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Stochastic Ranking for Constrained Evolutionary Optimization
Thomas P. Runarsson and Xin Yao

Abstract—Penalty functions are often used in constrained op-
timization. However, it is very difficult to strike the right balance
between objective and penalty functions. This paper introduces a
novel approach to balance objective and penalty functions stochas-
tically, i.e., stochastic ranking, and presents a new view on penalty
function methods in terms of the dominance of penalty and objec-
tive functions. Some of the pitfalls of naive penalty methods are
discussed in these terms. The new ranking method is tested using
a ( ) evolution strategy on 13 benchmark problems. Our re-
sults show that suitable ranking alone (i.e., selection), without the
introduction of complicated and specialized variation operators, is
capable of improving the search performance significantly.

Index Terms—Constrained optimization, constraint handling,
evolution strategy, penalty functions, ranking.

I. INTRODUCTION

T HE general nonlinear programming problem can be
formulated as solving theobjective function

minimize (1)

where , defines thesearch spacewhich is
an -dimensional space bounded by theparametric constraints

(2)

and thefeasible region is defined by

(3)

where areconstraints.

One common approach to deal with constrained optimization
problems is to introduce a penalty term into the objective func-
tion to penalize constraint violations [5]. The introduction of the
penalty term enables us to transform a constrained optimization
problem ( ) into an unconstrained one (), such as the one
given by (4):

(4)

where is a real-valued function which imposes a
“penalty” controlled by a sequence ofpenalty coefficients

, where is the generation counter. The general form of
function includes both the generation counter(for dynamic
penalty) and the population (for adaptive penalty). In the
current notation, this is reflected in the penalty coefficient.
The function will also be referred to as thefitness function
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in this paper.1 This transformation, i.e., (4), has been used
widely in evolutionary constrained optimization [13], [21]. In
particular, the following quadratic loss function [5], whose
decrease in value represents an approach to the feasible region,
has often been used as thepenalty function[16], [12]:

(5)

We will also use this function here, although our proposed con-
straint-handling technique is equally applicable to any other
forms of penalty functions.

The penalty function method may work quite well for some
problems; however, deciding an optimal (or near-optimal) value
for turns out to be a difficult optimization problem itself! If
is too small, an infeasible solution may not be penalized enough.
Hence, an infeasible solution may be evolved by an evolutionary
algorithm. If is too large, a feasible solution is very likely
to be found, but could be of very poor quality. A largedis-
courages the exploration of infeasible regions, even in the early
stages of evolution. This is particularly inefficient for problems
where feasible regions in the whole search space are disjoint.
In this case, it may be difficult for an evolutionary algorithm
to move from one feasible region to another unless they are
very close to each other. Reasonable exploration of infeasible
regions may act as bridges connecting two or more different fea-
sible regions. The critical issue here is how much exploration
of infeasible regions (i.e., how large is) should be consid-
ered as reasonable. The answer to this questions is problem de-
pendent. Even for the same problem, different stages of evolu-
tionary search may require different values.

There has been some work on the dynamic setting of
values in evolutionary constrained optimization [12], [13],
[16]. Such work usually relies on a predefined monotonically
nondecreasing sequence of values. This approach worked
well for some simple problems, but failed for more difficult
ones because the optimal setting of values is problem
dependent [19]. A fixed and predefined sequence cannot treat
a variety of different problems satisfactorily. A trial-and-error
process has to be used in this situation in order to find a proper
function for , as is done in [12], [13]. An adaptive approach,
where values are adjusted dynamically and automatically by
an evolutionary algorithm itself, appears to be most promising
in tackling different constrained optimization problems. For
example, population information can be used to adjust
values adaptively [22]. Different problems lead to different
populations in evolutionary search, and thus lead to different

values. The advantage of such an adaptive approach is that
it can be applied to problems where little prior knowledge is

1We are minimizing, rather than maximizing, the fitness function in this paper.
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available because we do not need to find a predefinedvalue,
or a sequence of values, that is “optimal” for this problem.

