box (f2 ∈ [0.75, 0.80]) is obtained. The four boxes on top of
this box (with larger f2) are ε-dominated and hence not retained in the final archive.

To compare the five MOEAs, we use the convergence metric discussed above,
the hyper-volume metric (Zitzler and Thiele, 1999), and a sparsity metric. We use
εi = 0.0075 in order to get roughly 100 solutions in the archive after 20,000 solution
evaluations. The convergence metric is computed with H = 1, 000 equi-spaced so-
lutions on the Pareto-optimal front. Table 1 shows that the convergence of solutions
is best achieved with ε-MOEA. For the hyper-volume measure, we use the reference
point at (1.1, 1.1)T .

Although the convergence of the ε-MOEA is better than that of others in this prob-
lem, the hyper-volume measure of ε-MOEA is not found to be so good. This is mainly
due to the absence of extreme solutions on the Pareto-optimal front (refer Figure 8).
Fixing a ε-vector fixes a unique combination of hyper-boxes in which a Pareto-optimal
solution is expected. Figure 8 marks that particular unique combination of boxes for
the ZDT1 problem with ε1 = ε2 = 0.05. Because of the ε-dominance concept, the ex-
treme solutions usually get dominated by ones that are both within εi distance in some
objective and comparatively better in some other. The presence or absence of the ex-
treme solutions makes a significant difference in the hyper-volume measure, a matter
we discuss later in more detail. Thus, the hyper-volume measure may not be an ideal
metric for measuring diversity and convergence together for a set of solutions. We
suggest and use a different diversity measure, called the sparsity measure (which we
have described in Section 4.3 in detail for any number of objectives). In short, the spar-
sity measure first projects the obtained solutions on a suitable hyper-plane (a normal
unit vector �η = (1/

√
2, 1/

√
2)T for ZDT1 is used here) and then computes the non-

overlapping area occupied by the solutions on that plane. The higher the metric value,
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Table 1: Performance comparison of the five MOEAs for ZDT1, ZDT2, ZDT3, ZDT4,
and ZDT6 with a limit of 20,000 function evaluations. Best metric values are shown
bold. Average of 10 runs is indicated by ’Avg.’ and standard deviation is indicated by
’SD’.

Convergence measure Sparsity Hyper-volume Time (sec)
MOEA Avg. SD Avg. SD Avg. SD Avg. SD

ZDT1
NSGA-II 0.00054898 6.62e-05 0.858 0.0202 0.8701 3.85e-04 18.29 0.51
C-NSGA-II 0.00061173 7.86e-05 0.994 0.0043 0.8713 2.25e-04 1911.18 98.10
PESA 0.00053481 12.62e-05 0.754 0.0331 0.8680 6.76e-04 11.40 0.54
SPEA2 0.00100589 12.06e-05 0.999 0.0014 0.8708 1.86e-04 595.94 25.02
ε-MOEA 0.00039545 1.22e-05 0.991 0.0050 0.8702 8.25e-05 1.11 0.03

ZDT2
NSGA-II 0.00037851 1.88e-05 0.855 0.0250 0.5372 3.01e-04 18.63 0.51
C-NSGA-II 0.00040011 1.91e-05 0.994 0.0015 0.5374 4.42e-04 1953.30 123.67
PESA 0.00037942 2.95e-05 0.759 0.0202 0.5329 11.25e-04 11.35 0.62
SPEA2 0.00082852 11.38e-05 0.999 0.0015 0.5374 2.61e-04 539.51 17.84
ε-MOEA 0.00046448 2.47e-05 0.994 0.0037 0.5383 6.39e-05 1.52 0.02

ZDT3
NSGA-II 0.00232321 13.95e-05 0.887 0.0675 1.3285 1.27e-04 20.86 0.89
C-NSGA-II 0.00239445 12.30e-05 0.991 0.0083 1.3277 9.82e-04 1421.89 89.20
PESA 0.00211373 15.38e-05 0.882 0.0492 1.2901 7.49e-03 18.27 1.39
SPEA2 0.00260542 15.46e-05 0.996 0.0023 1.3276 2.54e-04 438.92 14.77
ε-MOEA 0.00175135 7.45e-05 0.986 0.0055 1.3287 1.31e-04 1.09 0.02

