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A Knee Point-Driven Evolutionary Algorithm
for Many-Objective Optimization

Xingyi Zhang, Ye Tian, and Yaochu Jin, Senior Member, IEEE

Abstract—Evolutionary algorithms (EAs) have shown to
be promising in solving many-objective optimization prob-
lems (MaOPs), where the performance of these algorithms heavily
depends on whether solutions that can accelerate convergence
toward the Pareto front and maintaining a high degree of diver-
sity will be selected from a set of nondominated solutions. In
this paper, we propose a knee point-driven EA to solve MaOPs.
Our basic idea is that knee points are naturally most preferred
among nondominated solutions if no explicit user preferences
are given. A bias toward the knee points in the nondomi-
nated solutions in the current population is shown to be an
approximation of a bias toward a large hypervolume, thereby
enhancing the convergence performance in many-objective opti-
mization. In addition, as at most one solution will be identified
as a knee point inside the neighborhood of each solution in
the nondominated front, no additional diversity maintenance
mechanisms need to be introduced in the proposed algorithm,
considerably reducing the computational complexity compared
to many existing multiobjective EAs for many-objective opti-
mization. Experimental results on 16 test problems demonstrate
the competitiveness of the proposed algorithm in terms of both
solution quality and computational efficiency.

Index Terms—Convergence, diversity, evolutionary multiobjec-
tive optimization, hypervolume (HV), knee point, many-objective
optimization.

I. INTRODUCTION

ULTIOBJECTIVE optimization problems (MOPs) are
Mcommonly seen in real-world applications, especially
in the areas of engineering, biology, and economics [1]-[5].
Such optimization problems are characterized by multiple
objectives that conflict with each other. Due to the con-
flicting nature of the objectives, usually no single optimal
solution exists; instead, a set of trade-off solutions, known as
Pareto optimal solutions can be found for MOPs. Over the
past two decades, evolutionary algorithms (EAs) and other
population-based meta-heuristics have been demonstrated to

Manuscript received June 15, 2014; revised September 30, 2014; accepted
November 28, 2014. Date of publication December 4, 2014; date of current
version November 25, 2015. This work was supported in part by the National
Natural Science Foundation of China under Grants 61272152, 61033003,
61202011, and 61472002; in part by the Natural Science Foundation of Anhui
Higher Education Institutions of China under Grant KJ2012A010; in part by
the Joint Research Fund for Overseas Chinese, Hong Kong; and in part by the
Macao Scholars of the National Natural Science Foundation of China under
Grant 61428302.

X. Zhang and Y. Tian are with Key Laboratory of Intelligent Computing
and Signal Processing of Ministry of Education, School of Computer Science
and Technology, Anhui University, Hefei 230039, China.

Y. Jin is with the Department of Computing, University of Surrey,
Guildford, Surrey, GU2 7XH, U.K., and also with the College of Information
Sciences and Technology, Donghua University, Shanghai 201620, China
(e-mail: yaochu.jin@surrey.ac.uk).

Digital Object Identifier 10.1109/TEVC.2014.2378512

be a powerful framework for solving MOPs, since they can
find a set of Pareto optimal solutions in a single run. A large
number of multiobjective evolutionary algorithms (MOEASs)
have been developed, e.g., NSGA-II [6], SPEA2 [7], IBEA [8],
MOEA/D [9], PESA-II [10], and M-PAES [11], just to name a
few. In all these MOEAs, a variety of selection strategies have
been proposed to achieve fast convergence and high diversity,
which play the most important role in determining the effec-
tiveness and efficiency of the MOEA in obtaining the Pareto
optimal solutions.

Among various selection strategies, the Pareto-based non-
dominated sorting approaches are the most popular, where
solutions having a better Pareto rank in the parent popula-
tion or a combination of the parent and offspring populations
are selected. In addition to the dominance-based criterion, a
secondary criterion, often a diversity-related strategy, will be
adopted to achieve an even distribution of the Pareto optimal
solutions. NSGA-II [6] and SPEA2 [7] are two representa-
tive Pareto-based MOEAs, which have been shown to be very
effective in solving MOPs having two or three objectives.
However, the efficiency of such Pareto-based MOEAs will
seriously degrade when the number of objectives is more than
three, which are often known as many-objective optimization
problems (MaOPs).

MaOPs are widely seen in real-world applications
(see [12] and [13]). Increasing research attention has there-
fore been paid to tackling MaOPs in recent years, as it
has been shown that MaOPs cannot be solved efficiently
using MOEAs developed for solving MOPs with two or three
objectives [14]-[17]. For example, NSGA-II performs very
well on MOPs with two or three objectives; however, its
performance will dramatically deteriorate when the MOPs
have more than three objectives [18]. The main reason for
this performance deterioration is that the selection criterion
based on the standard dominance relationship fails to distin-
guish solutions in a population already in the early stage of
the search, since most of the solutions in the population are
nondominated, although some of them may have a better abil-
ity to help the population to converge to the Pareto optimal
front [19]. Once the dominance-based selection criterion is not
able to distinguish solutions, MOEAs will often rely on a sec-
ondary criterion, usually a metric for population diversity. As a
result, MOEAs may end up with a set of well-distributed non-
dominated solutions, which are unfortunately far from Pareto
optimal.

To enhance the ability of MOEAs to converge to the Pareto
front, a variety of ideas have been proposed, which can be
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largely divided into three categories [20], [21]. The first group
of ideas is to modify the traditional Pareto dominance defini-
tion to increase the selection pressure toward the Pareto front.
This type of ideas has been widely adopted for solving MaOPs,
such as e-dominance [22], [23], L-optimality [24], fuzzy dom-
inance [25], and preference order ranking [26]. Compared with
MOEAs using the traditional Pareto dominance relationship,
these strategies have been shown to considerably improve the
performance of MOEAs for solving MaOPs, although they are
very likely to converge into a sub-region of the Pareto front.

The second category of the ideas aims to combine the
traditional Pareto dominance-based criterion with additional
convergence-related metrics. Based on these ideas, solutions
are selected first based on the dominance relationship, and
then on the convergence-related metric. For example, some
substitute distances based on the degree to which a solution
is nearly dominated by any other solutions were proposed
by Koppen and Yoshida [27] to improve the performance
of NSGA-II. In [28], a binary e-indicator based preference
is combined with dominance to speed up convergence of
NSGA-II for solving MaOPs. A grid dominance-based met-
ric was also defined by Yang et al. [29] based on which an
effective MOEA, termed GrEA, for MaOPs has been proposed.

The third type of ideas is to develop new selection cri-
teria based on some performance indicators. Three widely
used performance indicator based MOEAs are IBEA [8],
SMS-EMOA [30], and HypE [31]. IBEA uses a prede-
fined optimization goal to measure the contribution of each
solution, while SMS-EMOA and HypE are based on the
hypervolume (HV) value.

There are also a large number of other many-objective opti-
mization algorithms, which adopt different ideas from those
discussed above. For example, some researchers attempted to
solve MaOPs by using a reduced set of objectives [32], [33],
while others suggested to use interactive user preferences [34]
or reference points [35] during the search. An interesting
MOEA for solving MaOPs, called NSGA-III, was also based
on a set of reference points [36], where nondominated solu-
tions close to the reference points are prioritized. Note also
that some MOEAs have shown to perform fairly well for some
MaOP test problems [37], such as the decomposition-based
multiobjective evolutionary algorithm, termed MOEA/D [9],
although they are not specifically designed for solving
MaOPs.

In multiobjective optimization, knee points are a sub-set of
Pareto optimal solutions for which an improvement in one
objective will result in a severe degradation in at least another
one. For MOPs, solutions in the knee region of the Pareto front
will be naturally preferred if no other user-specific or problem-
specific preferences are available. As previously discussed,
most existing MOEAs do not work efficiently for MaOPs
mainly due to the loss of selection pressure because most or
all solutions in the population are nondominated already in a
very early search stage. In this paper, we propose a knee point-
driven evolutionary algorithm (KnEA), in which preferences
are given to knee points among the nondominated solutions
in selection. In other words, knee points are used as the sec-
ondary criterion for selecting parents for the next generation

in addition to the nondominance selection criterion. Therefore,
the proposed KnEA belongs to the second class of MOEAs
discussed above for solving MaOPs. Note, however, that by
knee points, we do not mean the knee points of the theoret-
ical (true) Pareto front; instead, we mean the knee points of
the nondominated fronts in the current population during the
search process. Since at most one knee point is identified in
the neighborhood of each solution, a preference over the knee
points also promotes diversity of the population, and conse-
quently no additional measures need to be taken in KnEA in
environmental selection. Note that calculating a diversity mea-
sure such as the crowding distance in NSGA-II can be highly
time-consuming for MaOPs.

New contributions of this paper can be summarized as
follows.

1) A knee point-driven MOEA has been suggested, where
knee points of the nondominated fronts in the current
population are preferred in selection. We show that pref-
erence over knee points can approximately be seen as a
bias toward larger HV, which is therefore very effective
in both accelerating the convergence of the population
to the Pareto optimal front and maintaining diversity
of the solutions. We should stress that a large body of
research work has been performed on identifying knee
points in solving MOPs, most of which, however, con-
centrated on how to accurately find the knee points or
local knee regions of the true Pareto front. To the best
of our knowledge, no work has been reported on using
knee points as the secondary criterion to enhance the
search performance of MOEAs for MaOPs.

2) Within the KnEA, an adaptive strategy for identifying
knee points in a small neighborhood, i.e., local knee
regions, has been proposed without using prior knowl-
edge about the number of knee points in the true Pareto
front. The purpose of the adaptive strategy is not to
find precisely the knee points of the true Pareto front;
instead, it is meant to locate those local knee points
of the nondominated fronts in the population combin-
ing the parent and offspring populations at the present
generation to accelerate the convergence and promote
diversity.

