284 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 3, SEPTEMBER 2000

Stochastic Ranking for Constrained Evolutionary Optimization

Thomas P. Runarsson and Xin Yao

Abstract—Penalty functions are often used in constrained op- in this papet This transformation, i.e., (4), has been used
timization. HOW_EVEI’, it is very difﬁcul_t to Stl’ik? the right balance widely in evolutionary constrained optimization [13], [21]. In
between objective and penalty functions. This paper introduces a particular, the following quadratic loss function [5], whose

novel approach to balance objective and penalty functions stochas- d . | i h to the feasibl .
tically, i.e., stochastic ranking, and presents a new view on penalty ¢€Cr€ase In value repreésents an approach 1o the feasible region,

function methods in terms of the dominance of penalty and objec- has often been used as thenalty functior{16], [12]:

tive functions. Some of the pitfalls of naive penalty methods are

discussed in these terms. The new ranking method is tested using m )

a (11, A) evolution strategy on 13 benchmark problems. Our re-  ¢((g;(%);  j=1,---,m) = Z max{0,g;(z)}". (5)
sults show that suitable ranking alone (i.e., selection), without the j=1

introduction of complicated and specialized variation operators, is

capable of improving the search performance significantly. We will also use this function here, although our proposed con-

Index Terms—Constrained optimization, constraint handling, Straint-handling technique is equally applicable to any other
evolution strategy, penalty functions, ranking. forms of penalty functions.

The penalty function method may work quite well for some
problems; however, deciding an optimal (or near-optimal) value
for 4 turns out to be a difficult optimization problem itselfllf
HE general nonlinear programming problém) can be s too small, an infeasible solution may not be penalized enough.
formulated as solving thebjective function Hence, an infeasible solution may be evolved by an evolutionary
algorithm. If , is too large, a feasible solution is very likely
to be found, but could be of very poor quality. A larggedis-

wherez € S N F, 8 C R™ defines thesearch spacavhich is COUrages the exploration of infeasible regions, even in the early

ann-dimensional space bounded by fierametric constraints stages of evolution. This is particularly inefficient for problems
where feasible regions in the whole search space are disjoint.

I. INTRODUCTION

minimize f(x), z=(x1, - ,z,) €ER" Q)

z < 3 < T, ie{l,---,n} (2) In this case, it may be difficult for an evolutionary algorithm
_ _ _ _ to move from one feasible region to another unless they are
and thefeasible regionF is defined by very close to each other. Reasonable exploration of infeasible

regions may act as bridges connecting two or more different fea-

sible regions. The critical issue here is how much exploration

whereg;(z), j € {1,---,m} areconstraints of infeasible regions (i.e., how largg is) should be consid-
ered as reasonable. The answer to this questions is problem de-

One common approach to deal with constrained optimizatigu, qent. Even for the same problem, different stages of evolu-
problems is to introduce a penalty term into the objective f“nﬁbnary search may require differens values.

tion to penalize constraint violations [5]. The introduction of thé Thare has been some work on the dynamic settingof
. T g
penalty term enables us to transform a constrained optimizatiQl) ,es in evolutionary constrained optimization [12], [13],

problem (4) into an unconstrained onel{), such as the one 11 such work usually relies on a predefined monotonically
given by (4): nondecreasing sequence iof values. This approach worked
. well for some simple problems, but failed for more difficult
V(@) = fl@) +redlgi(=)s  J=L-m) @) e hecause thep opriimal setting «f values is problem
where ¢ > 0 is a real-valued function which imposes #lependent [19]. A fixed and predefined sequence cannot treat
“penalty” controlled by a sequence gqfenalty coefficients @ variety of different problems satisfactorily. A trial-and-error
{r,}5, whereg is the generation counter. The general form dirocess has to be used in this situation in order to find a proper
function ¢ includes both the generation counteffor dynamic function forr, as is done in [12], [13]. An adaptive approach,
penalty) and the population (for adaptive penalty). In th&herer, values are adjusted dynamically and automatically by
current notation, this is reflected in the penalty coefficignt @n evolutionary algorithm itself, appears to be most promising
The functiony will also be referred to as thiitness function in tackling different constrained optimization problems. For
example, population information can be used to adjyst
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available because we do not need to find a predefigadilue, For the given choice of, > 0, there are three different cases
or a sequence of, values, that is “optimal” for this problem. which may give rise to the inequality (7).

According to (4), different, values define different fitness
functions. A fit individual under one fitness function may not
be fit under a different fitness function. Finding a near-op-
timal », adaptively is equivalent to ranking individuals in a
population adaptively. Hence, the issue becomes how to rank
individuals according to their objective and penalty values. )
Rank-based selection will be used here. We propose a nove?
method for ranking individuals without specifying apvalue. because the penalty functigiplays the dominant role in
Experimental studies test the effectiveness and efficiency of our determining the inequality.
method, which can be regarded as an exterior penalty approachs) fi < fix1@andg; < ¢it1: The comparison is said to be

One approach to avoid setting a hard-to-set paramgtey nondominateénds; < 0. Neither the objective nor the
to treat constrained optimization as multiobjective optimization penalty function can determine the inequality by itself.

wher nstraints are regar n itional objective func- . . G
ere constraints are regarded as an additional objective fu CWhen comparing nondominant and feasible individuals, the

tion [23], [2]. However, multiobjective optimization does not _ ofr, has no impact on the inequality (7). In other words,

appear to be any easier than constrained optimization since  toes not change the order of ranking of the two individuals.

has to balance different objectives in optimization. R . y
. . . . .However, the value of, is critical in the first two cases a$§
The rest of this paper is organized as follows. Section Il dis-

. . o . Is the flipping point that will determine whether the comparison
cusses the relationship betwegnand ranking in more details. . S : : .
: oY o is,objective or penalty function dominated. For example, if we
The concept of dominance is introduced, which is somewhat . . o
o ._Increaser, to a value greater thaf in the first case, individual
similar to, but notthe same as an early work [21]. The analysis L . )
. . . . 1 + 1 would change from a fitter individual into a less-fit one.
penalty methods from the point of view of balancing dominan . .
L . oy the entire population, the chosen value ptised for com-
between the objective and penalty functions has revealed what.