According to (4), different values define different fitness
functions. A fit individual under one fitness function may not
be fit under a different fitness function. Finding a near-op-
timal adaptively is equivalent to ranking individuals in a
population adaptively. Hence, the issue becomes how to rank
individuals according to their objective and penalty values.
Rank-based selection will be used here. We propose a novel
method for ranking individuals without specifying anvalue.
Experimental studies test the effectiveness and efficiency of our
method, which can be regarded as an exterior penalty approach.

One approach to avoid setting a hard-to-set parameteris
to treat constrained optimization as multiobjective optimization
where constraints are regarded as an additional objective func-
tion [23], [2]. However, multiobjective optimization does not
appear to be any easier than constrained optimization since one
has to balance different objectives in optimization.

The rest of this paper is organized as follows. Section II dis-
cusses the relationship betweenand ranking in more details.
The concept of dominance is introduced, which is somewhat
similar to, but not the same as an early work [21]. The analysis of
penalty methods from the point of view of balancing dominance
between the objective and penalty functions has revealed what
penalty methods are trying to do, and has led to the development
of our new constraint-handling technique—stochastic ranking,
which balances such dominance directly and explicitly in order
to improve the effectiveness and efficiency of constrained al-
gorithms. The relationship between our new technique and pre-
vious techniques is also analyzed. Section III describes imple-
mentation details of our evolutionary algorithm for constrained
optimization, and presents the experimental results on 13 bench-
mark problems. Comparisons with other constrained optimiza-
tion algorithms are also included in this section. Finally, Sec-
tion IV concludes with a brief summary of the paper and a few
remarks.

II. CONSTRAINT HANDLING BY STOCHASTICRANKING

A. Penalty Method

For a given penalty coefficient , let the ranking of
individuals be

(6)

where is the transformation function given by (4). Let us ex-
amine the adjacent pairand in the ranked order

(7)

where the notation and
are used for convenience. We now introduce a

parameter , which will be referred to as thecritical penalty
coefficientfor the adjacent pair and

for (8)

For the given choice of , there are three different cases
which may give rise to the inequality (7).

1) and : The comparison is said to
be dominated by the objective functionand

because the objective functionplays the dominant
role in determining the inequality. When individuals are
feasible, and .

2) and : The comparison is said to
bedominated by the penalty functionand
because the penalty functionplays the dominant role in
determining the inequality.

3) and : The comparison is said to be
nondominatedand . Neither the objective nor the
penalty function can determine the inequality by itself.

When comparing nondominant and feasible individuals, the
value of has no impact on the inequality (7). In other words,
it does not change the order of ranking of the two individuals.
However, the value of is critical in the first two cases as
is the flipping point that will determine whether the comparison
is objective or penalty function dominated. For example, if we
increase to a value greater than in the first case, individual

would change from a fitter individual into a less-fit one.
For the entire population, the chosen value ofused for com-
parisons will determine the fraction of individuals dominated by
the objective and penalty functions.

Not all possible values can influence the ranking of indi-
viduals. They have to be within a certain range, i.e.,

, to influence the ranking, where the lower boundis the
minimum critical penalty coefficient computed from adjacent
individuals ranked only according to the objective function, and
the upper bound is the maximum critical penalty coefficient
computed from adjacent individuals ranked only according to
the penalty function. In general, there are three different cate-
gories of values.

1) : All comparisons are based only on the fitness
function. is too small to influence the ranking of indi-
viduals. We will call thisunderpenalization.

2) : All comparisons are based only on the penalty
function. is so large that the impact of the objective
function can be ignored. We will call thisoverpenaliza-
tion.

3) : All comparisons are based on a combi-
nation of objective and penalty functions.