3) Extensive experimental results have been conducted to
verify the performance of KnEA for solving MaOPs by
comparing it with several state-of-the-art MOEAs for
MaOPs on two suites of widely used test problems.
Our results demonstrate that KnEA outperforms the
compared MOEAs for MaOPs in terms of two widely
used performance indicators. Moreover, KnEA is com-
putationally much more efficient than two of the three
compared Pareto-based MOEAs and comparable to the
rest one, although it is slightly inferior to MOEA/D,
which is known for its high computational efficiency
for MaOPs.

The rest of this paper is organized as follows. In Section II,
existing work related to the identification of knee points in
multiobjective optimization is discussed and the motivation
of using knee points as a selection criterion is justified. The
details of the proposed KnEA for MaOPs are described in
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Section III. Simulation results are presented in Section IV to
empirically compare search performance and runtime of the
KnEA with four state-of-the-art methods for MaOPs. Finally,
the conclusion is given in Section V.

II. RELATED WORK AND MOTIVATION

In this section, we first review the related work on finding
knee points in evolutionary multiobjective optimization. Then,
we elaborate the motivation of using knee points detected dur-
ing the search for driving the population toward the Pareto
optimal front and maintaining population diversity.

A. Related Work

A large number of MOEAs have been proposed to find
local regions or points of interest in the Pareto optimal
front [38]-[40]. Among various preferences, knee points are
often considered to be of interest in the Pareto optimal front
and much research work has been dedicated to finding knee
points or knee regions (neighboring regions of knee points)
using MOEAs.

Intuitively, a knee point in the Pareto optimal front refers
to the solution with the maximum marginal rates of return,
which means that a small improvement in one objective of
such a solution is accompanied by a severe degradation in at
least another. As knee points are naturally preferred, several
multiobjective optimization algorithms have been developed to
find the knee points or knee regions in the Pareto optimal front
instead of approximating the whole front. Das [41] suggested
a method to find the knee points in the Pareto front based
on normal boundary intersection, which has been shown to be
very efficient for characterizing knee points. Branke et al. [42]
proposed two variants of NSGA-II for finding knee regions,
where the crowding distance in NSGA-II was substituted by
two new measures: 1) an angle-based measure and 2) a utility
measure. The variant with the utility measure can be used for
problems with any number of objectives, while the one with
the angle-based measure works only for bi-objective problems.
These two variants of NSGA-II have been shown to perform
very well on finding knee regions in the Pareto front, which,
however, are not able to control the spread of these regions.

To  control  the spread  of  knee  regions,
Rachmawati and Srinivasan [43], [44] developed an MOEA
based on a weighted sum niching method, where the extent
and the density of convergence of the knee regions were
controlled by the niche strength and the total number of
solutions in the region, known as pool size. However, such
control on the extent and the density of the knee regions is
very rough. Schiitze er al. [45] presented two strategies for
finding knee points and knee regions that can be integrated
into any stochastic search algorithms. Experimental results
illustrated that these two strategies were very efficient in
finding the knee points and knee regions of bi-objective
optimization problems. However, these methods are not
extendable to MOPs with more than two objectives.

Bechikh et al. [46] proposed an MOEA for finding knee
regions, termed KR-NSGA-II by extending the reference point
based MOEA, called R-NSGA-II [47]. In KR-NSGA-II, the
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Fig. 1. Illustration of the motivation of KnEA. B can be seen as a knee
point among the five nondominated solutions A, B, B, C, and D. Selecting
solution B, the knee point can be more beneficial than B’ in terms of HV.

knee points were used as mobile reference points and the
search of the algorithm was guided toward these points.
KR-NSGA-II has been shown to perform well in controlling
the extent of knee regions for MOPs with two or more objec-
tives, assuming that some prior information on the number of
knee points of the MOP is known. Deb and Gupta [48] sug-
gested several new definitions for identifying knee points and
knee regions for bi-objective optimization problems. The pos-
sibility of applying such methods to solve bi-objective engi-
neering problems has also been discussed. Branke et al. [42]
presented two test problems with knee points, one bi-objective
and one three-objective, to evaluate the ability of MOEAs for
finding knee points. TuSar and Filipi¢ [49] extended these two
test problems to four-objective and five-objective optimization
problems.

Various definitions for characterizing knee points and knee
regions have been suggested (see [41]-[44], [48]). In this
paper, we adopt the definition presented by Das [41] and
Bechikh et al. [46], which will be further discussed in
Section III-C.

B. Motivation of This Paper

As can be seen in the discussions above, the importance
of knee points and knee regions has long been recognized
in evolutionary multiobjective optimization. Nevertheless, the
use of knee points to improve the search ability of MOEAs,
especially for solving MaOPs, has not been reported so far. In
this paper, we hypothesize that the search ability of MOEAs
for solving MaOPs can be significantly enhanced by giving
preferences to the knee points among nondominated solutions.

To elaborate this hypothesis, consider five nondominated
solutions of a bi-objective optimization problem, A(1, 16),
B'(6,11), B(7,7), C(11, 6), and D(16, 1), where the two ele-
ments of a solution indicate the values of the two objectives,
as shown in Fig. 1. From Fig. 1, we can see that solution B
can be considered as a knee point of the nondominated front
consisting of the five nondominated solutions. Assume that
four solutions are to be selected from the five nondominated
solutions for next population. Since these five solutions are all
nondominated, a secondary criterion must be used for select-
ing four out of the five solutions. If a diversity-based criterion,
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TABLE I
RELATIONSHIP BETWEEN DISTANCE OF B TO THE EXTREME LINE AD
WITH THE HV OF SOLUTION SET CONSISTING OF A, B, C, AND D

Position of B B(6,7) | B(7,7) | B(74/9,7) | B(10,7) | B(11,7)
Distance to AD | 2.83 2.12 1.26 0 —0.71
Hypervolume 159 150 139 123 114

for example, the crowding distance defined in [6] is used for
selection, then solutions A, B’, C, and D will be selected. If we
replace solution B’ with the knee point B, the selected solution
set will be A, B, C, and D.

Let us now compare the quality of the above two solution
sets using the HV, which is one of the most widely used per-
formance indicators in multiobjective optimization [50]. For
calculating the HV of the two sets, we assume that the ref-
erence point is (18, 18). In this case, the HV of the solution
set consisting of A, B/, C, and D is 139, while the HV of the
solution set consisting of A, B, C, and D is 150.

From the above illustrative example, we can observe that
selecting knee points can be more beneficial than selecting
more diverse solutions in terms of the HV. To take a closer
look at the relationship between the position of point B and the
HV of the solution set consisting of A, B, C, and D, we move
the position of B from B(6, 7), which is the leftmost possi-
ble position, to B(11, 7), which is rightmost possible position
to maintain the nondominated relationships between B and
the other four solutions. Now, we examine the relationship
between the distance of B to the extreme line AD, which is
described by f1 + f> = 17, and the HV of the solution set
consisting of A, B, C, and D on five different positions. The
results are listed in Table L.

From Table I, we can see that when B moves from B(6, 7) to
B(7,7), the HV of the solution set consisting of A, B, C, and D
decreases from 159 to 150, while the distance to the extreme
line decreases from 2.83 to 2.12. When point B further moves
to the right to B(74/9, 7), the HV drops to 139, which is equal
to the HV of the solution set consisting of A, B, C, and D. In
this case, the distance of point B to the extreme line is further
reduced to 1.26 and B is no longer a typical knee point. If
point B continues to move to B(10,7), B is exactly located
on the extreme line, and the HV of solution set consisting of
A, B, C, and D becomes 123, which is even smaller than that
of solution set consisting of A, B’, C, and D. Therefore, we
can conclude that the more typical B is a knee point, the more
likely it will contribute to a large HV.

From the above example, we can hypothesize that a pref-
erence over knee points can be considered as an approxima-
tion of the preference over larger HVs. Compared with the
HV-based selection, however, knee point-based selection offers
the following two important advantages. First, the identifica-
tion of knee points is computationally much more efficient
than calculating the HV, in particular when the number of
objectives is large. To be more specific, the computational
time for calculating the HV increases exponentially as the
number of objectives increases, while the time for identify-
ing knee points increases only linearly. Second, although the
HV implicitly takes diversity into account, it cannot guarantee

Algorithm 1 General Framework of KnEA
Require: P (population), N (population size), K (set of knee
points), T (rate of knee points in population)

I: r < 1, t < 0 /*adaptive parameters for finding knee
points*/

K< 0

. P <« Initialize(N)

while termination criterion not fulfilled do
P’ < Mating_selection(P, K, N)
P <« P Variation(P’, N)
F < Nondominated_sort(P) /*find the solutions in the
first i fronts Fj, 1 <j <1, where i is the minimal value
such that |Fj U...UF;| >= N */
[K, r,t] < Finding_knee_point(F, T, r,t)

9: P < Environmental_selection(F, K, N)

10: end while

11: return P

NN RN

a good diversity. By contrast, diversity is explicitly embedded
in the knee point identification process proposed in this paper,
since at most one solution will be labeled as a knee point
in the neighborhood of a solution. The above hypothesis has
been verified by our empirical results comparing the proposed
method with HypE, a HV-based method. Refer to Section IV
for more details.

III. PROPOSED ALGORITHM FOR MANY-OBJECTIVE
OPTIMIZATION

KnEA is in principle an elitist Pareto-based MOEA.
The main difference between KnEA and other Pareto-based
MOEAs such as NSGA-II is that knee points are used as a
secondary selection criterion in addition to the dominance rela-
tionship. During the environmental selection, KnEA does not
use any explicit diversity measure to promote the diversity of
the selected solution set. In the following, we describe the
main components of KnEA.