. arisons will determine the fraction of individuals dominated by
penalty methods are trying to do, and has led to the development .~ . :
. ) . . . the objective and penalty functions.
of our new constraint-handling technique—stochastic ranking, , , . o
Not all possibler, values can influence the ranking of indi-

which balances such dominance directly and explicitly in order > ) !
to improve the effectiveness and efficiency of constrained é_’i'—duals They have to be ‘_N'th'n acertain range, r.g..< Tg <
gorithms. The relationship between our new technique and pfe: © influence the ranking, where the lower boungis the
vious techniques is also analyzed. Section IIl describes imp[@nimum critical penalty coefficient computed from adjacent
mentation details of our evolutionary algorithm for constraindjdividuals ranked only according to the objective function, and
optimization, and presents the experimental results on 13 bent} UPPer bound, is the maximum critical penalty coefficient
mark problems. Comparisons with other constrained optimiz(:‘alc-’rm:’meOI from gdjacent individuals ranked only a_lccordlng to
tion algorithms are also included in this section. Finally, Sef?€ penalty function. In general, there are three different cate-

1) fi £ fix1 and¢; > ¢;41: The comparison is said to
be dominated by the objective functiamd0 < =, <

7; because the objective functighplays the dominant
role in determining the inequality. When individuals are
feasible,p; = ¢;+1 = 0 ands; — oo.

fi 2 fiy1 and¢; < ¢;41: The comparison is said to
bedominated by the penalty functiamd0 < #; < 7,

tion IV concludes with a brief summary of the paper and a fedPries ofry values.
remarks. 1) r4 < rg4: All comparisons are based only on the fitness
function.r, is too small to influence the ranking of indi-
Il. CONSTRAINT HANDLING BY STOCHASTIC RANKING viduals. We will call thisunderpenalization

2) r, > 7, All comparisons are based only on the penalty

A. Penalty Method function. r, is so large that the impact of the objective

For a given penalty coefficient, > 0, let the ranking ofA function can be ignored. We will call thisverpenaliza-
individuals be tion.
3) rg < 7g < T4 All comparisons are based on a combi-
(1) < Plwe) < - < P(wn) (6) nation of objective and penalty functions.

All penalty methods can be classified into one of the above
three categories. Some methods may fall into different cate-
gories during different stages in search. It is important to under-
stand the difference among these three categories because they
indicate which function (combination of functions) is driving
fi+ 790 < fixr +7gPit1s ie€{l,---,A—1} (7) the search process and how search progresses. For example,
most dynamic methods start with a leyvalue (i.e.;, < 7,)
in order to find a good region which may contain both feasible

where the notation/; = f(z:) andd; = ¢(g;(%1).7 = 5nqinfeasible individuals. Toward the end of the search, a high
1,---,m)) are used for convenience. We now introduce a

" ; . o 74 value (i.e.,r, > 7,) is often used in order to locate a good
Eg;?frizgﬁt%’r m:a'c; dglclzlez?pgre;rnedqz t_ic_) fs theritical penalty feasible individual. Such a dynamic method would work well

for problems for which the unconstrained global optimum is
close to its constrained global optimum. It is unlikely to work
7o = (fig1 = [0/ (i — Pit1), for ¢; # ¢;1.  (8) well for problems for which the constrained global optimum is

wherey is the transformation function given by (4). Let us ex
amine the adjacent pairandi + 1 in the ranked order
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far away from its unconstrained one because the initialdgw
value would drive the search toward the unconstrained global
optimum, and thus further away from the constrained one.

The traditional constraint-handling technique used in evolu-
tion strategies falls roughly into the category of overpenalization
since all infeasible individuals are regarded worse than feasible
ones [20], [4], [11]. In fact, canonical evolution strategies (ES)
allow only feasible individuals in the initial population. To per-
form constrained optimization, an ES may be used to find a fea-
sible initial population by minimizing the penalty function [20,

p. 115]. Once a feasible population is found, the ES algorithm
will then minimize the objective function, and reject all infea- 10 if (3(I;) > ¢(I;41)) then
sible solutions generated.

L=jvjie{l,..., 7}
fori=1to N do
forj=1toA—1do
sample v € U(0, 1)
if (6(1)) = $(Ij+1) = 0) or (u < Py) then
if (f(1;) > f(Ij+1)) then
swap(l;, Ij+1)
fi

o T = T B o

else

It has been widely recognized that neither under- nor over- H swap(Ly, Ij+1)
penalization is a good constraint-handling technique, and there 12 i
should be a balance between preserving feasible individuals and 13 fi
rejecting infeasible ones [7]. In other words, ranking should be 14 od

dominated by a combination of objective and penalty functions, -
and so the penalty coefficient, should be within the bounds

rqe < 74 < T4. Itis worth noting that the two bounds are not

fixed. They are problem dependent, and may change from gefy: 1. stochastic ranking using a bubble-sort-like procedure wiigte 1)
eration to generation as they are also determined by the currierg uniform random number generator aid is the number of sweeps

population. going through the whole population. WheR, = 0, the ranking is an

. . . overpenalizationand forP; = 1, the ranking is anunderpenalizationThe
A simple way to measure the balance of dominance of 0bj§fial ranking is always generated at random.

tive and penalty functions is to count how many comparisons of

adjacent pairs are dominated by the objective and penalty furflr‘ﬁ'zation. Surry and Radcliffe’s method [23] does not attempt

tion, respectlve_ly. Such a number of comparisons can be co ‘balance the dominance of penalty and objective functions in
puted for any givem, by counting the number of critical penaltya population

coefficients given by (8) which are greater thap If we have Ranking is achieved by a bubble-sort-like proceéuneour

a predetermined preferen_ce for the number of adjacgnt COMRAGIK. The procedure provides a convenient way of balancing the
isons that should be dominated by the penalty function, theQi(‘.”)‘minance in a ranked set. In our bubble-sort-like procedure,

corr_espondlng penalty coeffl_cu_ant C_OUId b_e found. individuals are ranked by comparing adjacent individuals in at
It is clear from the analysis in this section that all a penalﬁ