All penalty methods can be classified into one of the above
three categories. Some methods may fall into different cate-
gories during different stages in search. It is important to under-
stand the difference among these three categories because they
indicate which function (combination of functions) is driving
the search process and how search progresses. For example,
most dynamic methods start with a lowvalue (i.e., )
in order to find a good region which may contain both feasible
and infeasible individuals. Toward the end of the search, a high

value (i.e., ) is often used in order to locate a good
feasible individual. Such a dynamic method would work well
for problems for which the unconstrained global optimum is
close to its constrained global optimum. It is unlikely to work
well for problems for which the constrained global optimum is
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far away from its unconstrained one because the initial low
value would drive the search toward the unconstrained global
optimum, and thus further away from the constrained one.

The traditional constraint-handling technique used in evolu-
tion strategies falls roughly into the category of overpenalization
since all infeasible individuals are regarded worse than feasible
ones [20], [4], [11]. In fact, canonical evolution strategies (ES)
allow only feasible individuals in the initial population. To per-
form constrained optimization, an ES may be used to find a fea-
sible initial population by minimizing the penalty function [20,
p. 115]. Once a feasible population is found, the ES algorithm
will then minimize the objective function, and reject all infea-
sible solutions generated.

It has been widely recognized that neither under- nor over-
penalization is a good constraint-handling technique, and there
should be a balance between preserving feasible individuals and
rejecting infeasible ones [7]. In other words, ranking should be
dominated by a combination of objective and penalty functions,
and so the penalty coefficient should be within the bounds

. It is worth noting that the two bounds are not
fixed. They are problem dependent, and may change from gen-
eration to generation as they are also determined by the current
population.

A simple way to measure the balance of dominance of objec-
tive and penalty functions is to count how many comparisons of
adjacent pairs are dominated by the objective and penalty func-
tion, respectively. Such a number of comparisons can be com-
puted for any given by counting the number of critical penalty
coefficients given by (8) which are greater than. If we have
a predetermined preference for the number of adjacent compar-
isons that should be dominated by the penalty function, then a
corresponding penalty coefficient could be found.

It is clear from the analysis in this section that all a penalty
method tries to do is to obtain the right balance between objec-
tive and penalty functions so that the search moves toward the
optimum in the feasible space, not just toward the optimum in
the combined feasible and infeasible space. One way to achieve
such balancing effectively and efficiently is to adjust such bal-
ance directly and explicitly. This is what stochastic ranking, de-
scribed in the next section, does.

B. Stochastic Ranking

Since the optimal is hard to determine, a different ap-
proach is used here to balance the dominance of the objec-
tive and penalty functions. We introduce a probability of
using only the objective function for comparisons in ranking in
the infeasible regions of the search space. That is, given any
pair of two adjacent individuals, the probability of comparing
them (in order to determine which one is fitter) according to the
objective function is 1 if both individuals are feasible; other-
wise, it is . This appears to be similar to the use of a prob-
ability by Surry and Radcliffe [23] in deciding the outcome
of competitions between two individuals in tournament selec-
tion. Our technique is, however, quite different because we use
rank-based selection, and we do not have any extra computa-
tional cost for self-adapting . More importantly, the motiva-
tion of stochastic ranking comes from the need for balancing
objective and penalty functions directly and explicitly in opti-

Fig. 1. Stochastic ranking using a bubble-sort-like procedure whereU(0; 1)
is a uniform random number generator andN is the number of sweeps
going through the whole population. WhenP = 0, the ranking is an
overpenalization, and forP = 1, the ranking is anunderpenalization. The
initial ranking is always generated at random.

mization. Surry and Radcliffe’s method [23] does not attempt
to balance the dominance of penalty and objective functions in
a population.

Ranking is achieved by a bubble-sort-like procedure2 in our
work. The procedure provides a convenient way of balancing the
dominance in a ranked set. In our bubble-sort-like procedure,
individuals are ranked by comparing adjacent individuals in at
least sweeps.3 The procedure is halted when no change in the
rank ordering occurs within a complete sweep. Fig. 1 shows the
stochastic bubble-sort procedure used to rank individuals in a
population.