ZDT4
NSGA-II 0.00639002 0.0043 0.958 0.0328 0.8613 0.00640 11.21 1.09
C-NSGA-II 0.00618386 0.0744 0.998 0.0029 0.8558 0.00301 124.60 45.19
PESA 0.00730242 0.0047 0.798 0.0352 0.8566 0.00710 6.56 0.57
SPEA2 0.00769278 0.0043 0.989 0.0132 0.8609 0.00536 111.96 35.62
ε-MOEA 0.00259063 0.0006 0.987 0.0076 0.8509 0.01537 0.59 0.04

ZDT6
NSGA-II 0.07896111 0.0067 0.815 0.0157 0.3959 0.00894 10.19 0.31
C-NSGA-II 0.07940667 0.0110 0.995 0.0029 0.3990 0.01154 2916.23 382.76
PESA 0.06415652 0.0073 0.748 0.0345 0.4145 0.00990 10.57 0.28
SPEA2 0.00573584 0.0009 0.998 0.0029 0.4968 0.00117 319.67 29.89
ε-MOEA 0.06792800 0.0118 0.996 0.0023 0.4112 0.01573 0.82 0.01

the better is the distribution. This measure is also normalized so that the maximum
possible non-overlapping area is 1.000, indicating a complete non-overlap among pro-
jected solutions. The measure also involves a size parameter, which is adjusted in such
a way that one of the competing MOEAs achieve a near 100% non-overlapping area.
For ZDT1, SPEA2 achieves the best average sparsity measure of 0.999 (over five runs),
while those of C-NSGA-II (0.994) and ε-MOEA (0.991) are close behind.

The table also presents the average of actual computational time taken by each
MOEA over five different runs. It is interesting to note that the ε-MOEA obtains the
best convergence and a good distribution of solutions in a computational time at least
an order of magnitude smaller than its nearest competitor. With respect to the clus-
tered MOEAs (SPEA2 and C-NSGA-II) the computational time needed in the ε-MOEA
is three to four orders of magnitudes less. Although the PESA obtains the next-best
computational time, the diversity obtained in the solutions is the poorest.

Another interesting aspect to note is that the standard deviation obtained for all

Evolutionary Computation Volume 13, Number 4 513



K. Deb, M. Mohan, and S. Mishra

three performance metrics among all 10 independent simulation runs is small com-
pared to the average metric values for all algorithms. This indicates that the chosen
parameter setting for each algorithm is adequate for the algorithms to demonstrate
their robustness to different initial populations.

4.1.2 ZDT2 Test Problem
This problem tests an MOEA’s ability to find non-convex Pareto-optimal solutions
(Deb, 1999). All five MOEAs are applied to this problem having 30 decision variables.
An εi = 0.0076 is used in the ε-MOEA to find roughly 100 solutions in the final archive.
The rest of the parameters are the same as those used in ZDT1. Table 1 shows the metric
values representing the performance of the competing MOEAs. The NSGA-II performs
the best in terms of convergence. Although the SPEA2 is the best in terms of the sparsity
measure, it experiences difficulty in convergence. However, like in ZDT1, the ε-MOEA
demonstrates good convergence and sparsity measures in a very short computational
time. Again, the algorithms demonstrate adequate robustness to variation to the initial
population.

4.1.3 ZDT3 Test Problem
This problem provides difficulties by introducing discontinuities in the Pareto-optimal
front (Deb, 1999). Here too, 30 decision variables are used. To obtain roughly 100
Pareto-optimal solutions, εi = 0.00261 is used. Other parameters are kept the same
as before. The table shows that the ε-MOEA achieves the best convergence and takes
the least computational time. In terms of preserving diversity, the SPEA2 performs the
best, with C-NSGA-II and ε-MOEA providing comparable values.

4.1.4 ZDT4 Test Problem
Table 1 also shows the performance measures on the 10-variable ZDT4 problem (Deb,
1999). This problem has a number of local Pareto-optimal fronts, thereby providing
hurdles for an MOEA to converge to the global Pareto-optimal front. All parameters
used here are identical to that used in ZDT1, except that εi = 0.0058 is used to get
around 100 solutions in the final archive (after 20,000 solution evaluations). The table
shows that the ε-MOEA is better than the other four MOEAs in terms of convergence
and computational time, and is also good in terms of diversity among obtained solu-
tions.