A. General Framework of the Proposed Algorithm

The general framework of KnEA is similar to that of
NSGA-II [6], which consists of the following main compo-
nents. First, an initial parent population of size N is randomly
generated. Second, a binary tournament strategy is applied to
select individuals from the parent population to generate N
offspring individuals using a variation method. In the binary
tournament selection, three tournament metrics are adopted,
namely, the dominance relationship, the knee point criterion,
and a weighted distance measure. Third, nondominated sorting
is performed on the combination of the parent and offspring
population, followed by an adaptive strategy to identify solu-
tions located in the knee regions of each nondominated front in
the combined population. Fourth, an environmental selection
is conducted to select N individuals as the parent population
of the next generation. This procedure repeats until a termina-
tion condition is met. The above main components of KnEA
are presented in Algorithm 1.
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Algorithm 2 Mating_Selection(P, K, N)
Require: P (population), K (set of knee points), N (popu-
lation size)

1. Q<0

2: while |Q| < N do

3:  randomly choose a and b from P
4: if a < b then

5: 0 <~ 0Ula}

6: else if b < a then

7 Q< QUi

8:  else

9: if a € K and b ¢ K then

10: 0 <~ 0Ula}

11: else if a ¢ K and b € K then
12: 0 < QUib)

13: else

14: if DW(a) > DW(b) then
15: 0 <~ 0Ula}

16: else if DW(a) < DW(b) then
7 0 < oUih)

18: else

19: if rand() < 0.5 then

20: 0 <~ 0Ula}

21: else

22: 0 < oUlib}

23: end if

24: end if

25: end if

26:  end if

27: end while

28: return QO

In the following, we describe in detail the binary tournament
mating selection, the adaptive knee point detection method,
and the environmental selection, which are three important
components in KnEA.

B. Binary Tournament Mating Selection

The mating selection in KnEA is a binary tournament
selection strategy using three tournament strategies, namely,
dominance comparison, knee point criterion, and a weighted
distance. Algorithm 2 describes the detailed procedure of the
mating selection strategy in KnEA.

In the binary tournament mating selection in KnEA, two
individuals are randomly chosen from the parent population.
If one solution dominates the other solution, then the former
solution is chosen, referring to lines 4-7 in Algorithm 2. If
the two solutions are nondominated with each other, then the
algorithm will check whether they are both knee points. If only
one of them is a knee point, then the knee point is chosen, see-
ing lines 9—12 in Algorithm 2. If both of them are knee points
or neither of them is a knee point, then a weighted distance
will be used for comparing the two solutions, as described
in lines 14-17 in Algorithm 2. The solution with the larger
weighted distance wins the tournament. If both solutions have
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Fig. 2. Illustrative example where the proposed weighted distance may be
advantageous over the crowding distance. In this example, neither solution
B nor C will have the chance to win against other solutions if the crowding
distance is adopted. Both B and C have a chance to win according to the
defined weighted distance.

an equal weighted distance, then one of them will be randomly
chosen for reproduction.

A weighted distance is designed for choosing a winning
solution in the binary tournament mating selection if neither
the dominance comparison nor the knee point criterion can
distinguish the two solutions involved in the tournament. We
adopt here the weighted distance measure to address some
potential weakness of the crowding distance metric proposed
in NSGA-II [6]. Fig. 2 illustrates a situation, where if the
crowding distance is used, neither solution B nor solution C
will have the chance to win against other solutions. However,
from the diversity point of view, it would be helpful if either
B or C can have a chance to win in the tournament for
reproduction.

The weighted distance of a solution p in a population based
on the k-nearest neighbors is defined as

k
DW(p) =Y wp,disy,

(1)
i=1
"pi
Wy, = —F—— 2)
8 Zf:l Tpi
1
Tp 3)

P 1 ~—k .
‘dlsl’l’i — 7 i1 dispp,

where p; represents the ith nearest neighbor of p in the
population, w), represents the weight of p;, disy,, represents
the Euclidean distance between p and p;, and ), represents
the rank of distance dis,,, among all the distances dis,,,,j,
1 < j < k. From (3), it can be seen that a neighbor of
p will have a larger rank if it is nearer to the center of
all considered neighbors of p. By using the above weighted
distance, we can verify that both solutions B and C have
a certain probability to be selected in tournament selection.
Note that some existing distance metrics can also address the
above weakness of the crowding distance, such as the grid
crowding distance (GCD) proposed in GrEA [29]. Compared
to GCD, the weighted distance presented above is easier to
calculate.
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Fig. 3. Illustration for determining knee points in KnEA for a bi-objective
minimization problem. In this example, solutions B, E, and G are identified as
knee points for the given neighborhood denoted by the rectangles in dashed
lines.

C. Adaptive Strategy for Identifying Knee Points

Knee points play a central role in KnEA. The knee points
are used as a criterion only next to the dominance criterion in
both mating and environmental selection. Therefore, an effec-
tive strategy for identifying solutions in the knee regions of
the nondominated fronts in the combined population is crit-
ical for the performance of KnEA. To this end, an adaptive
strategy is proposed for finding knee points in the population
combining the parent and offspring populations at the present
generation.

Fig. 3 presents an example for illustrating the main idea for
determining knee points in the proposed strategy, where the
nondominated front of a bi-objective minimization problem in
consideration consists of nine solutions. First of all, an extreme
line L is defined by the two extreme solutions, one having the
maximum of f; and the other having the maximum of f, among
all the solutions in the nondominated front. Then, we calculate
the distance of each solution to L. A solution is identified as a
knee point if its distance to the extreme line is the maximum
in its neighborhood.

By looking at Fig. 3, we can see that solution B is
a knee point in its neighborhood denoted by the rectan-
gle in dashed lines, as it has the maximum distance to L
among A, B, C, and D inside its neighborhood. Intuitively,
solution E is also a knee point compared with solution F in
its neighborhood. Note that, if there is only one solution in
its neighborhood, e.g., solution G in Fig. 3, this solution will
also be considered as a knee point. The above knee point def-
inition leads to the benefit that the diversity of the population
is implicitly taken into account.

The use of distance to the extreme line L to characterize
knee points was first proposed by Das [41]. For a bi-objective
minimization problem, L can be defined by ax + by 4+ ¢ =0,
where the parameters can be determined by the two extreme
solutions. Then, the distance from a solution A(x4, y4) to L
can be calculated as

laxa + bya + c|

D ==y

“4)

For minimization problems, only solutions in the convex
knee regions are of interest. Therefore, the distance measure
in (4) can be modified as follows to identify knee points:

laxa+bya+-c|

N a?+b?
_ laxatbyatc|

A/ a2+b?

if axqa +bys+c <0

dA,L) = (5)

otherwise.

The above distance measure for identifying knee points
can be easily extended to optimization problems with more
than two objectives, where the extreme line will become a
hyperplane.

The example in Fig. 3 indicates that the size of neighbor-
hood of the solutions will heavily influence the results of the
identified knee points. Given the size of the neighborhood
defined in Fig. 3, solutions B, E, and G are identified as knee
points. Imagine, however, that if all solutions are included in
the same neighborhood of a solution, then only solution E will
be identified as knee point. For this reason, a strategy to tune
the size of the neighborhood of solutions is proposed, which
will be described in the following.

Assume the combined population at generation g con-
tains Nr nondominated fronts, each of which has a set of
nondominated solutions denoted by F;, 1 < i < Np. The
neighborhood of a solution is defined by a hyper cube of size
Ri,xRﬁx XR[{;X ng/I,Wherelgng,
M is the number of objectives. Specifically, the size of the
neighborhood regarding the jth objective, R, is determined as

Ré = (fmaxé —fming) Ty (6)

where fmaxéj, and fmini, denote the maximal and the minimal
values of the jth objective at the gth generation in set F;, and
rg is the ratio of the size of the neighborhood to the span of the
Jjth objective in nondominated front F; at the gth generation,
which is updated as

B l—rg,I/T
Fg =Tg—1 %€ M

(7

where r,_1 is the ratio of the size of the neighborhood to the
span of the jth objective of the solutions in F; at the (g — 1)th
generation, M is the number of objectives, #,_1 is the ratio of
knee points to the number of nondominated solutions in front
F; at the (g — 1)th generation, and 0 < 7 < 1 is a threshold
that controls the ratio of knee points in the solution set Fj.
Equation (7) ensures that r, will significantly decrease when
tg—1 is much smaller than the specified threshold 7', and the
decrease of r, will become slower as the value of 7,1 becomes
larger. r, will remain unchanged when #,_; reaches the given
threshold T'. #, and r, are initialized to 0 and 1, respectively,
ie.,to=0and ro = 1.

Fig. 4 presents the change of parameters R;,, g, and fg
on DTLZ2 with three objectives as the evolution proceeds,
where T is set to T = 0.5. The size of the neighborhoods is
adapted according to the ratio of the identified knee points to
the total number of nondominated solutions. In the early stage
of the evolutionary optimization, the size of neighborhoods
will decrease quickly, and thus the number of found knee
points will significantly increase. The ratio of knee points to
all nondominated solutions () will increase as the evolution
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DTLZ2,M=3,T=0.5

05| e

100 150 200
Generations

0 50

Fig. 4. Example of the changes of the parameters R[,l’,, rg, and tg of the first
front over the number of generations on DTLZ2 with three objectives.

Algorithm 3 Finding_Knee_Point(F, T, r, t)
Require: F (sorted population), T (rate of knee points in
population), r, ¢ (adaptive parameters)
1. K < () I* knee points */
2: for all F; € F do
3: E <« Find_extreme_solution(F;) /* F; denotes the set
of solutions in the ith front */

4: L < Calculate_extreme_hyperplane(E)

5. update r by formula (7)

6: fmax < maximum value of each objective in F;

7 fmin <— minimum value of each objective in F;

8:  calculate R by formula (6)

9:  calculate the distance between each solution in F; and
L by formula (5)

10:  sort F; in a descending order according to the distances

11: SiZEFi <~ |Fi

12 for all p € F; do o

13: NB «{alae Fi— |fi—f)l <R,1<j<M)}

14: K <~ KJ{p}

15: F; < F,\NB

16:  end for

17:  t = |K|/Sizer,

18: end for

19: return K, r and ¢

proceeds, which, in the meantime, will gradually decrease the
size of the neighborhoods. When ¢, is close to the threshold 7',
the size of the neighborhoods will remain constant.