The probability of an adjacent individual winning a compar-
ison, i.e., holding the higher rank, in the ranking procedure is

(9)

given that at least one individual is infeasible. is the
probability of the individual winning according to the objective
function, and is the probability of the individual winning
according to the penalty function. In the case where adjacent
individuals are both feasible, . We would like to
examine the probability of winning more comparisons than
losses. Then the total number of wins must be ,
where is the total number of comparisons made. The
probability of winning comparisons out of is given by the
binomial distribution4

(10)

2It can be regarded as the stochastic version of the classic bubble sort.
3It would be exactly� sweeps if the comparisons were not made stochastic.
4The standard deviation of the binomial distribution isNP (1� P ).
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TABLE I
AVERAGE PERCENTAGEFEASIBLE INDIVIDUALS IN THE FINAL POPULATION AS

A FUNCTION OFP (N = �) AND TESTFUNCTION PRESENTED INAPPENDIX

The probability of winningat least comparisons is

(11)

Equations (10) and (11) show that the greater the number
of comparisons ( ), the less influence the initial ranking
will have. It is worth noting that the probability is usu-
ally different for different individuals in different stages of
ranking (sorting). Now, consider a case where is constant
during the entire ranking procedure, which is the case when

, ; . Then and
. If we choose , then . There

will be an equal chance for a comparison to be made based
on the objective or penalty function. Since we are only inter-
ested in feasible individuals as final solutions, should be
less than 1/2 so that there is a bias against infeasible solu-
tions. The strength of the bias can be adjusted easily by ad-
justing only . When parameter , the number of sweeps,
approaches , then the ranking will be determined by the
bias . That is, if , the ranking is based on
the objective function, and when , the ranking is
the overpenalty ranking. Hence, an increase in the number of
ranking sweeps is effectively equivalent to changing param-
eter , i.e., making it smaller or larger. Thus, we can fix

, and adjust to achieve the best performance. We
illustrate these points by optimizing a set of benchmark func-
tions presented in the Appendix using different values.
Table I presents the average results over 30 independent runs
of our algorithm. The numbers in the Table Indicate the per-
centage of feasible individuals in the final population. The
details about the experiment will be given in the following
section. It is quite clear from the table that, as ,
finding feasible solutions becomes very difficult unless the
unconstrained optimum happens to be the same as the con-
strained optimum, as is the case for problemg12 .

III. EXPERIMENTAL STUDIES

A. Evolution Strategy

The evolutionary optimization algorithm described in this
section is based on ES [20]. One reason for choosing ES is
that it does not introduce any specialized constraint-handling
variation operators. We would like to show that specialized
and complex variation operators for constrained optimization
problems are unnecessary, although they may be quite useful
for particular types of problems (see, for example, [17]). A
simple extension to the ES, i.e., the use of the stochastic ranking
scheme proposed in the previous section, can achieve signif-
icantly better results than other more complicated techniques.
The constraint-handling technique based on the stochastic
ranking scheme can be used in any evolutionary algorithm, not
just ES.

In the ( )-ES algorithm, the individual is a set of real-
valued vectors ( ), . The initial population
of is generated according to a uniform-dimensional proba-
bility distribution over the search space. Let be an approx-
imate measure of the expected distance to the global optimum,
then the initial setting for the “mean step sizes” should be [20,
p. 117]

(12)

where denotes theth component of the vector . We use
these initial values as upper bounds on.

Following the stochastic ranking scheme given previously,
the evaluated objective and penalty function

for each individual ( ), are used
to rank the individuals in a population, and the best (highest
ranked) individuals out of are selected for the next genera-
tion. The truncation level is set at [1, p. 79].