_ . . . "ast\ sweeps. The procedure is halted when no change in the
r_nethod triestodois tf) obtain the right balance between Obj‘? nk ordering occurs within a complete sweep. Fig. 1 shows the
t|ve_ and penalty fungﬂons so that the search moves tqward glgchastic bubble-sort procedure used to rank individuals in a
optimum in the feasible space, not just toward the optimum ulation

the combine_d feasible_ and infeasipl_e space. One_way to achicy he probability of an adjacent individual winning a compar-
such balancing effectively and efficiently is to adjust such bqls'on i.e., holding the higher rank, in the ranking procedure is
ance directly and explicitly. This is what stochastic ranking, de-~ "’ "~ ’

scribed in the next section, does.

if no swap done break fi

od

P, = Py Ps + Pyy(1 — Py) 9
B. Stochastic Ranking

Since the optimak, is hard to determine, a different ap-diven that at least one individual is infeasiblEy., is the
proach is used here to balance the dominance of the objeEebability of the individual winning according to the objective
tive and penalty functions. We introduce a probability of fUI"ICtIOI:], andFy,, is the probab_|I|ty of the individual winning
using only the objective function for comparisons in ranking iccording to the penalty function. In the case where adjacent
the infeasible regions of the search space. That is, given dRgividuals are both feasible?, = Py,. We would like to
pair of two adjacent individuals, the probability of comparingXamine the probability of winning more comparisons than
them (in order to determine which one is fitter) according to tHesses. Then the total number of wins mustbe= (N + k) /2,
objective function is 1 if both individuals are feasible; othervhere IV is the total number of comparisons made. The
wise, it is P;. This appears to be similar to the use of a protRrobability of winningk’ comparisons out oV is given by the
ability by Surry and Radcliffe [23] in deciding the outcoméinomial distribution
of competitions between two individuals in tournament selec-
tion. Our technique is, however, quite different because we use Puoly=Fk)= <AZ> PZZ,(l — pw)ka’_ (10)
rank-based selection, and we do not have any extra computa- k
tional cost for self-adapting’;. More importantly, the motiva-  2j¢ can be regarded as the stochastic version of the classic bubble sort.
tion of stochastic ranking comes from the need for balancingit would be exactlys sweeps if the comparisons were not made stochastic.
objective and penalty functions directly and explicitly in opti- 4The standard deviation of the binomial distribution &V P,,(1 — P..).
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TABLE | Ill. EXPERIMENTAL STUDIES
AVERAGE PERCENTAGEFEASIBLE INDIVIDUALS IN THE FINAL POPULATION AS

A FUNCTION OF P; (N = X\) AND TESTFUNCTION PRESENTED INAPPENDIX A, Evolution Strategy

The evolutionary optimization algorithm described in this

fem\Py | 0525 0500 0.475 0450 0000 section is based on ES [20]. One reason for choosing ES is
go1 0 0 1 83 82 that it does not introduce any specialized constraint-handling
g02 4 30 50 57 58 variation operators. We would like to show that specialized
03 0 0 0 2 22 and complex variation operators for constrained optimization
g04 0 17 8 78 80 problems are unnecessary, although they may be quite useful
g05 0 0 78 82 81 for particular types of problems (see, for example, [17]). A
06 0 0 0 53 81 simple extension to the ES, i.e., the use of the stochastic ranking
07 0 1 71 80 79 scheme proposed in the previous section, can achieve signif-
£08 o 100 100 100 100 icantly better results than other more complicated techniques.
£09 0 16 83 83 86 The constraint-handling technique based on the stochastic
g10 0 0 0 74 - ranking scheme can be used in any evolutionary algorithm, not
gl 0 0 83 90 70 Just ES. _ o .

o2 e 100 100 100 s In the @, \)-ES algor!thm, the |nd|V|duaJ_ is a set of re_al-

13 ) o s o " valued vectors#;,0;), Vi € {1,---, A}. The initial population

of x is generated according to a uniforsrdimensional proba-
bility distribution over the search spafelLetéx be an approx-
imate measure of the expected distance to the global optimum,
then the initial setting for the “mean step sizes” should be [20,
p. 117]

k-1
Pz =1-3 (V) ria-rp¥o ay o) = ba, /i~ (@ - )V
J=0 te{l,....,Ax,je{l,...,n} 12)

The probability of winningat leastk’ comparisons is

Equations (10) and (11) show that the greater the numbghereo; ; denotes thgth component of the vecter;. We use
of comparisons ¥), the less influence the initial rankingthese initial values as upper boundsan
will have. It is worth noting that the probability’,, is usu- Following the stochastic ranking scheme given previously,
ally different for different individuals in different stages ofthe evaluated objectiv(x) and penalty functiow(gx(x); k =
ranking (sorting). Now, consider a case whétg is constant 1,...,m) foreachindividualg;,o;),Vi € {1,..., A} are used
during the entire ranking procedure, which is the case whémrank the individuals in a population, and the best (highest
fi < fivdi > ¢55#4,5=1,...,\. ThenPs, = 1 and ranked)u individuals out of\ are selected for the next genera-
Py, = 0. If we chooseP; = 1/2, then P, = 1/2. There tion. The truncation levelis set py A ~ 1/7[1, p. 79].
will be an equal chance for a comparison to be made based/ariation of strategy parameters is performed before the
on the objective or penalty function. Since we are only intemodification of objective variables. We generataew strategy
ested in feasible individuals as final solution?; should be parameters from: old ones so that we can use thenew
less than 1/2 so that there is a bias against infeasible sdtrategy parameters in generatingffspring later. The “mean
tions. The strength of the bias can be adjusted easily by &fiep sizes” are updated according to the log-normal update rule
justing only P;. When parameteV, the number of sweeps,[20]: ¢ =1,...,p, h =1,.... A andj =1,...,n
approachesx, then the ranking will be determined by the
bias P;. That is, if Py > 1/2, the ranking is based on aﬁffl) =a§fj) exp(7'N(0,1) + 7N,(0,1))) (13)
the objective function, and wheR; < 1/2, the ranking is
the overpenalty ranking. Hence, an increase in the numbervdiere N(0,1) is a normally distributed one-dimensional
ranking sweeps is effectively equivalent to changing pararrandom variable with an expectation of 0 and variance 1. The
eter P, i.e., making it smaller or larger. Thus, we can fixsubscriptj in N;(0,1) indicates that the random number is
N = ), and adjustP; to achieve the best performance. Wgenerated anew for each value pf The “learning rates™
illustrate these points by optimizing a set of benchmark funend+’ are set equal tg*/+/2+/n and¢* /v/2n, respectively,
tions presented in the Appendix using differeRf values. where ¢* is the expected rate of convergence [20, p. 144]
Table | presents the average results over 30 independent rand is set to 1 [1, p. 72]. Recombination is performed on the
of our algorithm. The numbers in the Table Indicate the peself-adaptive parameters before applying the update rule given
centage of feasible individuals in the final population. They (13). In particular, global intermediate recombination (the
details about the experiment will be given in the followingiverage) between two parents [20, p. 148] is implemented as
section. It is quite clear from the table that, B > 1/2,