The main steps of the adaptive strategy for detecting knee
points are presented in Algorithm 3. The same procedure can
be repeated for all nondominated fronts in the combined pop-
ulation until knee points are identified for all nondominated
fronts. Note, however, that in the late search stage of MOPs,
and actually already in the early stages of MaOPs, we only
need to find the knee points in the first front due to the large
number of nondominated solutions present in this front.

From the above descriptions, we can find that the proposed
adaptive knee point identification algorithm differs consid-
erably from the existing methods for finding knee points.
Whereas, most existing MOEAs for finding the knee points are
to accurately locate the knee points in the true Pareto front, the
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Algorithm 4 Environmental_Selection(F, K, N)

Require: F (sorted population), K (set of knee points),
N (population size)

1: Q < ¥ /*next population*/

20« F...UFia

3 0« QUKNF)

4: if |Q| > N then

5. delete |Q|—N solutions from Q which belong to K () F;
and have the minimum distances to the hyperplane

6: else if |Q] < N then

7. add N — |Q| solutions from F;\(K[)F;) to Q which
have the maximum distances to the hyperplane

8: end if

return Q

0

proposed adaptive strategy aims to find out the knee solutions
in the neighborhoods, which will be preferred in the mating
and environmental selection. Note again that by knee points
here, we do not mean the knee points of the true Pareto front;
instead, we mean the knee points of the nondominated fronts in
the combined population at the current generation. In addition,
some of the solutions identified as knee points may not be true
knee points, which, however, can speed up the convergence
performance and enhance the diversity of the population.

D. Environmental Selection

Environmental selection is to select fitter solutions as par-
ents for the next generation. Similar to NSGA-II, KnEA selects
parents for the next generation from a combination of the
parent and offspring populations of this generation, which
therefore is an elitist approach. Whereas both NSGA-II and
KnEA adopt the Pareto dominance as the primary criterion in
environmental selection, KnEA prefers knee points instead of
the nondominated solutions with a larger crowding distance
as NSGA-II does. Algorithm 4 presents the main steps of
environmental selection in KnEA.

Before environmental selection, KnEA performs nondomi-
nated sorting using the efficient nondominated sorting (ENS)
algorithm reported in [51], forming Ny nondominated fronts,
F;, 1 <i < Np. Similar to NSGA-II, KnEA starts to select the
nondominated solutions in the first nondominated front (7).
If the number of solutions in F is larger than the population
size N, which is very likely already in the early generations
in many-objective optimization, then knee points in F; are
selected first as parents for the next population. Let the num-
ber of knee points in F| be NPj. In case NP is larger than N,
then N knee points having a larger distance to the hyperplane
are selected, referring to line 5 in Algorithm 4. Otherwise,
NP; knee points are selected together with (N — NP;) other
solutions in F; that have a larger distance to the hyperplane
of F 1.

If the number of solutions in F; is smaller than N,
KnEA turns to the second nondominated front for selecting
the remaining (N — |F|) parent solutions. If |F>| is larger
than N — |Fy|, then the same procedure described above
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Fig. 5. Example showing the number of solutions in the first nondom-

inated front, together with the number of solutions selected based on the
knee point criterion and the distance to the hyperplane criterion. The results
are obtained on the three-objective DTLZ2 using a population size of 100,
i.e., the combined population size is 200.

will applied to F>. This process is repeated until the parent
population for the next generation is filled up.

It would be of interest to know how many solutions in the
combined population are nondominated, how many are iden-
tified as knee points, and how many will be selected based
on the distance to the hyperplane as the evolution proceeds.
Take the three-objective DTLZ2 as an illustrative example and
assume the population size is 100 and T is set to T = 0.5.
Fig. 5 presents the number of solutions in the first non-
dominated front in the combined population at generations
5, 10, 50, 100, and 250, where the number of identified knee
points and the number of solutions selected based on the
distance to the hyperplane are indicated in black and gray,
respectively. From the figure, we can see that the number of
nondominated solutions is slightly less than 100 at genera-
tion 5 and thus all solutions in the first nondominated front
will be selected. At generation 50, by contrast, almost all
solutions (180 out of 200) are nondominated and a major-
ity of the selected solutions (91 out of 100) are knee points.
We can imagine that as the number of objectives increases,
most selected solutions will be knee points even in early gen-
erations. These results indicate that the proposed method is
different from the nondominance based selection and the dis-
tance based selection, and therefore the identified knee points
play an essential role in determining the performance of the
algorithm.

E. Empirical Computational Complexity Analysis

In this section, we provide an upper bound of the runtime
of KnEA. Within one generation, KnEA mainly performs the
following five operations: 1) mating selection; 2) genetic vari-
ations; 3) nondominated sorting; 4) knee-point identification;
and 5) environmental selection. For a population size N and an
optimization problem of M objectives, mating selection needs
a runtime of O(MN?) to form a mating pool of size N, as the
calculation of the weighted distances involves calculating the
distance between pairs of solutions in the population. Genetic
variations, here the simulated binary crossover (SBX) [52]

and polynomial mutation [53], are performed on each deci-
sion variable of the parent solutions, which needs a runtime
of O(DN) to generate N offspring, where D is the number of
decision variables. Nondominated sorting needs a runtime of
O(MN?) in the worst case for the combined population of size
2N for optimization problems with M objectives. Knee point
identification consists of the following two operations. First,
obtaining the hyperplane and calculating the distance between
each nondominated solution and the hyperplane, which at most
needs a runtime of O(MN). Second, checking whether the non-
dominated solutions are knee points in their neighborhoods,
which costs a runtime of O(MNZ). Therefore, knee point iden-
tification takes at most a runtime of O(MN?) in total. For
environmental selection, a runtime of O(N1ogN) is needed,
since the most time-consuming step is to sort the nondomi-
nated solutions according to their distances to the hyperplane.
Therefore, KnEA needs at most a total runtime of O(GMNZ),
where G is the number of generations.

Compared with most popular MOEAs for MaOPs, KnEA is
computationally very efficient. A theoretical comparison of the
computational time of KnEA with these algorithms is beyond
the scope of this paper; however, we will empirically compare
the runtime performance of KnEA with four state-of-the-art
MOEAs for MaOPs, details of which will be presented in the
next section.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In this section, we verify the performance of KnEA by
empirically comparing it with four popular MOEAs for
MaOPs, namely, GrEA [29], HypE [31], MOEA/D [9], and
NSGA-III [36]. The experiments are conducted on 16 test
problems taken from two widely used test suites, DTLZ [54]
and WFG [55]. For each test problem, 2, 4, 6, 8, and 10 objec-
tives will be considered, respectively. We compare both the
quality of the obtained nondominated solution sets in terms of
widely used performance indicators and the computational effi-
ciency with respect to runtime. Note that the ENS-SS reported
in [51] has been adopted as the nondominated sorting approach
in all compared MOEAs.

A. Experimental Setting

For a fair comparison, we adopt the recommended param-
eter values for the compared algorithms that have achieved
the best performance. Specifically, the parameter setting for
all conducted experiments are as follows.

1) Crossover and Mutation: The SBX [52] and polyno-
mial mutation [53] have been adopted to create offspring. The
distribution index of crossover is set to n, = 20 and the distri-
bution index of mutation is set to n,, = 20, as recommended
in [56]. The crossover probability p, = 1.0 and the mutation
probability p,, = 1/D are used, where D denotes the number
of decision variables.

2) Population Sizing: To avoid that the generated reference
points are all located along the boundary of Pareto fronts for
problems with a large number of objectives, the strategy of
two-layered reference points recommended in NSGA-III [36]
was adopted to generate uniformly distributed weight vectors
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TABLE 11
SETTING OF POPULATION SIZE IN NSGA-III AND MOEA/D, WHERE
p1 AND pp ARE PARAMETERS CONTROLLING THE NUMBERS OF
REFERENCE POINTS ALONG THE BOUNDARY OF THE
PARETO FRONT AND INSIDE IT, RESPECTIVELY

Nu.rnbter of Parameter (p1,p2) Population size
objectives

2 (99, 0) 100

4 (7, 0) 120

6 @ 1) 132

8 (3,2 156

10 G, 2) 275

in NSGA-IIT and MOEA/D. Table II presents the setting of
population size in NSGA-III and MOEA/D, where p; and p>
are parameters controlling the numbers of reference points
along the boundary of the Pareto front and inside it, respec-
tively. For each test problem, the population size of HypE,
GrEA, and KnEA is set to the same as that of NSGA-III and
MOEA/D.

3) Number of Runs and Stopping Condition: We perform
20 independent runs for each algorithm on each test instance
on a PC with a 3.16 GHz Intel Core 2 Duo CPU E8500 and the
Windows 7 SP1 64 bit operating system. The number of itera-
tions is adopted as the termination criterion for all considered
algorithms. For DTLZ1 and WFG2, the maximum number of
iterations is set to 700, and to 1000 for DTLZ3 and WFGI.
For DTLZ2, DTLZ4, DTLZ5, DTLZ6, DTLZ7, and WFG 3
to WFG9, we set the maximum number of iterations to 250.

4) Other Parameters: The parameter setting for div in
GrEA is taken from [29], which stands for the number of
divisions in each dimension in GrEA. The method for calcu-
lating HV suggested in [50] is adopted in HypE: the exact
method suggested in [50] is used to calculate the indicator
value for test instances with two objectives, and otherwise the
Monte Carlo sampling described in [31] is adopted to approx-
imately calculate the indicator, where 10000 samples are used
in our experiments. For MOEA/D, the range of neighborhood
is set to N/10 for all test problems, and Tchebycheff approach
is employed as the aggregation function, where N is the pop-
ulation size. Three-nearest neighbors are used for calculating
the weighted distance in KnEA, unless otherwise specified.
Table III lists the parameter setting of div in GrEA on DTLZ
and WFG test suites. To get the optimal setting for div, we
tested many values for div for each of the test instances based
on the recommendation in [29] and chose the one that pro-
duced the best performance for GrEA. Table IV lists the setting
of T in KnEA on DTLZ and WFG test suites. As shown in
the table, for DTLZ2, DTLZ4, and all test problems in the
WEFG suite except for WFG4 and WFG9Y, T is set to 0.6 for
problems with two objectives and 0.5 otherwise.