Variation of strategy parameters is performed before the
modification of objective variables. We generatenew strategy
parameters from old ones so that we can use thenew
strategy parameters in generatingoffspring later. The “mean
step sizes” are updated according to the log-normal update rule
[20]: , , and

(13)

where is a normally distributed one-dimensional
random variable with an expectation of 0 and variance 1. The
subscript in indicates that the random number is
generated anew for each value of. The “learning rates”
and are set equal to and , respectively,
where is the expected rate of convergence [20, p. 144]
and is set to 1 [1, p. 72]. Recombination is performed on the
self-adaptive parameters before applying the update rule given
by (13). In particular, global intermediate recombination (the
average) between two parents [20, p. 148] is implemented as

(14)

where is an index generated at random and anew for each.
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TABLE II
EXPERIMENTAL RESULTS ON13 BENCHMARK FUNCTIONSUSING ESWITH STOCHASTICRANKING (P = 0:45); 30 INDEPENDENTRUNS WERECARRIED OUT

Having varied the strategy parameters, each individual
( ), creates offspring on average, so
that a total of offspring are generated

(15)

Recombination is not used in the variation of objective vari-
ables. When an offspring is generated outside the parametric
bounds defined by the problem, the mutation (variation) of the
objective variable will be retried until the variable is within its
bounds. In order to save computation time, the mutation is re-
tried only ten times and then ignored, leaving the object variable
in its original state within the parameter bounds.

B. Experimental Results and Discussions

Thirteen benchmark functions were used. The first 12 were
taken from [14], and the 13th from [15]. The details, including
the original sources, of these functions are listed in the Ap-
pendix. Problemsg02 , g03 , g08 , andg12 are maximization
problems. They were transformed into minimization problems
using . For each of the benchmark problems, 30 indepen-
dent runs were performed using a (30, 200)-ES. All experiments
were performed in MATLAB. The source code may be obtained
from the authors upon request. All runs were terminated after

generations, except forg12 , which was run for 175
generations. Problemg12 is the harder version studied in [14],
where the feasible region of the search space consists of 9dis-
jointed spheres with a radius of 0.25.

Table II summarizes the experimental results we obtained
using . The median number of generations for finding
the best solution in each run is indicated by in the Table.
The table also shows the known “optimal” solution for each
problem and statistics for the 30 independent runs. These in-
clude the best objective value found, median, mean, standard
deviation, and worst found. The statistics are based on feasible
solutions only. All equality constraints have been converted into
inequality constraints, , using the degree of viola-
tion . As a result of this approximation, some results
might be better than the optimum. However, the tolerated vio-

lation is more stringent than others [15] where was
used.

In comparison with the latest results in the literature [14],
the results in Table II are significantly better for all but one
problem. While 70 20 000 function evaluations were used for
each problem and only 20 runs were carried out in [14] (for Ex-
periment 2 in [14], which gave better results than Experiment
1), we have used a maximum of only 2001750 function eval-
uations for each problem, and carried out 30 independent runs
for all problems.

For problemsg01 , g03 , g04 , g08 , g11 , andg12 , our algo-
rithm has consistently found the optimal solution for all 30 runs,
while the algorithm in [14] did not find any for problemsg01 ,
g03 , g04 , andg12 (the more difficult version), and found the
optimal solution only in some out of 20 runs for problemg08 .
The average result in [14] forg08 was 0.0891568 when the
optimal solution was 0.095825.

For problemg02 , the algorithm given by [14] was more con-
sistent and performed better on average, but worse in terms of
the best result. Its average result was0.79671 over 20 runs,
while ours was 0.781975 over 30 runs.5 However, our algo-
rithm was capable of finding better solutions. The best solution
found by our algorithm was 0.803515, while the best in [14]
was 0.79953. It is also interesting to note that the median of
our results was 0.785800, which was much better than the av-
erage. A closer look at our results revealed that six out of 30
runs obtained a solution better than the best offered in [14].