finding feasible solutions becomes very difficult unless the &§f3 = (05?} +a,(3j)/2, ki e{l,....n} (14)
unconstrained optimum happens to be the same as the con-
strained optimum, as is the case for problgh?®. wherek; is an index generated at random and anew for gach
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TABLE I
EXPERIMENTAL RESULTS ON13 BENCHMARK FUNCTIONS USING ESWITH STOCHASTIC RANKING (P; = 0.45); 30 INDEPENDENTRUNS WERE CARRIED OUT

fen optimal best median mean st. dev. worst Gm
g01 —15.000 —15.000 —15.000 —15.000 0.0E+00 —15.000 741
g02 —0.803619 —0.803515 —0.785800 —0.781975 2.0E—-02 —0.726288 | 1086
g03 —1.000 —1.000 —1.000 —1.000 1.9E-04 —1.000 | 1146
g0d | —30665.539 | —30665.539 —30665.539 —30665.539 2.0E-05 —30665.539 441
g05 5126.498 5126.497 5127.372 5128.881 3.3E+400 5142.472 258
goé —6961.814 —6961.814 —6961.814 —6875.940  1.6E+02 —6350.262 590
g07 24.306 24.307 24.357 24.3714 6.6E-02 24.642 715
g08 —0.095825 -0.095825 —0.095825 —0.095825 2.6E—17 —0.095825 381
g09 680.630 680.630 680.641 680.656 3.4E—02 680.763 557
glo 7049.331 7054.316 7372.613 7559.192 5.3E402 8835.655 642
gl 0.750 0.750 0.750 0.750 8.0E—05 0.750 57
gi2 —1.000000 —1.000000 —1.000000 ~1.000000 0.0E-+00 —1.000000 82
g13 0.053950 0.053957 0.057006 0.067543 3.1E—-02 0.216915 349

Having varied the strategy parameters, each individualion is more stringent than others [15] whére= 0.001 was

(x;,0:), Vi e {1, -, u} creates\/p offspring on average, so used.
that a total of\ offspring are generated In comparison with the latest results in the literature [14],
(g+1) ) (9+1) the results in Table Il are significantly better for all but one
@y, =l +oy N (0,1). (15)  problem. While 70x 20 000 function evaluations were used for

ach problem and only 20 runs were carried out in [14] (for Ex-

ables. When an offspring is generated outside the parame eriment 2 in [14], which gave better results than Experiment

récwe have used a maximum of only 2801750 function eval-
bounds defined by the problem, the mutation (variation) of the’.. y .
uations for each problem, and carried out 30 independent runs

objective variable will be retried until the variable is within its
bounds. In order to save computation time, the mutation is rfé)-rFill prrggllgms'm 03 404 008 a1l andal?  our aldo-
tried only tentimes and then ignored, leaving the object variabrll%m hpas cons?sqten,tﬁ/ fOl’J?’ld tﬁg opii?nal ’solut?on f,orL;II Sg runs
In its original state within the parameter bounds. while the algorithm in [14] did not find any for probleng®1,
g03, g04, andgl12 (the more difficult version), and found the

) ] ] optimal solution only in some out of 20 runs for problg®s .
Thirteen benchmark functions were used. The first 12 Wei§ e average result in [14] f@g08 was—0.0891568 when the

taken from [14], and the 13th from [15]. The details, includingptim&“ solution was-0.095825.

the original sources, of these functions are listed in the Ap- For problemg02,, the algorithm given by [14] was more con-
pendix. Problemg02, g03, 908, andg12 are maximization gjstent and performed better on average, but worse in terms of
problems. They were transformed into minimization problemge pest result. Its average result wa8.79671 over 20 runs,
using— f(z). For each of the benchmark problems, 30 indepefile ours was—0.781975 over 30 rurisHowever, our algo-
dentruns were performed using a (30, 200)-ES. All experimenig, ,, was capable of finding better solutions. The best solution
were performed in MATLAB. The source code may pe obtaingd ;g by our algorithm was-0.803515, while the best in [14]
from the authors upon request. All runs were terminated afiges 79953, It is also interesting to note that the median of

G = 1750 generations, except fgl2, which was run for 175 ¢ resylts was-0.785800, which was much better than the av-
generations. Problegl2 is the harder version studied in [14],rage. A closer look at our results revealed that six out of 30
where the feasible region of the search space consistsdi$9 5 optained a solution better than the best offered in [14].

jointed spheres with a radius of 0.25. _ For problemg04, —30664.5 was reported as being “by far
Table Il summarizes the experimental results we obtaingth pest value reported by any evolutionary system for this test
usingPy = 0.45. The median number of generations for finding ;o1 [14]. Our algorithm has now improved this “record” sub-

the best solution in each run is indicated @y, in the Table. gianiially by finding the optimum consistentlyHomaifaret al.

The table also shows the known “optimal” solution for each

problem and statistics for the 30 independent runs. These ing he mi ) dded to th b ranst dih
: . . € minus sign was addead 1o the average resu ecause we transrorme e

cIudp Fhe best objective value founq, _med|an, mean, standﬁr imization problem into the minimization one.

dewa}tlon, and worst fognd. The S.tatIStICS are based on fea?'blgkfter this paper had been submitted, Petrowski and Hamida [18] reported

solutions only. All equality constraints have been converted ind@other algorithm which could also find the optimum consistently. However,

inequality constraints}h(x)| -6<0, using the degree of viola- few details _abou_t the _algonthm, the parameters u_sed, and _expenmental setup

ions — 0.0001. As a result of this approximation. some res Itwere described in their one-page paper. The optimal solution found by them

tiono = 0. : uftoTthis approximation, UltRas only given for one digit after the decimal point. Probla@s, go5, g11,

might be better than the optimum. However, the tolerated vigt2, andg13 were not included in their studies.