5) Quality Metrics: Two widely used performance
indicators, the HV [50] and the inverted generational
distance (IGD) [57], [58] are used to evaluate the perfor-
mance of the compared algorithms. It is believed that these two
performance indicators can not only account for convergence
(closeness to the true Pareto front), but also the distribution
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TABLE III
PARAMETER SETTING OF div IN GREA ON
DTLZ AND WFG TEST SUITES

Problem | Obj.2 | Obj. 4 | Obj. 6 | Obj. 8 | Obj. 10
DTLZ1 55 10 10 10 11
DTLZ2 45 10 10 8 12
DTLZ3 45 11 11 10 11
DTLZ4 55 10 8 8 12
DTLZ5 55 35 14 11 11
DTLZ6 55 36 20 20 20
DTLZ7 16 9 6 6 4
WFG1 45 8 9 7 10
WFG2 45 11 11 11 11
WFG3 55 18 18 16 22

WEFG4-9 45 10 9 8 12

TABLE IV
PARAMETER SETTING OF T IN KNEA ON
DTLZ AND WFG TEST SUITES

Problem | Obj.2 | Obj. 4 | Obj. 6 | Obj. 8 | Obj. 10
DTLZ1 0.6 0.6 0.2 0.1 0.1
DTLZ3 0.6 0.4 0.2 0.1 0.1
DTLZ5 0.6 0.5 0.5 0.3 0.3
DTLZ6 0.6 0.5 0.4 0.3 0.3
DTLZ7 0.6 0.5 0.5 0.5 0.4
WEFG4 0.6 0.5 0.5 0.3 0.3
WEFG9 0.6 0.5 0.5 0.3 0.3
others 0.6 0.5 0.5 0.5 0.5

TABLE V

SETTING OF TEST PROBLEMS DTLZ1 1O DTLZ7

Problem Number of Number of Parameter
Objectives (M)  Variables (n) (k)
DTLZ1 2,4,6,8, 10 M—-1+k 5
DTLZ2 2,4,6,8,10 M—-1+k 10
DTLZ3 2,4,6,8,10 M—-1+k 10
DTLZ4 2,4,6,8,10 M—-1+k 10
DTLZ5 2,4,6,8, 10 M—-1+k 10
DTLZ6 2,4,6,8, 10 M—-1+k 10
DTLZ7 2,4,6,8, 10 M—-1+k 20

of the achieved nondominated solutions. However, as we dis-
cussed in Section II-B, HV may have a bias toward typical
knee points. Note that the larger the HV value is, the better
the performance of the algorithm. By contrast, a smaller IGD
value indicates better performance of the MOEA. In this paper,
(1,1,...,1) is chosen as the reference point in HV calcula-
tion. For the objective values of WFG test problems to have
the same scale, each of the objective values has been normal-
ized between the interval [0, 1] before calculating the HV. In
addition, since the exact calculation of HV is computation-
ally extremely intensive for MaOPs, the Monte Carlo method
is adopted for estimating the HV when the test problem has
more than four objectives, where 1000000 sampling points
are used. We should stress that most recently a computation-
ally efficient method was also suggested to calculate the exact
HV [59]. On the other hand, IGD requires a reference set of
Pareto optimal solutions, which are uniformly chosen from the
true Pareto fronts of test problems. However, for different test
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TABLE VI

INSTANCE IS SHOWN WITH A GRAY BACKGROUND

IGD RESULTS OF THE FIVE COMPARED ALGORITHMS ON DTLZ1 10 DTLZ7, WHERE THE BEST MEAN FOR EACH TEST

GrEA

NSGA-III

KnEA

3.2201E-3 (2.02E-5)
4.8789E-2 (6.01E-3)
1.0536E-1 (6.72E-2)
1.2305E-1 (3.37E-2)
1.7756E-1 (3.69E-2)

1.8512E-3 (8.52E-5)
4.0182E-2 (1.83E-4)
8.0213E-2 (1.17E-3)
1.3814E-1 (4.11E-2)
1.3406E-1 (3.66E-2)

2.2770E-3 (1.23E-4)
5.1140E-2 (6.79E-3)
1.6217E-1 (2.23E-2)
2.6544E-1 (2.18E-2)
2.4424E-1 (3.23E-2)

1.0559E-2 (3.97E-5)
1.2487E-1 (7.78E-4)
2.5591E-1 (2.00E-3)
3.4959E-1 (2.65E-3)
3.4384E-1 (2.63E-3)

3.9811E-3 (1.16E-5)
1.1604E-1 (1.33E-4)
2.5871E-1 (1.47E-3)
3.8780E-1 (4.35E-3)
4.2250E-1 (7.50E-2)

5.7892E-3 (1.00E-3)
1.2451E-1 (2.10E-3)
2.5499E-1 (1.93E-3)
3.4812E-1 (8.40E-3)
3.2818E-1 (4.67E-2)

1.0747E-2 (2.98E-4)
1.4101E-1 (3.10E-2)
3.3091E-1 (1.92E-1)
42811E-1 (2.52E-1)
4.9388E-1 (2.91E-1)

4.3476E-3 (3.46E-4)
1.1725E-1 (1.90E-3)
2.8209E-1 (6.65E-2)
4.9400E-1 (1.79E-1)
5.0141E-1 (1.28E-1)

7.1996E-2 (1.31E-2)
1.9241E-1 (2.74E-2)
5.5634E-1 (9.83E-2)
8.8696E-1 (6.85E-2)
8.7947E-1 (1.64E-1)

8.8575E-3 (5.04E-4)
1.4473E-1 (7.24E-2)
2.5515E-1 (1.93E-3)
3.4667E-1 (1.96E-3)
3.4736E-1 (1.38E-3)

3.9883E-3 (2.70E-5)
1.3346E-1 (7.32E-2
2.7069E-1 (3.99E-3
3.9306E-1 (3.02E-3
4.1024E-1 (2.19E-2

5.9260E-3 (6.91E-4)
1.2611E-1 (3.14E-3)
2.5392E-1 (1.42E-4)
3.3896E-1 (2.62E-3)
3.2591E-1 (2.04E-3)

8.2565E-3 (2.69E-4)
1.5966E-2 (1.04E-3)
1.3084E-1 (1.54E-2)
2.2361E-1 (3.95E-2)
3.1038E-1 (6.47E-2)

4.1603E-3 (1.39E-5

3.1645E-1 (7.08E-2
3.1737E-1 (9.53E-2
4.1988E-1 (8.12E-2

6.7929E-3 (1.03E-3)
8.3933E-2 (2.52E-2)
2.0106E-1 (4.13E-2)
2.5071E-1 (4.24E-2)
2.5135E-1 (4.31E-2)

8.5374E-3 (5.23E-6)
2.9803E-2 (5.24E-3)
2.3027E-1 (1.68E-1)
4.1556E-1 (1.79E-1)
4.7387E-1 (1.08E-1)

4.1321E-3 (7.72E-7
1.8616E-1 (5.29E-2
1.4700E+0 (4.05E-1)
2.8652E+0 (6.39E-1)
3.7696E+0 (4.27E-1)

)
)
)
)
)
4.5300E-2 (1.17E-2)
)
)
)
)
)

3.2900E-2 (8.05E-3)
2.2044E-1 (5.13E-2)
3.9050E-1 (7.46E-2)
3.8130E-1 (5.66E-2)
3.7462E-1 (4.38E-2)

Problem  Obj. HypE MOEA/D
2 1.9146E-3 (7.47E-6) 1.8057E-3 (1.81E-5)
4 1.2845E-1 (7.70E-3) 9.2918E-2 (2.95E-4)
DTLZ1 6 2.3463E-1 (2.23E-2) 2.0355E-1 (4.55E-2)
8 3.2690E-1 (1.96E-2) 1.9820E-1 (6.66E-3)
10 3.2591E-1 (1.92E-2) 2.2471E-1 (1.37E-2)
2 5.5610E-3 (8.45E-5) 3.9634E-3 (2.44E-6)
4 2.4772E-1 (2.68E-3) 2.3719E-1 (1.79E-3)
DTLZ2 3.8253E-1 (1.17E-2) 4.7756E-1 (6.73E-2)
5.9295E-1 (2.63E-2) 7.6487E-1 (7.53E-2)
10 7.1588E-1 (3.13E-2) 8.9000E-1 (5.45E-2)
6.1526E-3 (1.98E-4) 4.3390E-3 (2.14E-4)
4 4.9340E-1 (4.66E-2) 2.3896E-1 (7.80E-4)
DTLZ3 7.5556E-1 (5.18E-2) 7.4559E-1 (1.91E-1)
9.0628E-1 (3.88E-2) 9.5772E-1 (9.21E-2)
10 9.6857E-1 (4.83E-2) 1.0364E+0 (6.94E-2)
5.8710E-3 (2.10E-4) 5.5751E-1 (3.28E-1)
4 4.5634E-1 (4.40E-3) 5.1153E-1 (2.02E-1)
DTLZ4 5.9335E-1 (1.27E-1) 6.3958E-1 (9.95E-2)
5.7719E-1 (2.60E-2) 7.4405E-1 (7.85E-2)
10 6.5036E-1 (1.49E-2) 8.3080E-1 (3.64E-2)
5.1750E-3 (1.38E-4) 4.1369E-3 (1.76E-6)
4 2.4911E-2 (2.82E-3) 2.8469E-2 (2.26E-3)
DTLZ5 2.5307E-2 (3.54E-3) 7.6702E-2 (1.44E-2)
3.2089E-2 (3.78E-3) 6.9405E-2 (1.75E-2)
10 3.3685E-2 (2.67E-3) 8.1111E-2 (2.34E-2)
4.8444E-3 (2.24E-4) 4.1320E-3 (2.15E-7)
4 2.6170E-1 (9.75E-2) 4.6896E-2 (5.00E-3)
DTLZ6 2.1229E-1 (7.22E-2) 1.4971E-1 (4.91E-2)
2.1145E-1 (6.32E-2) 1.3321E-1 (3.69E-2)
10 1.2351E-1 (1.67E-2) 2.4177E-1 (5.51E-2)
4.3180E-3 (1.78E-5) 7.1417E-2 (1.61E-1)
4 1.1427E+0 (3.13E-2) 8.2375E-1 (4.49E-1)
DTLZ7 1.7579E+0 (9.27E-2) 7.7783E-1 (2.05E-1)
2.8847E+0 (1.44E-1)  1.6876E+0 (2.92E-1)
10 3.5870E+0 (1.01E-1)  1.7550E+0 (5.08E-1)