We ignore solving the ZDT5 test problem, as this problem is defined for binary
strings. We restrict ourselves to solving real-parameter problems in this paper and
highlight that the ε-MOEA can also be applied to binary-coded problems by simply
changing the recombination and mutation operators.

4.1.5 ZDT6 Test Problem
The 10-variable ZDT6 problem has a non-uniform density of solutions across the
Pareto-optimal front (Deb, 1999). Here, we use εi = 0.0067 to get about 100 solutions in
the archive after 20,000 solution evaluations. SPEA2 performs the best in both sparsity
and convergence, but at the expense of a large computational time. The ε-MOEA is su-
perior to all other MOEAs in terms of the computational time and also has a reasonably
good convergence and diversity measures.

Thus, from the two-objective problems studied above, we can conclude that the
ε-MOEA produces a good convergence and diversity with a smaller (by at least an
order of magnitude) computational time than the other four state-of-the-art MOEAs.
SPEA2 and C-NSGA-II both give very good diversity, closely followed by ε-MOEA.
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The disadvantage with SPEA2 and C-NSGA-II lies in the amount of computation time
(three or four orders of magnitude more than that needed by the ε-MOEA) they de-
mand. The PESA performs poorly in achieving the adequate diversity in all problems.
However, the ε-MOEA provides a very good compromise between convergence, di-
versity, and computational time. Table 1 also indicates that ε-MOEA produces a small
standard deviation value for all metrics, thereby indicating that ε-MOEA is a reliable
and robust algorithm for multi-objective optimization.

4.2 Effect of Limiting Evaluations

In the above experiments, we have presented the solutions obtained after 20,000 func-
tion evaluations. Here, we rerun some of the experiments for 10,000 function eval-
uations to investigate if any algorithm had a better convergence property. We keep
the remaining parameters identical and show three performance measures for three
competing algorithms for 10,000 function evaluations in Table 2. It is clear from the

Table 2: Performance comparison of the three MOEAs for ZDT1, ZDT2, ZDT3, ZDT4,
and ZDT6 run up to 10,000 function evaluations.

Convergence measure Sparsity Hyper-volume
MOEA Avg. SD Avg. SD Avg. SD

ZDT1
NSGA-II 0.00064963 6.37e-05 0.959 0.0103 0.8705 2.13e-04
SPEA2 0.00967400 1.75e-03 1.000 0.0000 0.8568 2.64e-03
ε-MOEA 0.00040322 1.79e-05 1.000 0.0000 0.8703 6.41e-05

ZDT2
NSGA-II 0.00041808 2.25e-04 0.899 0.2459 0.4518 0.1801
SPEA2 0.01192230 5.48e-03 0.802 0.4167 0.4305 0.1704
ε-MOEA 0.00047377 2.87e-05 1.000 0.0000 0.5379 7.59e-05

ZDT3
NSGA-II 0.00235714 1.73e-04 0.954 0.0378 1.3120 0.0351
SPEA2 0.00531642 6.29e-04 0.997 0.0019 1.3064 0.0042
ε-MOEA 0.00191443 7.43e-05 1.000 0.0000 1.3142 0.0262

ZDT4
NSGA-II 0.37601900 0.1605 0.949 0.0375 0.3207 0.1992
SPEA2 0.30709100 0.2101 0.585 0.3544 0.2454 0.3475
ε-MOEA 0.01536600 0.0389 1.000 0.0000 0.8176 0.0629

ZDT6
NSGA-II 0.08236520 0.0036 0.902 0.0328 0.3940 0.0043
SPEA2 0.21286500 0.0377 0.788 0.0400 0.2357 0.0463
ε-MOEA 0.07294320 0.0073 1.000 0.0000 0.4040 0.0098