For problemg04 , 30664.5 was reported as being “by far
the best value reported by any evolutionary system for this test
case!” [14]. Our algorithm has now improved this “record” sub-
stantially by finding the optimum consistently.6 Homaifaret al.

5The minus sign was added to the average result because we transformed the
maximization problem into the minimization one.

6After this paper had been submitted, Petrowski and Hamida [18] reported
another algorithm which could also find the optimum consistently. However,
few details about the algorithm, the parameters used, and experimental setup
were described in their one-page paper. The optimal solution found by them
was only given for one digit after the decimal point. Problemsg03 , g05 , g11 ,
g12 , andg13 were not included in their studies.
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TABLE III
COMPARISONBETWEENOUR (INDICATED BY RY) AND KOZIEL AND MICHALEWICZ’S (INDICATED BY KM [14]) A LGORITHMS; FOR PROBLEM g13 , THE RESULT

WAS TAKEN FROM [15, METHOD 4]; THE TWO VALUES IN THE “M EAN” COLUMN FOR PROBLEM g13 REPRESENTMEDIANS

[10] found a similar solution to ours forg04 using a genetic al-
gorithm. Unfortunately, that solution violated two constraints.
Another similar solution was found by Colville [3] using a math-
ematical programming technique. However, it is unclear how
those two techniques [10], [3] would perform on a larger set of
benchmark functions as we used here.

For problemg05 , which involves equality constraints, the al-
gorithm given in [14] “did not provide quality results.” Hence,
no results were given in their paper. Our algorithm has found
consistently feasible solutions. Some very good results were ob-
tained. For example, the best result found was 5126.497, and the
average was 5128.811. The best result was even better than the
optimal solution of 5126.498. This is the consequence of using
inequalities to approximate each equality, although we used a
very small .

For problemg06 , our algorithm performed significantly
better than the algorithm in [14] in terms of the average as well
as best results. Our average result was6875.940, while theirs
was 6342.6. Our algorithm has found the global optimum 20
times out of 30 runs, while their algorithm had never found the
optimal solution.7

For problemsg07 , g09 , and g10 , our algorithm outper-
formed the algorithm given in [14], again in terms of all three
criteria: the average, best, and worst results. Both algorithms
performed well, and found the optimal solution for problem
g11 .

For problemg13 , our algorithm outperformed all six con-
straint-handling methods studied in [15] in terms of the best,
median, and worst results. Table III summarizes the comparison
between our results and the latest results [14], [23] that we can
find in the literature.

In order to evaluate the impact of on the results generated
by our algorithm, we have run the same set of experiments many
times using . As expected, neither

7Our algorithm consistently will find the optimum whenP = 0:425; see
also the results forP = 0 in Table IV.

small nor large (i.e., 0.5) gave very good results. The best
results were obtained when . This indicates
that a minor bias toward the dominance of the penalty function
encourages the evolution of feasible solutions while still main-
taining infeasible regions as potential “bridges” to move among
feasible regions in the whole search space.

Tables IV and V give two sets of our experimental results
when and , respectively. is an ex-
treme case where all infeasible individuals were ranked lower
than feasible individuals. Among feasible solutions, the ranking
was based solely on the objective function. Among infeasible
solutions, the ranking was based only on the penalty function.
This extreme case is somewhat similar to [4], but not the same
because it does not use the worst fitness value of feasible solu-
tions. Although this algorithm did not perform as well as when

for problemsg03 , g04 , g05 , g11 , g12 , andg13 ,
it performed roughly the same as when for other
problems. When , the penalty against the infeasible
solution was weakened. Our algorithm could only find a fea-
sible solution 6 times out of 30 runs for problemg10 , although
it found a feasible solution 100% times for all other problems. In
general, the algorithm improved its performance and found best
solutions when was changed from 0.45 to 0.475, except for
problemsg01 , g03 , andg06 . The improvement is especially
noticeable for functionsg13 andg04 .