Recombination is not used in the variation of objective vart:

B. Experimental Results and Discussions
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TABLE 1lI
CoMPARISON BETWEEN OUR (INDICATED BY RY) AND KOZIEL AND MICHALEWICZ'S (INDICATED BY KM [14]) A LGORITHMS; FOR PROBLEM g13, THE RESULT
WAS TAKEN FROM [15, METHOD 4]; THE TWO VALUES IN THE “M EAN” COLUMN FOR PROBLEM g13 REPRESENTMEDIANS

Best Result Mean Result Worst Result
fen optimal RY KM RY KM RY KM
g0t —15.000 —15.000 —14.7864 —15.000 —14.7082 —15.000 —14.6154
g02 —0.803619 —0.803515 —0.79953 —0.781975 —0.79671 —0.726288 —0.79119
g03 —1.000 —1.000 —0.9997 —1.000 —0.9989 —1.000 —0.9978
g04 | —30665.539 | —30665.539 —30664.5 | —30665.539 —-30655.3 | —30665.539 —30645.9
g056 5126.498 5126.497 — 5128.881 — 5142.472 —
g06 —6961.814 —6961.814 ~-6952.1 —6875.940 —6342.6 —6350.262 —5473.9
g07 24.306 24.307 24.620 24.374 24.826 24.642 25.069
g08 —0.095825 —0.095825 —0.0958250 —0.095825 —0.0891568 —0.095825 —0.0291438
g09 680.630 680.630 680.91 680.656 681.16 680.763 683.18
gl0 7049.331 7054.316 7147.9 7559.192 8163.6 8835.655 9659.3
gl1 0.750 0.750 0.75 0.750 0.75 0.750 0.75
gl2 —1.000000 —1.000000 —0.999999857 —1.000000 —0.999134613 -1.000000 —0.991950498
gl3 0.053950 0.053957 0.054 0.057006 0.064 0.216915 0.557

[10] found a similar solution to ours f@04 using a genetic al- small nor large (i.e.>>0.5) Py gave very good results. The best
gorithm. Unfortunately, that solution violated two constraintsesults were obtained whénd < P, < 0.5. This indicates
Another similar solution was found by Colville [3] using a maththat a minor bias toward the dominance of the penalty function
ematical programming technique. However, it is unclear hogncourages the evolution of feasible solutions while still main-
those two techniques [10], [3] would perform on a larger set tdining infeasible regions as potential “bridges” to move among
benchmark functions as we used here. feasible regions in the whole search space.

For probleng05, which involves equality constraints, the al- Tgples IV and V give two sets of our experimental results
gorithm given in [14] “did not provide quality results.” HencewhenP; = 0 and P, = 0.475, respectivelyP; = 0 is an ex-
no results were given in their paper. Our algorithm has fouRfbme case where all infeasible individuals were ranked lower
consistently feasible solutions. Some very good results were @R, feasible individuals. Among feasible solutions, the ranking
tained. For example, the best result found was 5126.497, and{{}&; pased solely on the objective function. Among infeasible
average was 5128.811. The best result was even better thansfftions, the ranking was based only on the penalty function.
optimal solution of 5126.498. This is the consequence of USifgis extreme case is somewhat similar to [4], but not the same
inequalities to approximate each equality, although we useg@&cause it does not use the worst fitness value of feasible solu-

very smalls. _ o tions. Although this algorithm did not perform as well as when
For problemg06, our algorithm performed significantly p

) ) ! = 0.45 for problemsg03, g04, g05, g11, g12, andgl3,
better than the algorithm in [14] in terms of the average as wep(I{performed roughly the same as whéh = 0.45 for other

as best results. Our average result w#875.940, while. theirs problems. WherP; = 0.475, the penalty against the infeasible
was—6342.6. Our algorithm has found the global optimum 28qytion was weakened. Our algorithm could only find a fea-
times out of 30 runs, while their algorithm had never found thgp|e solution 6 times out of 30 runs for problerh0, although
optimal solutior. it found a feasible solution 100% times for all other problems. In
For problemsg07, g09, andg10, our algorithm outper- general, the algorithm improved its performance and found best
formed the algorithm given in [14], again in terms of all thregg|ytions whenP; was changed from 0.45 to 0.475, except for

criteria: the average, best, and worst results. Both algorithigplemsg01, g03, andg06. The improvement is especially
performed well, and found the optimal solution for problemgticeable for functiong13 andgo4.

gl1.

For problemg13, our algorithm outperformed all six con- Itis important to emphasize that the performance of any evo-

straint-handling methods studied in [15] in terms of the be I%monary algon_thm for c_onstrame_d optimization is determined
the constraint-handling technique used, as well as the evo-

median, and worst results. Table Ill summarizes the comparisgi lonary search algorithm (including parameters). Throughout

petvyeen our results and the latest results [14], [23] that we 50 study, we have kept our modification to the ES to the min-
find in the literature.

. imum, i.e., changing only the selection scheme without intro-
In order to evaluate the impact &% on the results generated , . e
; X ducing any specialized operators. The parameters were also set
by our algorithm, we have run the same set of experiments m

times usinaPs — 0.0.025.--- 0525 As expected neitherae{ycordingto previous recommendations in published books and
9y = 0,0029, -+, 0020, P ' papers. This, however, does not imply that the search algorithm

70ur algorithm consistently will find the optimum whe, = 0.425; see Plays an unimportant role in constrained optimization. To illus-
also the results foP; = 0 in Table IV. trate that the combined effect of a constraint-handling technique

Authorized licensed use limited to: Central South University. Downloaded on February 12,2022 at 14:19:42 UTC from IEEE Xplore. Restrictions apply.