table that in all problems ε-MOEA and NSGA-II converge much faster near to the true
Pareto-optimal front than SPEA2. Moreover, both ε-MOEA and NSGA-II converges
with a better diversity. However, in all cases ε-MOEA is able to come to close to the
final front in about 10,000 evaluations only. By comparing Tables 1 and 2, it can be seen
that both SPEA2 and NSGA-II are far away from the true front in the case of ZDT4
and in ZDT6, SPEA2 is away from the true front. In general, SPEA2 makes a slower
convergence compared to ε-MOEA and NSGA-II. Thus, in addition to maintaining a
good spread, ε-MOEA is also better in terms the rate of convergence to the true Pareto-
optimal front.
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Figure 9: NSGA-II distribu-
tion on DTLZ1.
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Figure 10: C-NSGA-II dis-
tribution on DTLZ1.
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Figure 11: ε-MOEA distri-
bution on DTLZ1.
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Figure 12: SPEA2 distribu-
tion on DTLZ1.
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Figure 13: PESA distribu-
tion on DTLZ1.

4.3 Three-Objective Test problems

Now, we consider six, three-objective test problems developed elsewhere (Deb et al.,
2002b).

4.3.1 DTLZ1 Test Problem

First, we consider the three-objective DTLZ1 test problem with n = 7 variables. The
Pareto-optimal solutions lie on a three-dimensional plane satisfying: f1+f2+f3 = 0.5 in
the range f1, f2, f3 ∈ [0, 0.5]. For each algorithm, we use a population size of 100, real-
parameter representation with the SBX recombination (with ηc = 15 and pc = 1), the
polynomial mutation operator (with ηm = 20 and pm = 1/n) (Deb, 2001), and a max-
imum of 30,000 function evaluations. For ε-MOEA, we have chosen ε = [ 5

24 , 5
24 , 5

10 ]T .
The solutions obtained in each case are shown on the objective space in Figures 9 to 13
for different MOEAs.

It is clear from the figures that the distribution of solutions with the original NSGA-
II and PESA is poor compared to the other three MOEAs. Using H = 5, 000 solutions,
we tabulate the average convergence measure for five independent runs in column 2 of
Table 3. It is observed that the convergence of the ε-MOEA is relatively better than that
of the other four MOEAs with identical function evaluations.

Column 4 of the table shows the hyper-volume measure (averaged over five runs)
calculated with respect to the reference solution at f1 = f2 = f3 = 0.7. Since a large
hyper-volume is better for minimization problems, the table indicates that the SPEA2
is the best, followed by the NSGA-II. But Figure 9 and Table 3 show that the NSGA-
II is neither better in sparsity nor in convergence than ε-MOEA. The hyper-volume
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Table 3: Comparison of five MOEAs in terms of their convergence and diversity mea-
sures on DTLZ1.

Convg. measure Sparsity Hyper-volume Time (sec)
MOEA Avg. SD Avg. SD Avg. SD Avg. SD
NSGA-II 0.00351 0.00067 0.84111 0.03570 0.31322 5.893e-04 41.07 10.640
C-NSGA-II 0.00346 0.01583 0.99289 0.00777 0.31308 14.119e-04 1098.84 275.077
PESA 0.00360 0.00290 0.74156 0.03338 0.28248 33.242e-04 12.22 0.837
SPEA2 0.00333 0.03541 0.99978 0.00050 0.31598 6.977e-04 549.88 37.008
ε-MOEA 0.00329 0.00092 0.981326 0.01815 0.30088 15.020e-04 1.55 0.133

metric fails to capture this aspect, despite a better convergence and sparsity of ε-MOEA
solutions. This is due to the fact that the extreme solutions contribute a lot to the hyper-
volume metric. Since the ε-dominance does not allow two solutions with a difference
of εi in the i-th objective to be mutually non-dominated to each other, it will not be
usually possible to obtain the extreme corners of the Pareto-optimal front. However, the
diversity of solutions elsewhere on the Pareto-optimal front is ensured by the archive
update procedure of ε-MOEA. It is then easy to see that without the extreme solutions
the hyper-volume measure fails to add the large portion of hyper-volume metric which
is contributed by the extreme solutions. The advantage in having a well-distributed set
of solutions on the interior of the Pareto-optimal front was not enough to account for
the loss in diversity due to the absence of a few boundary solutions. We argue that in
this sense the hyper-volume metric is biased towards the boundary solutions. Thus,
we do not use this measure for the rest of the test problems used in this paper.