It is important to emphasize that the performance of any evo-
lutionary algorithm for constrained optimization is determined
by the constraint-handling technique used, as well as the evo-
lutionary search algorithm (including parameters). Throughout
our study, we have kept our modification to the ES to the min-
imum, i.e., changing only the selection scheme without intro-
ducing any specialized operators. The parameters were also set
according to previous recommendations in published books and
papers. This, however, does not imply that the search algorithm
plays an unimportant role in constrained optimization. To illus-
trate that the combined effect of a constraint-handling technique
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TABLE IV
EXPERIMENTAL RESULTS ON13 BENCHMARK FUNCTIONSUSING ESWITH STOCHASTICRANKING (P = 0); 30 INDEPENDENTRUNS WERECARRIED OUT

TABLE V
EXPERIMENTAL RESULTS ON13 BENCHMARK FUNCTIONSUSING ESWITH STOCHASTICRANKING (P = 0:475); 30 INDEPENDENTRUNS WERECARRIED OUT

*Based on the six feasible solutions found out of the 30 runs.

TABLE VI
EXPERIMENTAL RESULT ON FUNCTION g10 USING ESWITH STOCHASTIC RANKING AND ' = 1=4

and a search algorithm can make a big difference, we repeated
the experiment on functiong10 using (instead of 1)
for the computation of the learning ratesand . These results
are given in Table VI. A significant improvement was achieved
in comparison with the results in Tables II and IV.

An interesting question that arises naturally here is whether or
not ES was fully responsible for the good results obtained, e.g.,
those in Table II, in other words, whether stochastic ranking con-
tributed anything to the good results. To answer this question, an
additional set of experiments was carried out using exactly the
same ES as used before, but with a different constraint-handling

technique—the dynamic penalty method of [12]. The results are
summarized in Tables VII and VIII.

Comparing Tables II and VII, it is clear that stochastic ranking
performed better than the dynamic penalty method with

[12] according to all four criteria (best, median, mean, and
worst) for all benchmark functions, except forg02 , g09 , and
g12 . The two methods performed the same on problemg12 .
The dynamic penalty method found a betterbestthan stochastic
ranking for problemg02 , but performed worse than stochastic
ranking according tomedian, mean, andworst. On the other
hand, stochastic ranking found a betterbest(i.e., the optimum)
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TABLE VII
EXPERIMENTAL RESULTSUSING THEDYNAMIC PENALTY METHOD OF[12] WITH r = g=2; THE SUBSCRIPT IN THEFUNCTION NAME INDICATES THENUMBER OF

FEASIBLE SOLUTIONS FOUND IF IT WAS BETWEEN 1 AND 29 INCLUSIVE; “–” M EANS NO FEASIBLE SOLUTIONS WEREFOUND

TABLE VIII
EXPERIMENTAL RESULTSUSING THEDYNAMIC PENALTY METHOD OF[12] WITH r = (g=2) ; “–” M EANS NO FEASIBLE SOLUTIONS WEREFOUND

for problemg09 , but performed worse than the dynamic penalty
method according tomedian, mean, andworst.

The results in Table VIII with improved those in
Table VII for most, but not all, problems. Feasible solutions can
now be found for problemg03 . The results for several problems
are now better than those in Table VII. However, none of these
improvements has changed the general picture. The results from
stochastic ranking are still better than those from the dynamic
penalty method [12] with . In fact, the dynamic
penalty method with is only better than stochastic
ranking for problemg02 , but has lost its advantage for problem
g09 . This is not very surprising because the dynamic penalty
method relies on a predefined sequence of, while stochastic
ranking is an adaptive method without any predefined sequence.

Predefined sequences are unable to adjustaccording to
different problems and different search stages for a problem.
While a predefined sequence may work well for one problem,
it may not for a different problem. This is what happened to the

dynamic penalty method. On the other hand, an adaptive method
like stochastic ranking can adjust the balance between objective
and penalty functions automatically for different problems, and
during different stages of evolutionary search. However, there is
no free lunch in optimization [24]. The price paid by an adaptive
method is slightly longer search time for the algorithm to adapt.
This can be observed from the last column in Tables II and VII.