2.4814E-2 (2.23E-3)
1.7933E-1 (5.68E-3)
3.8856E-1 (2.83E-2)
1.0671E+0 (2.03E-2)
1.4079E+0 (1.08E-1)

5.9160E-3 (1.89E-4)
1.8538E-1 (7.96E-3)
6.1746E-1 (2.28E-2)
9.7790E-1 (6.04E-2)
1.2284E+0 (9.01E-2)

5.5982E-3 (4.79E-4)
1.4060E-1 (4.82E-2)
3.8160E-1 (1.86E-3)
8.6947E-1 (6.49E-2)
1.1988E+0 (5.41E-2)

problems with different numbers of objectives, it is impossi-
ble to use exactly the same number of reference points. In this
paper, we set the number of reference points to the integer that
is closest to 500.

B. Results on the DTLZ Suite

The DTLZ test suite [54] is a class of widely used bench-
mark problems for testing the performance of MOEAs. Seven
test functions, from DTLZI1 to DTLZ7 are used in the exper-
iments here and their parameters are set as suggested in [54],
which are presented in Table V.

The results on the seven DTLZ test problems are given in
Table VI, with both the mean and standard deviation of the
IGD values averaged over 20 independent runs being listed for
the five compared MOEAs, where the best mean among the
five compared algorithms is highlighted. From the table, we
can find that both MOEA/D, HypE and NSGA-III performed
well on DTLZ test problems with two objectives. Among the
seven DTLZ test problems, MOEA/D achieved the smallest
IGD values on five bi-objective test problems, while HypE
and NSGA-III achieved an IGD value very close to the small-
est one on all bi-objective DTLZ test problems. Note that
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MOEA/D obtained a worse IGD value on the bi-objective
DTLZA. It appeared that MOEA/D does not work well on
DTLZA4 with any number of objectives. The main reason is
that DTLZ4 is a nonuniform MOP, which means that a set of
evenly distributed weight combinations will lead to nonuni-
formly distributed Pareto optimal solutions. This is a known
weakness of weighted aggregation methods for nonuniform
MOPs.

For DTLZ test problems with more than three objectives,
GrEA and NSGA-III performed better than MOEA/D and
HypE on all test problems except for DTLZS5 and DTLZ6.
MOEA/D and HypE worked very well on DTLZS and DTLZ6
with more than three objectives. HypE obtained the small-
est IGD value among the five MOEAs under comparison
on all DTLZS test instances with more than four objectives
and DTLZ6 with ten objectives, while MOEA/D obtained the
smallest IGD value on DTLZ6 with six and eight objectives
and obtained the second smallest IGD value on the remaining
test instances of DTLZS and DTLZ6 with more than three
objectives except for DTLZ5 with four objectives (on this
instance, MOEA/D achieved a value very close to the second
smallest IGD value). These empirical results may illustrate that
HypE and MOEA/D are well suited for dealing with MaOPs
whose Pareto front is a degenerated curve.

Similar to GrEA and NSGA-III, the performance of KnEA
is also very promising on the seven DTLZ test problems
with more than three objectives. For DTLZ2, DTLZ4, and
DTLZ7 with more than three objectives, KnEA achieved a
slightly better IGD value than GrEA and NSGA-III on all test
instances except for DTLZ2 with four objectives. For DTLZ5
and DTLZ6 with more than three objectives, KnEA achieved
a similar IGD value as GrEA and NSGA-III on DTLZ5, but it
achieved a much better IGD value than GrEA and NSGA-III
on DTLZ6, although these IGD values obtained by KnEA are
still slightly worse than those obtained by HypE and MOEA/D.
Note, however, that GrEA and NSGA-III outperformed KnEA
on DTLZ1 and DTLZ3 with more than three objectives. This
may be attributed to the fact that DTLZ1 and DTLZ3 are
multimodal test problems containing a large number of local
Pareto optimal fronts and preference over knee points in the
neighborhood easily results in the preference over local Pareto
optimal solutions. This could be partly alleviated by using a
smaller threshold 7', which is the predefined maximal ratio of
knee points to the nondominated solutions in a nondominated
front. Therefore, for multimodal MOPs, T needs to be chosen
more carefully to balance exploration and exploitation. More
detailed discussions on the influence of T on the performance
of KnEA will be presented in Section IV-D.

From the 35 test instances of the DTLZ test suite presented
in Table VI, we can find that KnEA wins in 11 instances in
terms of IGD, while GrEA wins 5, HypE 5, MOEA/D 7, and
NSGA-III 7. From these results, we can conclude that KnEA
outperforms HypE, MOEA/D, GrEA, and NSGA-III on DTLZ
test problems in terms of IGD, especially for problems with
more than three objectives.

Fig. 6 illustrates the runtime of the five algorithms on
all DTLZ test problems, where the runtime of an algorithm
on M objectives is obtained by averaging over the runtimes

DTLZ1 ~ DTLZ7

10°L| ——HypE
—O— GrEA
—x— NSGA-TII
—B— KnEA

3| | =~ MOEA/D

21570

319.3

Runtime (s)

7.272(NSGA-IIl)

3.169

3 4 6 8 10
Number of Objectives

Fig. 6. Runtime(s) of the five algorithms on all DTLZ test problems, where
the runtime of an algorithm on M objectives is obtained by averaging over
the runtimes consumed by the algorithm for one run on all DTLZ problems
with M objectives.

consumed by the algorithm for one run on all M-objective
DTLZ problems. Note that the runtimes are displayed in
logarithm in the figure. As shown in the figure, MOEA/D
outperforms the four compared MOEAs on all instances in
terms of runtime, which are much less than HypE, GrEA,
NSGA-III, and KnEA. Note, however, that although KnEA
consumed more time than MOEA/D did, it used much less
time than GrEA and HypE and consumed comparable run-
time with NSGA-III. We see that KnEA took roughly only
one-third of the runtime of GrEA on bi-objective instances.
As the number of objectives increases, the runtime of KnEA
increased only very slightly. For ten-objective test problems,
the runtime of KnEA is only about one seventh of that of
GrEA. Among the five algorithms under comparison, HypE
consumes the highest amount of runtime on all numbers of
objectives, which is due to its very intensive computational
complexity for repeatedly calculating the HV.

The runtime of MOEA/D should remain roughly the same
as the number of objectives increases. The main reason is
that MOEA/D decomposes an MOP into a number of single-
objective optimization subproblems, where the number of
subproblems is determined by the predefined population size,
regardless of the number of objectives of the MOP. However,
from Fig. 6, we can see that the runtime of MOEA/D on
DTLZ test problems increased as the number of objectives
increases, which is attributed to the larger population size on
problems with an increased number of objectives. The runtime
consumed by KnEA, NSGA-III, GrEA, and HypE is expected
to increase as the number of objectives increases, since GrEA,
NSGA-III, and KnEA are all based on nondominated sort-
ing and the number of nondominated solutions will increase
significantly as the number of objectives increases, while the
computational time for calculating the HV suffers from a
dramatic increase when the number of objectives increases.

The rapid increase in runtime of GrEA can be attributed
to its environmental selection, where only one solution is
selected at a time from solutions that cannot be distinguished
using dominance comparison, which is quite time-consuming
when the number of nondominated solutions becomes large.
In KnEA, by contrast, all other nondominated solutions apart
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TABLE VII
PARAMETER SETTING FOR TEST PROBLEMS WFG1 TO WFG9

Number of Position Distance Number of
Objectives (M)  Parameter (K) Parameter (L) Variables
2 4 10 K+ L
4 6 10 K+ L
6 10 10 K+ L
8 7 10 K+ L
10 9 10 K+ L

from the knee points can be selected at once according to their
distance to the hyperplane. This saves much time for KnEA
compared to GrEA and HypE, particularly when the number
of objectives is large.

To summarize, we can conclude from Table VI and Fig. 6
that KnEA performs the best among the five compared algo-
rithms. KnEA is computationally also much more efficient
than many Pareto-based or performance indicator based popu-
lar MOEAs such as GrEA and HypE, and comparable with
NSGA-III and MOEA/D, which are computationally very
efficient MOEAs.

C. Results on the WFG Suite

The WFG test suite was first introduced in [60] and system-
atically reviewed and analyzed in [55], which was designed
with the aim to introduce a class of difficult benchmark prob-
lems for evaluating the performance of MOEAs. In this paper,
we used nine test problems, from WFG1 to WFGY. The param-
eters of these problems are set as suggested in [55], which are
listed in Table VIIL.