Instead, we define a sparsity measure, which is similar to the entropy measure
(Farhang-Mehr and Azarm, 2002) or the grid diversity measure (Deb and Jain, 2002)
introduced elsewhere. The Pareto-optimal solutions are first projected on a suitable
hyper-plane (with a unit normal vector �η). Figure 14 illustrates the calculation proce-
dure for this measure. A hyper-box of a certain size d is centered around each projected
solution. The total hyper-volume covered by these hyper-boxes is used as the measure
of sparsity of solutions. If a solution set has many clustered points, then their hyper-
boxes will overlap with each other and the obtained sparsity measure will be small. On
the other hand, if the solutions are well distributed, the hyper-boxes will not overlap
and a large overall measure will be obtained. To normalize the measure, we divide the
total hyper-volume by the total expected hyper-volume calculated with a same-sized
solution set having no overlap between the hyper-boxes. Thus, the maximum sparsity
achievable is 1.000 and the larger the sparsity measure, the better is the distribution.
However, the choice of the parameter d is important here. A too small value of d will
make any distribution have the maximum sparsity measure of 1.000, whereas a very
large value of d will make every distribution have a small sparsity measure. We solve
this difficulty in choosing a suitable d value by finding the smallest possible value that
will make one of the competing distributions achieve the maximum sparsity value of
1.000. This value of d is used for computing the sparsity for other distributions. In all
case studies discussed here, points are projected on a plane equi-slopped to the coor-
dinate axes (�η = (1/

√
3, 1/

√
3, 1/

√
3)T ). The third column of Table 3 shows that the

SPEA2 attains the best distribution, followed by C-NSGA-II, and then ε-MOEA. The
distribution of solutions, as can be seen in Figures 9 to 11, also support these calcula-
tions.
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Figure 14: The sparsity measure is illustrated.

Although the C-NSGA-II and SPEA2 achieve better distributions, they are also
computationally the slowest among the five MOEAs. Since the clustering in C-NSGA-
II and SPEA2 algorithms require comparison of each population member with every
other for computing adequate number of clusters in every generation of C-NSGA-II,
the time taken is at least three orders of magnitude more than that of ε-MOEA. Simi-
larly, the extensive calculations needed for the truncation operator of SPEA2 also causes
it to slow down. A visual comparison between Figures 11 and 12 indicates that the
distribution of solutions obtained with ε-MOEA is not bad and comparable to that ob-
tained with SPEA2. Based on the convergence measure, the diversity measure, and
the elapsed computational time, we can conclude that the ε-MOEA emerges as a good
compromised algorithm.

4.3.2 DTLZ2 Test Problem

Next, we consider the 12-variable DTLZ2 test problem with a spherical Pareto-optimal
front satisfying f2

1 + f2
2 + f2

3 = 1 in the range f1, f2, f3 ∈ [0, 1]. Identical parameters to
those used in DTLZ1 are used here. A total of H = 8, 000 Pareto-optimal solutions are
considered as P ∗ for the convergence metric computation. For the ε-MOEA, we have
used ε = [0.06, 0.06, 0.066]T . This produces about 100 solutions on the Pareto-optimal
front. Table 4 shows the comparison of performance measures of the five MOEAs af-
ter 30,000 function evaluations. Figures 15 to 18 show the distribution of solutions

Table 4: Performance comparison of the five MOEAs for DTLZ2.

Convergence measure Sparsity Time (sec)
MOEA Avg. SD Avg. SD Avg. SD
NSGA-II 0.0137186 0.0020145 0.931111 0.0124474 17.16 0.196
C-NSGA-II 0.0107455 0.0008424 0.999778 0.0004968 7837.42 81.254
PESA 0.0106292 0.0025483 0.945778 0.0309657 88.01 12.901
SPEA2 0.0126622 0.0009540 0.998889 0.0007855 2164.42 19.858
ε-MOEA 0.0108443 0.0002823 0.999104 0.0009316 2.01 0.032
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Figure 15: C-NSGA-II distribution on
DTLZ2.
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Figure 16: ε-MOEA distribution on
DTLZ2.
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Figure 17: SPEA2 distribution on
DTLZ2.
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Figure 18: PESA distribution on DTLZ2.