290 IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 3, SEPTEMBER 2000

TABLE IV
EXPERIMENTAL RESULTS ON13 BENCHMARK FUNCTIONS USING ESWITH STOCHASTIC RANKING (P, = 0); 30 INDEPENDENTRUNS WERECARRIED OUT

fen optimal best median mean st. dev. worst Gm
g0t —15.000 —15.000 —15.000 —15.000  0.0E+00 —15.000 697
g02 —0.803619 —0.803578 —0.785253 —0.783049 1.5E-02 —0.750656 | 1259
g03 —1.000 —0.327 —0.090 —-0.105 7.2E-02 —0.014 61
g04 | —30665.539 | —30665.539 —30665.538 —30664.710 3.8E+00 —30644.897 632
g05 5126.498 5126.945 5225.100 5348.683 2.7E+02 6050.566 213
go6é —6961.814 —6961.814 —6961.814 —6961.814 1.9E-12 —6961.814 946
g07 24.306 24.322 24.367 24.382 5.9E-02 24.598 546
g08 —0.095825 —0.095825 —0.095825 —0.095825 2.7E-17 —0.095825 647
g09 680.630 680.632 680.657 680.671 3.8E—02 680.772 414
gl0 7049.331 7117.416 7336.280 7457.597  3.4E-+02 8464.816 530
gll 0.750 0.750 0.953 0.937 5.4E-02 0.973 | 1750
g12 -1.000000 —0.999972 —0.999758 —0.999766 1.4E-~04 —0.999488 90
gl13 0.053950 0.919042 0.997912 0.993372 1.5E-02 0.998316 | 1750
TABLE V

EXPERIMENTAL RESULTS ON13 BENCHMARK FUNCTIONS USING ESWITH STOCHASTIC RANKING (P; = 0.475); 30 INDEPENDENTRUNS WERECARRIED OUT

fen optimal best median mean st. dev. worst, Gm
g01 —15.000 —15.000 —5.736 —6.793  3.5E+00 —2.356 951
go02 —0.803619 —0.802760 —0.792272 —0.786084 1.8E—02 —0.731226 | 1301
g03 —1.000 —0.998 ~-0.995 —0.995 2.1E-03 —0.990 935
g04 —30665.539 | —30665.539 —30665.539 —30665.539 1.1E—11 —30665.539 349
go05 5126.498 5126.518 5127.276 5128.538  3.1E+400 5141.085 448
g08 —6961.814 —6871.345 —6603.846 —6572.309 2.1E+402 —6058.588 14
g07 24.306 24.307 24.317 24.328 2.6E-02 24.392 | 1568
go8 —0.095825 —0.095825 —0.095825 —0.095825 2.7TE-17 -0.095825 463
g09 680.630 680.630 680.634 680.640 1.4E—-02 680.676 | 1449
g10*) 7049.331 7202.108 7343.603 7384.116 1.8E+402 7688.864 | 1321
g1l 0.750 0.750 0.750 0.750 8.7E—06 0.750 118
gl2 —1.000000 —~1.000000 —1.000000 —1.000000 0.0E400 —1.000000 69
g13 0.053950 0.053945 0.054000 0.054179  5.0E—-04 0.056224 573

*Based on the six feasible solutions found out of the 30 runs.

TABLE VI
EXPERIMENTAL RESULT ON FUNCTION g10 USING ESWITH STOCHASTIC RANKING AND ¢* = 1/4

Py optimal best median mean st. dev. wOorst Gm
0.45 | 7049.331 | 7049.852 7054.111 7056.163 5.7E4+00 7068.633 | 1733
0.00 | 7049.331 | 7049.955 7062.673 7074.044 3.1E+01 7196.647 | 1745

and a search algorithm can make a big difference, we repeatechnique—the dynamic penalty method of [12]. The results are
the experiment on functiogl0 usingy* = 1/4 (instead of 1) summarized in Tables VIl and VIII.
for the computation of the learning ratesnd+’. These results ~ Comparing Tables Il and VI, itis clear that stochastic ranking
are given in Table VI. A significant improvement was achievegerformed better than the dynamic penalty method wjth=
in comparison with the results in Tables Il and IV. g/2 [12] according to all four criteriallest median, mearand

An interesting question that arises naturally here is whethengors) for all benchmark functions, except fgo2, g09, and
not ES was fully responsible for the good results obtained, e.g1,2. The two methods performed the same on prob{gB.
those in Table 11, in other words, whether stochastic ranking cofhe dynamic penalty method found a bettestthan stochastic
tributed anything to the good results. To answer this question, r@mking for probleng02, but performed worse than stochastic
additional set of experiments was carried out using exactly tremking according tanedian, meanandworst On the other
same ES as used before, but with a different constraint-handlimgnd, stochastic ranking found a betbest(i.e., the optimum)

Authorized licensed use limited to: Central South University. Downloaded on February 12,2022 at 14:19:42 UTC from IEEE Xplore. Restrictions apply.



IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, VOL. 4, NO. 3, SEPTEMBER 2000 291

TABLE Vil
EXPERIMENTAL RESULTSUSING THEDYNAMIC PENALTY METHOD OF[12] WITH r, = g/2; THE SUBSCRIPT IN THEFUNCTION NAME INDICATES THE NUMBER OF
FEASIBLE SOLUTIONS FOUND IF IT WAS BETWEEN 1 AND 29 INCLUSIVE; “—" M EANS NO FEASIBLE SOLUTIONS WEREFOUND

fen optimal best median mean st. dev. worst Gm
g01 —15.000 —14.990 —14.970 —14.968 1.3E—-02 —14.943 122
g02 —0.803619 —0.803597 —0.783042 —0.777241 2.3E-02 —0.710725 | 1007
g03 -1.000 - - - - - -
g04 —30665.539 | —30648.710 —30007.572 -30021.805 1.7E+02 —29804.553 5
g05 5126.498 - - - - - -
g06 —6961.814 —6897.969 —6534.206 —6502.478  2.3E+02 —-5962.775 12
g07 24.306 24.347 24.417 24479 1.6E-01 24.934 109
g08 —0.095825 —0.095825 —0.095825 ~0.095354 1.53E-03 —0.087752 278
g09 680.630 680.632 680.638 680.648 2.7E—02 680.761 109
g10 7049.331 - - - i - - -
g11(16) 0.750 0.750 0.750 0.758 2.5E—02 0.850 14
g12 —1.000000 —1.000000 —1.000000 —1.000000 0.0E-+00 —1.000000 65
g13(25) 0.053950 0.281242 0.448114 0.474460 1.1E-01 0.901263 | 1750
TABLE VIl