Like in previous work, we compare the quality of the solu-
tion sets obtained by the compared algorithms on the nine
WFG test problems in terms of HV, which is another very
popular performance indicator that takes both accuracy (close-
ness to the true Pareto front) and the diversity of the solution
set into account. Table VIII presents the mean and standard
deviation of the HVs of the five algorithms on WFGI to
WFGY, averaging over 20 independent runs, where the best
mean among the five algorithms is highlighted. From this
table, the following observations can be made. First, MOEA/D,
HypE, and NSGA-III still achieved a good performance on
WEFG test problems with two objectives in terms of HV.
MOEA/D and NSGA-III obtained a HV close to the best
one on all WFG test problems with two objectives, while
HypE obtained the best HV on WFG4, WFGS, and WFG9
with two objectives among the five algorithms under compari-
son. These empirical results confirm that MOEA/D, HypE, and
NSGA-III are promising algorithms for MOPs with a small
number of objectives. For WFG problems with two objectives,
the performance of GrEA and KnEA is also encouraging, since
they were able to produce comparable results with those of
MOEA/D, HypE, and NSGA-III on all WFG problems with
two objectives.

By contrast, KnEA, NSGA-III, and GrEA performed consis-
tently much better than MOEA/D and HypE in terms of HV on
WEFEG problems with more than three objectives. The best HV

or close to the best HV was obtained by KnEA, NSGA-III, and
GrEA on all WFG problems with more than three objectives,
especially for WFGS5, WFG6, WFGS, and WFG9. On these
four WFG problems, KnEA, NSGA-III, and GrEA obtained a
HV that is at least two times of that obtained by HypE and
MOEA/D. HypE and MOEA/D achieved a good performance
on some WFG test instances with more than three objectives.
Among the five compared algorithms, HypE obtained the best
HV on WFG2 with eight and ten objectives, while MOEA/D
achieved the best HV on WFG3 with four, eight, and ten
objectives.

KnEA performed comparably well with NSGA-II and
GrEA on WFG test problems with more than three objec-
tives, and often better on most WFG test instances when the
number of objectives is larger than six. For all 18 WFG test
instances with eight and ten objectives, KnEA only obtained a
slightly worse HV than NSGA-III and GrEA on WFG2 with
eight and ten objectives, WFG3 with eight and ten objectives
and WFGS8 with eight objectives. These results indicate that
KnEA is more suited to deal with MaOPs with more than
six objectives than GrEA and NSGA-IIL

Overall, KnEA performed better than MOEA/D, HypE,
NSGA-III, and GrEA on the WFG test suite in terms of
HV. KnEA achieved the best HV on 22 test instances out
of 45 WFG test instances considered in this paper, while
GrEA, NSGA-III, HypE, and MOEA/D achieved the best
HV on ten instances, three instances, five instances, and
five instances, respectively. Therefore, we can conclude that
KnEA is very competitive for solving the WFG test func-
tions, especially for problems with more than three objectives.
Note that KnEA performed very well for all WFG test func-
tions even on the multimodal problems WFG4 and WFG9,
since a small value of 7 has been adopted in KnEA on
WFG4 and WFG9 with a large number of objectives, which
confirms that a carefully selected small value of T is help-
ful for KnEA to achieve a good performance on multimodal
problems.

Fig. 7 illustrates the runtime of the five algorithms on all
WEFG test problems, where the runtime of an algorithm on
M objectives is obtained by averaging over the runtimes con-
sumed by the algorithm for one run on all WFG test problems
with M objectives. Note that in the figure the runtimes are
displayed in logarithm. As can be seen from Fig. 7, we can
find that the average runtime of KnEA is much less than that
of GrEA and HypE, comparable to NSGA-III, however, is
still slightly more than that of MOEA/D. This demonstrates
that the performance of KnEA is very promising in terms of
runtime.

From Table VIII and Fig. 7, we can conclude that over-
all, KnEA showed the most competitive performance on the
WEFG test problems. In addition, KnEA is computationally
much more efficient than GrEA and HypE, and comparable
to NSGA-III and MOEA/D, which is very encouraging.

D. Sensitivity of Parameter T in KnEA

KnEA has one algorithm specific parameter 7, which is
used to control the ratio of knee points to the nondominated
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TABLE VIII
HVS OF THE FIVE ALGORITHMS ON WFG1 TO WFG9, WHERE THE BEST MEAN FOR EACH TEST INSTANCE

IS SHOWN WITH A GRAY BACKGROUND

Problem  Obj;.

HypE

MOEA/D

GrEA

NSGA-III

KnEA

WEFG1

2

4

6

8
10

4.2990E-1 (2.62E-3
8.0119E-1 (2.42E-3
9.0084E-1 (7.07E-3

9.8739E-1 (9.08E-3

6.3175E-1 (4.79E-3)
9.4650E-1 (1.57E-2)
9.4059E-1 (6.64E-2)
9.0191E-1 (7.96E-2)
8.3757E-1 (1.29E-1)

6.3072E-1 (6.86E—4)
9.4877E-1 (4.31E-3
9.7543E-1 (4.86E-3
9.8379E-1 (2.41E-3
9.8728E-1 (2.00E-3

6.3033E-1 (1.07E-2)
7.2716E-1 (3.57E-2)
7.3024E-1 (5.24E-2)
5.4589E-1 (5.88E-2)
4.9141E-1 (6.73E-2)

6.2722E-1 (1.90E-2)
9.7950E-1 (4.96E-3)
9.8950E-1 (1.65E-2)
9.9091E-1 (4.73E-3)
9.9443E-1 (5.51E-3)

WEFG2

10

1.9803E-1 (7.64E-5
5.9595E-1 (4.04E-3
5.0112E-1 (1.02E-1
9.9691E-1 (5.62E-4)
9.9901E-1 (2.63E-4)

)
)
)
9.6318E-1 (5.15E-4)
)
)
)
)

7.9745E-1 (5.20E-2)
7.6779E-1 (8.63E-2)
9.1592E-1 (1.12E-1)

(
(
(
5.0407E-1 (3.13E-2)
(
(
(
9.3037E-1 (4.78E-2)

5.4851E-1 (5.11E-4

9.3146E-1 (7.54E-2
9.6876E-1 (3.52E-3
9.7813E-1 (3.43E-3

5.5176E-1 (1.85E-3)
9.3457E-1 (7.44E-2
9.5678E-1 (7.08E-2
9.9228E-1 (3.04E-3
9.9660E-1 (2.28E-3

5.4979E-1 (1.03E-3)
9.7240E-1 (2.46E-3)
9.8882E-1 (1.77E-3)
9.9161E-1 (1.08E-3)
9.9317E-1 (1.31E-3)

WEG3

10

4.3313E-1 (1.30E-3)
4.8242E-1 (2.11E-2)
3.6553E-1 (4.23E-4)
4.5940E-1 (1.76E-2)
4.4752E-1 (5.21E-3)

4.8868E-1 (1.96E-3)
5.7038E-1 (7.53E-3)
5.7269E-1 (1.48E-2)
5.9451E-1 (6.48E-3)
6.0178E-1 (4.76E-3)

4.8970E-1 (1.07E-3
5.6215E-1 (6.06E-3
5.8912E-1 (3.50E-3)
5.9245E-1 (3.51E-3)
6.0055E-1 (2.09E-3)

)
)
)
)
)
9.4954E-1 (4.92E-3)
)
)
)
)
)

5.4981E-1 (6.34E-3
5.5618E-1 (1.56E-2
5.3840E-1 (2.63E-2

)
( )
( )
( )
4.9073E-1 (9.04E-4)
( )
( )
( )
6.0049E-1 (1.80E-2)

4.9286E-1 (8.69E-4)
5.4941E-1 (1.08E-2)
5.4849E-1 (1.37E-2)
5.5483E-1 (2.05E-2)
5.5756E-1 (1.50E-2)

WEFG4

10

2.0985E-1 (4.59E-5)
5.1111E-1 (5.67E-4)
5.2722E-1 (8.08E-3)
6.5253E-1 (1.09E-3)
6.4900E-1 (4.51E-2)

2.0563E-1 (9.26E-4)
3.4408E-1 (2.14E-2)
2.5191E-1 (2.55E-2)
3.8362E-1 (4.64E-2)
4.0333E-1 (7.03E-2)

2.0597E-1 (5.47E-4)
5.1253E-1 (5.14E-3)
6.2377E-1 (4.58E-3)
6.7778E-1 (7.65E-3)
8.1735E-1 (5.89E-3)

2.0727E-1 (6.71E-4)
4.7834E-1 (8.03E-3)
5.8534E-1 (2.76E-2)
7.0102E-1 (9.95E-3)
7.8515E-1 (1.65E-2)

2.0793E-1 (3.85E-4)
5.0660E-1 (4.50E-3)

7.5446E-1 (6.69E-3)
8.3767E-1 (6.59E-3)

WEFG5

10

1.7937E-1 (1.52E-4)
2.9364E-1 (6.14E-3
3.0323E-1 (1.38E-2
4.7190E-1 (8.51E-3
4.8701E-1 (4.23E-3

1.7821E-1 (6.95E-5)
3.0592E-1 (1.90E-2)
2.4446E-1 (2.89E-2)
3.2769E-1 (1.94E-2)

1.7592E-1 (9.25E-5)
4.9028E-1 (2.71E-3)
6.0923E-1 (8.17E-3)
6.4884E-1 (6.33E-3)
7.8627E-1 (6.50E-3)

1.7834E-1 (4.55E-5)
4.6965E-1 (3.98E-3)
6.0141E-1 (6.78E-3)
7.1140E-1 (5.45E-3)
7.8370E-1 (5.18E-3)

1.7399E-1 (2.66E-3)
4.8274E-1 (2.81E-3)
6.0681E-1 (5.31E-3)
7.1573E-1 (7.18E-3)
8.1223E-1 (3.48E-3)

WEG6

10

9.7306E-2 (9.01E-4
1.2887E-1 (3.70E-3
1.2832E-1 (1.72E-3
1.3260E-1 (8.53E-4
1.3391E-1 (1.91E-3

1.6798E-1 (1.41E-2)
2.9948E-1 (2.17E-2)
3.1998E-1 (4.92E-2)
3.4564E-1 (3.05E-2)
3.6008E-1 (4.07E-2)

1.6607E-1 (6.9096E-3)
4.7686E-1 (1.75E-2)
5.9722E-1 (2.38E-2)
6.1993E-1 (1.60E-2)
7.6846E-1 (1.60E-2)