obtained by all the other MOEAs except NSGA-II. Although, C-NSGA-II, SPEA2 and
ε-MOEA produced a very similar sparsity measure (Table 4), they were each produced
in different ways. Since, the Euclidean distance is used in the clustering approach of
C-NSGA-II and SPEA2 for maintaining diversity, a uniform spread of solutions on the
front is observed. In the case of ε-MOEA, there seems to be a considerable gap between
the boundary solutions and their nearest neighbors. This happens because of the fact
that there is a gentle slope near the boundary solutions on a spherical surface and the
ε-dominance consideration does not allow any solution to be non-dominated within
an εi in the i-th objective. But, wherever there is a considerable change of slope, more
crowded solutions are found. It was argued above that such a set of solutions with a
minimum pre-specified difference in objective values has a practical significance and
hence we advocate the use of ε-MOEA in this paper. It is clear from Table 4 that the
ε-MOEA achieves a good convergence and diversity measure with a much less compu-
tational time than C-NSGA-II and SPEA2.

4.3.3 DTLZ3 Test Problem

Here, we concentrate on the 12-variable DTLZ3 test problem, which has a large number
of local Pareto-optimal fronts and one global front (Deb et al., 2002b). The global front
satisfies the equation f2

1 + f2
2 + f2

3 = 1. Because of the presence of a large number
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of local fronts, parallel to the global front, a population size of N = 200 is used in all
the MOEAs. In the case of the ε-MOEA, we use ε = [0.042, 0.0425, 0.04]T in order to
obtain approximately 200 solutions on the Pareto-front. The total number of function
evaluations used is 100,000. Table 5 shows the performance metrics of the five MOEAs.

Table 5: Performance comparison of the five MOEAs for DTLZ3.

Convergence measure Sparsity Time (sec)
MOEA Avg. SD Avg. SD Avg. SD
NSGA-II 0.0149156 0.01028 0.839228 0.02961 136.45 31.080
C-NSGA-II 0.0202315 0.00898 0.995521 0.00613 24046.03 4690.032
PESA 0.0130633 0.00449 0.722296 0.02785 89.49 12.527
SPEA2 0.0122429 0.00194 0.999771 0.00031 9080.81 963.723
ε-MOEA 0.0122190 0.00223 0.993207 0.00974 9.42 2.180

Once again, we find that C-NSGA-II, SPEA2 and ε-MOEA achieve very similar values
of the sparsity measure. As before, the ε-MOEA turns out to be the best compromise
among all the MOEAs considered in this study.

4.3.4 DTLZ4 Test Problem

The 12-variable DTLZ4 test problem introduces a non-uniform density of solution on
the three-objective Pareto-optimal front. In this problem, a uniform distribution of
Pareto-optimal solutions is difficult to obtain. The global optimal front for this problem
is the curve represented by: f2

1 + f2
2 + f2

3 = 1 with f1, f2, f3 ∈ [0, 1]. Since this prob-
lem has a greater density of solutions near the f3-f1 and f1-f2 planes, certain runs of
all the MOEAs produced solutions only on these planes. So, for this particular prob-
lem, ten different runs were taken instead of five. For the evaluation of the sparsity
measure, only those runs were considered that gave solutions throughout the Pareto-
front and not just on any of the above mentioned planes. Column 2 of Table 6 shows
the number of runs (the more, the better) which produced a distribution of solutions
on the entire Pareto-optimal front. The performance metric values of the five MOEAs
after 30,000 function evaluations are shown in Table 6. For ε-MOEA, we have used

Table 6: Performance comparison of the five MOEAs for DTLZ4.

# success Convergence measure Sparsity Time (sec)
MOEA (of 10) Avg. SD Avg. SD Avg. SD
NSGA-II 5 0.0125015 0.00132 0.928666 0.00947 16.99 0.180
C-NSGA-II 8 0.0113708 0.00087 0.998611 0.00114 8753.12 866.452
PESA 3 0.0100756 0.00040 0.857037 0.04895 31.18 4.342
SPEA2 5 0.0163104 0.01186 0.997942 0.00151 881.57 23.477
ε-MOEA 6 0.00977548 0.00020 0.997759 0.00301 2.35 0.016

ε = [0.07, 0.07, 0.03]T to obtain 100 solutions on the Pareto-optimal front. Although the
C-NSGA-II has the maximum success in this problem in terms of maintaining a good
spread of solutions, from all the performance comparisons, the ε-MOEA emerges as a
good compromise.
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4.3.5 DTLZ5 Test Problem
The DTLZ5 is a three-objective, 12-variable problem with a Pareto-optimal curve: f2

1 +
f2
2 +f2

3 = 1 with f1, f2, f3 ∈ [0, 1]. This problem tests an MOEA’s ability to find a lower-
dimensional Pareto-optimal front, while working with a higher-dimensional objective
space (Deb et al., 2002b). Table 7 shows the performance measures. Here, we use

Table 7: Performance comparison of the five MOEAs for DTLZ5.