IV. CONCLUSION

This paper has proposed a new constraint handling tech-
nique—stochastic ranking. The technique does not introduce
any specialized variation operators. It does not requirea priori
knowledge about a problem since it does not use any penalty
coefficient in a penalty function. Stochastic ranking is
motivated by our analysis of penalty methods from the point
of view of dominance. The balance between the objective and
penalty functions is achieved through a ranking procedure
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based on the stochastic bubble-sort algorithm. The introduction
of a single probability of enables us to specify conveniently
an agreeable bias toward the objective function in ranking
individuals. Our experimental results suggest that a value of

would be appropriate for many constrained
optimization problems. The new constraint-handling technique
was tested on a set of 13 benchmark problems. Experimental
results have been presented. The future work of this study
includes the application of stochastic ranking to other types of
evolutionary algorithms.

APPENDIX

TEST FUNCTION SUITE

All benchmark functions with the exception ofg13 are de-
scribed in [14]. They are summarized here for completeness.
The original sources of the functions are also cited.

A. g01

Minimize [6]

(16)

subject to

(17)

where the bounds are ( ),
( ) and . The global minimum is at

= (1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 3, 1) where six constraints are
active ( and ) and .

B. g02

Maximize [14]

(18)

subject to

(19)

where and ( ). The global
maximum is unknown; the best we found is
(which, to the best of our knowledge, is better than any reported
value), constraint is close to being active ( ).

C. g03

Maximize [17]

(20)

(21)

where and ( ). The global
maximum is at ( ) where .

D. g04

Minimize [8]

(22)

subject to

(23)

where , and
( ). The optimum solution is = (78, 33,
29.995256025682, 45, 36.775812905788) where =

30665.539. Two constraints are active (and ).

E. g05

Minimize [9]

(24)

subject to

(25)
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where , , ,
and . The best known solution [14]

where
.

F. g06

Minimize [6]

(26)

subject to

(27)

where and . The optimum so-
lution is = (14.095, 0.84296) where .
Both constraints are active.

G. g07

Minimize [9]

(28)

subject to

(29)

where ( ). The optimum so-
lution is = (2.171996, 2.363683, 8.773926, 5.095984,
0.9906548, 1.430574, 1.321644, 9.828726, 8.280092,
8.375927) whereg07 = 24.306 209 1. Six constraints are
active ( and ).

H. g08

Minimize [14]

(30)

subject to

(31)

where and . The optimum is located
at = (1.2279713, 4.2453733) where = 0.095825. The
solution lies within the feasible region.

I. g09

Minimize [9]

(32)

subject to

(33)

where for ( ). The op-
timum solution is = (2.330499, 1.951372, 0.4775414,
4.365726, 0.6244870, 1.038131, 1.594227) where =
680.6300573. Two constraints are active (and ).

J. g10

Minimize [9]

(34)

subject to

(35)

where , ( ),
and ( ). The optimum solution
is = (579.3167, 1359.943, 5110.071, 182.0174, 295.5985,
217.9799, 286.4162, 395.5979) where = 7049.3307.
Three constraints are active (, , and ).

K. g11

Minimize [14]

(36)

subject to

(37)

where and . The optimum solution
is where = 0.75.

L. g12

Maximize [14]

(38)

subject to

(39)

where ( ) and .
The feasible region of the search space consists ofdisjointed
spheres. A point is feasible if and only if there exist

such that the above inequality holds. The optimum is lo-
cated at = (5,5,5) where = 1. The solution lies within
the feasible region.

M. g13

Minimize [9]

(40)
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subject to:

(41)

where ( ) and (
). The optimum solution is = 1.717143, 1.595709,

1.827247, 0.7636413, 0.763645) where = 0.0539498.
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