EXPERIMENTAL RESULTSUSING THE DYNAMIC PENALTY METHOD OF[12] WITH r, = (g/2)2; “~" M EANS NO FEASIBLE SOLUTIONS WEREFOUND

fen optimal best median mean st. dev. worst Gm
go1 —15.000 —15.000. —15.000 —15.000 7.9E-05 -15.000 217
g02 —0.803619 —0.803587 —0.785907 —0.784868 1.5E—02 —0.751624 | 1235
g03 —1.000 —0.583 ~0.045 —0.103 14E-01 —0.001 996
go4 | —30665.539 | —30365.488 —30060.607 —30072.458 1.2E4+02 —29871.442 4
g05 5126.498 - - -~ - - -
g06 —6961.814 —6911.247 —6547.354 —6540.012 2.6E+02 —5868.028 13
go7 24.306 24.309 24.375 24421 2.2E-01 25.534 180
go8 -0.095825 -0.095825 —0.095825 —0.095825 2.8E—17 —0.095825 421
g09 680.630 680.632 680.648 680.659 3.2E—02 680.775 | 1739
g10 7049.331 - - - - - -
gil 0.750 0.750 0.750 0.750  9.1E—06 0.750 61
g12 —1.000000 —1.000000 —0.999818 -0.999838 1.3E—04 —0.999573 68
g13 0.053950 0.514152 0.996674 0.965397 9.4E—02 0.998156 | 1750

for problemg09, but performed worse than the dynamic penaltglynamic penalty method. On the other hand, an adaptive method
method according tmmedian, meamandworst like stochastic ranking can adjust the balance between objective
The results in Table VIl withr, = (g/2)? improved those in and penalty functions automatically for different problems, and
Table VII for most, but not all, problems. Feasible solutions catturing different stages of evolutionary search. However, there is
now be found for problerg03. The results for several problemsno free lunch in optimization [24]. The price paid by an adaptive
are now better than those in Table VII. However, none of thesgethod is slightly longer search time for the algorithm to adapt.
improvements has changed the general picture. The results frohis can be observed from the last column in Tables Il and VII.
stochastic ranking are still better than those from the dynamic
penalty method [12] withr, = (g/2)?. In fact, the dynamic
penalty method with, = (¢/2)? is only better than stochastic
ranking for probleng02, but has lost its advantage for problem This paper has proposed a new constraint handling tech-
g09. This is not very surprising because the dynamic penaltygue—stochastic ranking. The technique does not introduce
method relies on a predefined sequencejofwhile stochastic any specialized variation operators. It does not recaipeiori
ranking is an adaptive method without any predefined sequenkeowledge about a problem since it does not use any penalty
Predefined sequences are unable to adjysdccording to coefficient r, in a penalty function. Stochastic ranking is
different problems and different search stages for a problemotivated by our analysis of penalty methods from the point
While a predefined sequence may work well for one problerof view of dominance. The balance between the objective and
it may not for a different problem. This is what happened to thgenalty functions is achieved through a ranking procedure

IV. CONCLUSION
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based on the stochastic bubble-sort algorithm. The introductisheren = 20 and0 < z; < 10 (¢ = 1,---,n). The global
of a single probability of?; enables us to specify convenientlymaximum is unknown; the best we foundfig&*) = 0.803619

an agreeable bias toward the objective function in rankiffg/hich, to the best of our knowledge, is better than any reported

individuals. Our experimental results suggest that a value \wdlue), constraing; is close to being activeg{ = —107%).

0.4 < P; < 0.5 would be appropriate for many constrained

optimization problems. The new constraint-handling techniqée 903

was tested on a set of 13 benchmark problems. Experimentajjaximize [17]

results have been presented. The future work of this study n

includes the application of stochastic ranking to other types of flx) =(/n)" H 4 (20)
=1

evolutionary algorithms.

APPENDIX
TEST FUNCTION SUITE

hl(:c):i:a:f—lz() (21)
i=1

wheren = 10 and0 < z; < 1 (i = 1,---,n). The global

All benchmark functions with the exception gi3 are de- maximum is at =1/\/n (i =1,---,n) wheref(z*) = 1.
scribed in [14]. They are summarized here for completeness.

The original sources of the functions are also cited.

A. g01
Minimize [6]
4 13
flx)y=>5 Z z; — 5 Zx?—z Z;
i=1 i=1 i=5
subject to
g1(x) =221 + 222+ 10+ 211 — 10 <0
g2(x) =221 + 223+ x10+ 212 —10<0
g3(x) =220 + 223 + 211 + 212 —10<0
ga(x) =—8x1 + 210 <0
g5(x) = -8z + 711 <0
g6(x) = —8xz +x12 <0
g7(x) = —2x4 — x5 + 210 <0
gs(x) =—2z6 — 27+ 211 <0
go(x) =—2x8 — 29+ 212 <0

(16)

17

where the bounds afe< z; <1(i =1,---,9),0 < z; < 100

(¢ = 10,11,12) and0 < z13 £ 1. The global minimum is at
z*=(1,1,1,1,1,1,1,1, 1, 3, 3, 3, 1) where six constraints a&e

active @17927937977987 andg9) andf("”.*) =—-15.

B. g02
Maximize [14]

subject to

(18)

(19)

D. g04
Minimize [8]
f(x) = 5.3578547x3 + 0.8356891x; 5
+ 37.293239x; — 40792.141 (22)
subject to

g1(x) = 85.334407 + 0.0056858x2x5
+ 0.0006262x1 x4 — 0.0022053z32; — 92 < 0
g2(x) = —85.334407 — 0.0056858z 25
— 0.0006262z1 x4 + 0.0022053x325 < 0
g3(x) =80.51249 4 0.0071317xox;
+ 0.0029955x1 22 + 0.00218133:?), —110<0
ga(x) =—80.51249 — 0.0071317x 0z
— 0.0029955z1 x5 — 0.0021813x§ +90<0
g5(x) =9.300961 4 0.0047026z 35
+ 0.0012547x1 23 + 0.00190852x324 — 25 < 0
g6(x) = —9.300961 — 0.0047026x 325
— 0.0012547x1x3 — 0.0019085x37x4 + 20 <0
(23)
where78 < z; < 102,33 < zo < 45 and27 < x; < 45
3,4,5). The optimum solution isz* = (78, 33,

29.995256025682, 45, 36.775812905788) wheig*) =
—30665.539. Two constraints are active &ndgg).