Convergence measure Sparsity Time (sec)
MOEA Avg. SD Avg. SD Avg. SD
NSGA-II 0.00208342 11.976e-05 0.953778 0.00992 11.49 0.036
C-NSGA-II 0.00256138 30.905e-05 0.996667 0.00314 1689.16 81.365
PESA 0.00094626 11.427e-05 0.772110 0.02269 53.27 11.836
SPEA2 0.00197846 16.437e-05 1.000000 0.00000 633.60 14.082
ε-MOEA 0.000953623 4.892e-05 0.980867 0.01279 1.45 0.051

εi = 0.005 for the ε-MOEA. These results are obtained after 20,000 function evaluations.
It is also clear from the table that the ε-MOEA is the quickest and the best in terms of
achieving convergence. SPEA2 performs best in maintaining diversity, closely followed
by ε-MOEA and C-NSGA-II.

For brevity, we do not show the simulation results for DTLZ6, DTLZ7, and DTLZ9
here. Instead, we attempt the DTLZ8 test problem, which is presumably difficult to
solve for finding a good spread of solutions using classical optimization methods.

4.3.6 DTLZ8 Test Problem
Here, we consider the three-objective, 30-variable DTLZ8 test problem (Deb et al.,
2002b). The overall Pareto-optimal region is a combination of two fronts: (i) a line
and (ii) a plane. This problem involves three inequality constraints, which are handled
using the constraint-domination principle suggested elsewhere (Deb, 2001) for all the
algorithms. Figure 19 shows the distribution of points obtained using the SPEA2 after
100,000 evaluations. In this test problem, as discussed elsewhere (Deb et al., 2002b), the
domination-based MOEAs suffer from what is known as the ‘redundancy problem’.
For two distinct solutions on the line portion of the Pareto-optimal front, many other
non-Pareto-optimal solutions appear as non-dominated. In Figure 19, the redundant
solutions are those that are on the adjoining sides (shown shaded) of the Pareto-optimal
line. Further, note that the SPEA2 is also unable to get rid of these solutions, as these
are non-dominated to some Pareto-optimal solutions. But with ε-MOEA, many of these
redundant solutions get ε-dominated by the Pareto-optimal solutions. Figure 20 shows
the solutions obtained with ε-MOEA having ε = [0.02, 0.02, 0.04]T . With a 30-variable
decision space, the density of solutions near the Pareto-optimal line and close to the
f3 = 0 plane on the Pareto-optimal front are very small. Thus, it may be, in general, dif-
ficult to find solutions on these portions of the Pareto-optimal front. For the ε-MOEA,
we have used ηc = 2 and ηm = 5. However, we used ηc = 15 and ηm = 20 for SPEA2
as they produced better results. It is clear from the plot that the ε-MOEA is able to find
a reasonable distribution of solutions on the line and the plane. Although ε-MOEA is
able to eliminate most of the redundant solutions, some of them still remain. However,
the number of such solutions is much smaller than that obtained in a procedure that
uses the original dominance criterion. We do not show the distribution of solutions
obtained using other MOEAs, as they produce distributions worse than SPEA2.
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Figure 19: SPEA2 distribution on DTLZ8.
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DTLZ8.

4.4 A Four-Objective Test Problem

To have a look at the performance of the five MOEAs on a four-objective test problem,
we apply all the MOEAs to the 13-variable DTLZ2 test problem. This problem has a
‘spherical’ Pareto-front in four dimensions given by the equation : f2

1 +f2
2 +f2

3 +f2
4 = 1

with fi ∈ [0, 1] for i = 1 to 4. The performance of the five MOEAs after 30,000 function
evaluations are shown in Table 8. For the ε-MOEA, ε = [18 , 1

8 , 1
8 , 1

8 ]T was used to obtain

Table 8: Performance comparison of the five MOEAs for the four-objective DTLZ2 test
problem.