1.7070E-1 (9.18E-3)
4.5274E-1 (1.21E-2)
5.9342E-1 (2.38E-2)
6.8735E-1 (1.58E-2)
7.7138E-1 (1.95E-2)

1.7043E-1 (8.75E-3)
4.6385E-1 (1.74E-2)
5.8903E-1 (1.92E-2)
6.9360E-1 (1.89E-2)
7.8831E-1 (1.53E-2)

WEFG7

10

4.8545E-1 (1.02E-2
3.8823E-1 (8.75E-4
7.5233E-1 (3.53E-2
7.9526E-1 (2.91E-2

2.0843E-1 (2.84E-4)
3.8074E-1 (2.48E-2)
3.6256E-1 (4.17E-2)
3.8309E-1 (5.04E-2)
3.7048E-1 (5.45E-2)

(
(
(
(
(
(
(
(
3.1971E-1 (2.73E-2)
(
(
(
(
(
(
(
(
(

2.0627E-1 (2.28E-4)
5.5277E-1 (2.14E-3)
6.8524E-1 (6.43E-3)
7.1584E-1 (7.08E-3)
8.7285E-1 (6.48E-3)

2.0884E-1 (3.46E-4)
5.2453E-1 (5.85E-3)
6.4957E-1 (3.81E-2)
7.6820E-1 (8.62E-3)
8.5128E-1 (1.05E-2)

2.0896E-1 (2.40E-4)
5.3764E-1 (3.35E-3)
6.8807E-1 (6.74E-3)
7.8708E-1 (1.20E-2)

(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
6.2568E-1 (1.33E-2)
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
(
8.9484E-1 (3.18E-3)

WEFG8

10

4.4350E-2 (1.68E-3
1.1250E-1 (9.82E-4
1.3361E-1 (1.38E-2
1.8083E-1 (2.24E-3

)
)
)
)
)
)
)
)
)
1.7148E-1 (7.26E-3)
)
)
)
)
)
)
)
)
1.8045E-1 (4.23E-3)

1.5386E-1 (2.40E-3)
2.1642E-1 (1.10E-2)
1.9018E-1 (1.86E-2)
3.1187E-1 (2.63E-2)
3.1283E-1 (4.53E-2)

1.4837E-1 (1.30E-3)
3.7820E-1 (6.32E-3)
4.6842E-1 (3.58E-2)
4.6036E-1 (2.07E-2)
7.1165E-1 (4.59E-3)

1.4731E-1 (1.33E-3)
3.3674E-1 (1.03E-2)
4.3429E-1 (1.95E-2)
5.6980E-1 (1.48E-2)
6.6252E-1 (2.81E-2)

1.4170E-1 (5.94E-3)
3.4842E-1 (9.69E-3)
4.3532E-1 (3.25E-2)
5.5710E-1 (2.08E-2)
7.1503E-1 (5.14E-2)

WEG9

10

2.0467E-1 (5.57E-4)
3.3698E-1 (2.14E-2)
1.8562E-1 (3.74E-3)
3.2783E-1 (6.45E-2)
3.4602E-1 (2.05E-2)

1.7407E-1 (3.41E-2)
2.6820E-1 (3.57E-2)
1.6388E-1 (4.18E-2)
3.0523E-1 (4.51E-2)

(
(
(
(
(
(
(
3.0884E-1 (4.32E-2)

2.0275E-1 (1.14E-3)
4.9720E-1 (5.19E-3)
5.7679E-1 (3.88E-2)
6.5642E-1 (1.44E-2)
7.9937E-1 (4.68E-3)

1.9825E-1 (2.00E-2)
4.1054E-1 (5.53E-2)
4.8225E-1 (4.56E-2)
6.7658E-1 (2.39E-2)

)

(
(
(
7.5520E-1 (9.49E-3

(

(
1.7393E-1 (6.23E-2)
4.9287E-1 (5.36E-3)
5.9820E-1 (4.28E-2)
7.2698E-1 (8.28E-3)
8.0769E-1 (8.06E-3)

solutions in the combined population. In the following, we
investigate the influence of T on the performance of KnEA,

which varies from 0.1 to 0.9. Note that 0 < T < 1.

Authorized licensed use limited to: Central South University. Downloaded on October 06,2021 at 02:10:58 UTC from IEEE Xplore. Restrictions apply.

773

From the parameter settings in the previous experiments, we
have already noted that 7 has been set to different values in
KnEA depending on whether the optimization problem has a
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Fig. 7. Runtime(s) of the five algorithms on all WFG test problems, where
the runtime of an algorithm on M objectives is obtained by averaging over
the runtimes consumed by the algorithm for a run on all M-objective WFG
problems.

—6— 10-objectives
—+— 8—objectives
—<— 6-objectives
10" | —>— 4—objectives
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Fig. 8. IGD values on DTLZI of KnEA with different settings for
parameter T, averaging over 20 independent runs.

large number of local Pareto optimal fronts. The main reason
is that a relatively small 7 is helpful for KnEA to escape from
local Pareto fronts. For this reason, we consider the setting of
T on two DTLZ test problems, DTLZ1 and DTLZ2, with the
former representing a class of optimization problems having a
large number of local Pareto fronts, while the latter represent-
ing a class of test problems that do not have a large number
of local Pareto optimal fronts. Note that similar results have
been obtained on other test problems.

Fig. 8 shows the results of IGD values for different settings
of parameter 7 on DTLZ1 with 2, 4, 6, 8, and 10 objec-
tives, averaging over 20 independent runs. Note that in the
figure the IGD values are displayed in logarithm. We can see
that as T varies from 0.1 to 0.9, the IGD value of KnEA
on DTLZI first decreases, and then will increase again. For
DTLZ1 with two and four objectives, the best performance
has been achieved when T is around 0.6, while for DTLZ1
with six objectives, the best performance is achieved when
T = 0.2, and for DTLZ1 with eight and ten objectives, T = 0.1
produces the best performance. In general, the experimental
results confirm that for multimodal MOPs, a relatively small 7,
e.g., between 0.1 and 0.4 may be more likely to lead to good
performance, particularly when the number of objectives is
larger than four. For multimodal MOPs having two to four
objectives, T can be set to between 0.5 and 0.6.

DTLZ2

[ | —e— 10-objectives
—+— 8-—objectives
1| —&— 6-objectives
—— 4-objectives
| | —=— 2-objectives

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
T

Fig. 9. IGD values on DTLZ2 of KnEA with different settings for
parameter 7', averaging over 20 independent runs.

The experimental results on DTLZ2 are summarized in
Fig. 9, where the mean IGD values for different settings of
parameter 7 on DTLZ2 with 2, 4, 6, 8, and 10 objectives
averaging over 20 independent runs are presented. We can see
from the figure that the IGD value will first become smaller
as T increases up to 0.6 for the bi-objective DTLZ2 and up to
0.5 for DTLZ2 having more than two objectives. Compared
to the T values that produce the best performance for DTLZI,
we can conclude that for MOPs that do not have a large num-
ber of local Pareto fronts, 7 can be set between 0.5 and 0.6,
where a slightly larger T can be used for a smaller number of
objectives.

To summarize the above results, we can conclude that
although the performance of KnEA varies with the value of
parameter 7, there is a pattern that can be followed to guide
the setting for 7. For MOPs without a large number of local
Pareto optimal fronts, 7 can be set to 0.6 for bi-objective prob-
lems, to a value around 0.5 for problems having more than two
objectives. For MOPs with a large number of local Pareto opti-
mal fronts, T = 0.5 is recommended for bi- or three-objective
problems, while for problems with more than three objectives,
a small value of T is recommended and the larger the number
of objectives is, the smaller the value of 7" should be used.

V. CONCLUSION

In this paper, a novel MOEA for solving MaOPs, called
KnEA, has been proposed. The main idea is to make use of
knee points to enhance the search performance of MOEAs
when the number of objectives becomes large. In KnEA, the
knee points in the nondominated solutions are preferred to
other nondominated solutions in mating selection and envi-
ronmental selection. To the best of our knowledge, this is
the first time that knee points have been used to increase the
selection pressure in solving MaOPs, thereby improving the
convergence performance of Pareto-based MOEAs.

In KnEA, a new adaptive algorithm for identifying knee
points in the nondominated solutions has been developed.
While most existing MOEAs for knee points aim to accurately
locate the knee solutions in the true Pareto front, the proposed
adaptive knee point identification algorithm intends to find
knee points in the neighborhood of solutions in the nondom-
inated fronts during the optimization, thereby distinguishing
some of the nondominated solutions from others. To this end,
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the adaptive strategy attempts to maintain a proper ratio of the
identified knee points to all nondominated solutions in each
front by adjusting the size of the neighborhood of each solu-
tion in which the solution having the maximum distance to
the hyperplane is identified as the knee point. In this way, the
preference over knee points in selection will not only acceler-
ate the convergence performance but also the diversity of the
population.

Comparative experimental results with four popular
MOEAs, namely, MOEA/D, HypE, GrEA, and NSGA-III
demonstrate that the proposed KnEA significantly outper-
forms MOEA/D and HypE, and is comparable with GrEA
and NSGA-III on MaOPs with more than three objectives.
Most encouragingly, KnEA is computationally much more
efficient compared with other Pareto-based MOEAs such as
GrEA and performance indicator based MOEAs such as HypE.
Therefore, the overall performance of KnEA is highly com-
petitive compared to the state-of-the-art MOEAs for solving
MaOPs.

This paper demonstrates that the idea of using knee points to
increase the selection pressure for MaOPs is very promising.
Further work on developing more effective and computation-
ally more efficient algorithms for identifying knee solutions is
highly desirable. In KnEA, nondominated solutions other than
the knee points have been selected according to their distance
to the hyperplane. This idea has been shown to be effective in
KnEA, however, the performance of KnEA could be further
improved by introducing criteria other than the distance to the
hyperplane. Finally, the performance of KnEA remains to be
verified on real-world MaOPs.
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