E. g05
Minimize [9]
F(&) = 321 +0.0000012% + 225 + (0.000002/3)z3  (24)
subject to
a(x)=—z4+23—-055<0
g2(x) =—x3+24—0.55<0
hs(x) =1000sin(—z3 — 0.25) 4+ 1000 sin(—xz4 — 0.25)
+894.8 -z =0
ha(z) =1000sin(z3 — 0.25) 4+ 1000sin(zs — x4 — 0.25)
+894.8 —xo =0
hs(x) =1000sin(zs — 0.25) + 1000sin(zy — 3 — 0.25)
£12948 =0 (25)
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where0 < x; < 1200, 0 < 29 < 1200, —0.55 < z3 < 0.55,

and —0.55 < x4 < 0.55. The best known solution [14]

* = (679.9453,1026.067,0.1188764, —0.3962336) where
f(z*) = 5126.4981.

F. g06
Minimize [6]
f(®) = (x1 — 10)® + (22 — 20)® (26)
subject to
g1(x) =—(z1 — 5)* — (22 — 5)*+100< 0
g2(z) = (21 — 6) + (z2 — 5)* — 8281 <0  (27)

wherel3 < z; € 100 and0 < z2 < 100. The optimum so-
lution isz* = (14.095, 0.84296) wherg(z*) = —6961.81388.
Both constraints are active.

G. g07
Minimize [9]
f(x) =23 + 22 + z129 — 142; — 1629 + (23 — 10)?
+ 4(zy — 5)2 + (x5 — 3)2
+ 2(zg — 1)? 4 522 + T(xg — 11) + 2(x9 — 10)?

+ (z10— 7)* + 45 (28)
subject to
a1(x) =—105 + 4xy + dx2 — 327 + 923 <0
g2(x) =10x; — 8x9 — 1727 + 225 < 0
g3(x) = —8x1 + 222 + 529 — 2210 — 12 <0
ga(x) =3(z; — 2)2 +4(xe — 3)2 + 223 — Ty — 120 <0
g5(x) =527 4+ 8x0 + (x3 — 6)% — 224, — 40 < 0
g6(x) =27 + 2(zy — 2)? — 23120 + 1425 — 626 < 0
gr(x) =0.5(x; — 8)% + 2(x2 —4)* + 322 — 26 —30< 0
g8(x) = =3z + 615 + 12(xg — 8)2 — 7210 < 0 (29)

where—10 < z; < 10 (¢ = 1,---,10). The optimum so-

lution is z*= (2.171996, 2.363683, 8.773926, 5.095984,
8.2800%
8.375927) wherg07 (z*) = 24.306 209 1. Six constraints are

0.9906548, 1.430574, 1.321644, 9.828726,

active @17 92,93,94,35, andgﬁ)'

H. g08
Minimize [14]
sin®(27z, ) sin(27z,)
= 30
flay = (30
subject to

293

subject to
g1(x) =—127 4 222 + 323 + 23 + 422 + 525 <0
( —282 + Ty +3z9 + 1022 + 24 — 25 <0

g2 iﬂ) =

g3(x) = —196 + 23z, + =3 + 622 — 8x7 < 0
ga(zx) =423 4+ 23 — 3z 09 + 223 + 526 — 1127 <0 (33)
where —10 < z; < 10 for (¢ 1,---,7). The op-
timum solution isz* = (2.330499, 1.951372,-0.4775414,

4.365726,—0.6244870, 1.038131, 1.594227) wheffee*) =
680.6300573. Two constraints are actiye éndg,).

J. g10
Minimize [9]
fl@)=z1+ x4+ 23 (34)
subject to
g1(x) =—140.0025(z4 + 26) <0
=—1+40.0025(z5 + 27 — x4) <0

g6(x) = —xzxg + 1250000 + z325 — 250025 < 0 (35)

wherel00 < z; < 10000, 1000 < z; < 10000 (i = 2,3),
and10 < z; < 1000 (¢ = 4,---,8). The optimum solution

is £* = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985,
217.9799, 286.4162, 395.5979) wheféz*) = 7049.3307.
Three constraints are activeg;( g2, andgs).

K. gl1
Minimize [14]
fle) = ol + (22 - 1) (36)
subject to
hiz)=x0— 21 =0 (37)

here—1 < z; < 1and-1 < zo < 1. The optimum solution
z* = (£1/+/2,1/2) wheref(z*) = 0.75.
L. g12
Maximize [14]
f(x) = (100 — (21 — 5)% — (x2 — 5)? — (23 — 5)%)/100 (38)
subject to
g(x) = (1 —p)* + (w2 — ¢)* + (23 — 7)* — 0.0625 < 0 (39)

gi(z) =af —22+1<0 where0 < z; < 10 (i = 1,2,3) andp,q,7 = 1,2,---,9.
go(x) =1—21 4+ (22 —4)* <0 (31) The feasible region of the search space consisté dfsjointed
where0 < z; < 10 and0 < x5 < 10. The optimum is located spheres. A pointzy, 2, z3) is feasible if and only if there exist

atz* = (1.2279713, 4.2453733) wheféz*) = 0.095825. The Ps@:" such that the above inequality holds. The optimum is lo-
solution lies within the feasible region. cated atz* = (5,5,5) wheref(«*) = 1. The solution lies within

the feasible region.
l. g09
Minimize [9]
f(x) =(z1 —10)® + 5(x9 — 12) + 25 + 3(z4 — 11)?
+ 10x§ + 7x(23 + x;L — 4dxgx7 — 10xg — 8z7 (32)

M. g13
Minimize [9]

f(x) = gMrPemamats (40)
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subject to:
9]
hi(z) =22+ 23+ a2 +x2+25 —10=0
hg(.’l}) = To2X3z — 5.1'4.’1’5 =0 [10]
ha(x) =2 +25+1=0 (41) [
where—23 < z; <23@¢ =1,2)and-32 < z; <32 = 1
3,4,5). The optimum solution ig* = (—1.717143, 1.595709, 2
1.827247-0.7636413-0.763645) wherg (x*) = 0.0539498.
[13]
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