Convergence measure Sparsity Time (sec)
MOEA Avg. SD Avg. SD Avg. SD
NSGA-II 0.1775980 0.04816 0.808138 0.02779 19.27 1.165
C-NSGA-II 0.0274868 0.00597 0.968640 0.00684 9579.40 816.043
PESA 0.0252412 0.00543 0.852032 0.05248 283.83 20.656
SPEA2 0.0654494 0.01303 0.998816 0.00119 3003.94 100.727
ε-MOEA 0.0396261 0.00201 0.995556 0.00532 6.98 0.483

around N = 100 solutions in the final archive. All the other parameters in this case
were kept the same as those used in the two objective DTLZ2 test problem (discussed
in Section 4.3.2). For the sparsity measure, we have used a �η which is equally inclined
to all objective axes. Although PESA performs the best in terms of convergence, both
ε-MOEA and C-NSGA-II produce very similar values. The convergence of SPEA2 and
NSGA-II are comparatively worse. The diversity of solutions obtained using SPEA2
is the best, followed by ε-MOEA and C-NSGA-II. The NSGA-II performs the worst
both in terms of convergence and diversity in this problem. Although NSGA-II is re-
portedly shown to perform quite well for two or three-objective problems, this study
demonstrates that its quick-and-dirty crowding operator is not adequate in maintain-
ing a good distribution of solutions in a problem having many objectives. On the other
hand, the C-NSGA-II and SPEA2 finds a good distribution of solutions but at the ex-
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pense of very large computation times, Even in this problem, it is seen that the ε-MOEA
emerges out to be a balanced algorithm, producing very good convergence and diver-
sity with a very small computational effort.

5 Conclusions

It has always been a dream of a multi-objective EA researcher and practitioner to be
able to find a well-distributed set of solutions as close to the true Pareto-optimal front
as possible with as small a computational time as possible. Although past studies have
either demonstrated a good distribution with a large computational overhead or a not-
so-good distribution quickly, a recent effort by the authors showed a way to arrive at a
good compromised procedure quickly. In this paper, we elaborate that procedure and
evaluate it extensively by considering more test problems and by comparing it with
two other state-of-the-art methodologies to realize that dream into practicality. The
tripartite task of achieving convergence, maintaining diversity and requiring a quick
computational time have been all achieved by using careful strategies in choosing mat-
ing partners from two co-evolving populations and in accepting the created offspring
to each population. The use of ε-dominance criterion has been found to have two ad-
vantages: (i) it has helped in reducing the cardinality of Pareto-optimal region and (ii)
it has ensured that no two obtained solutions are within an εi from each other in the
i-th objective. The first aspect is useful in using the ε-MOEA to higher-objective prob-
lems and to somewhat lessen the ‘redundancy’ problem (Deb et al., 2002b) inherent to
dominance based algorithms applied to many-objective problems. The second aspect
also makes the approach highly pragmatic, particularly in making the MOEA approach
interactive with a decision-maker.

On all 12 test problems, the ε-MOEA has been successful in finding well-converged
and well-distributed solutions with a much smaller computational effort than a number
of state-of-the-art MOEAs including NSGA-II, SPEA2, and PESA. The consistency in
achieving convergence and diversity of solutions over multiple simulation runs and
the requirement of only a fraction of computational effort needed compared to other
MOEAs suggest the use of the ε-MOEA to more complex and real-world problems.

The ε-MOEA procedure can be extended by using different other procedures for
selecting mating solutions and accepting an offspring solution. To obtain a better
spread, the suggestions of other ε-dominance criteria outlined elsewhere (Laumanns
et al., 2002) can be implemented to the ε-MOEA. To obtain different range of diversity
in each objective, a different ε for each objective can be chosen. In the event of finding a
biased distribution of solutions around a particular region in the Pareto-optimal front,
the εi can be chosen as a function of fi. Although some such extensions are logical
future research steps, this extensive study with ε-MOEA has amply shown its superior-
ity over the currently used MOEAs and should be immediately applied to real-world
multi-objective optimization problems.
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