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Abstract

In this paper, we propose a dominance-based selection scheme to incorporate constraints into the fitness function of a genetic algorithm

used for global optimization. The approach does not require the use of a penalty function and, unlike traditional evolutionary multiobjective

optimization techniques, it does not require niching (or any other similar approach) to maintain diversity in the population. We validated the

algorithm using several test functions taken from the specialized literature on evolutionary optimization. The results obtained indicate that

the approach is a viable alternative to the traditional penalty function, mainly in engineering optimization problems.
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1. Introduction

Genetic algorithms (GAs) have been very successful in a

wide variety of optimization problems, presenting several

advantages with respect to traditional optimization tech-

niques such as the following [16,23,25]: (a) GAs do not

require the objective function to be continuous or even to be

available in algebraic form, (b) GAs tend to escape more

easily from local optima because of its population-based

nature (the population is the set of solutions of the problem

to be solved and its size is normally a parameter defined by

the user), (c) GAs do not require specific domain

information although they can exploit it if such information

is available, (d) GAs are conceptually simple and relatively

easy to implement.

GAs have been successfully applied both to uncon-

strained and constrained problems [23]. However, despite

the considerable number of constraint-handling methods

that have been developed GAs in the last few years [8,24],

most of them either require a large number of fitness

function evaluations, complex encodings or mappings, or

are limited to problems with certain (specific)

characteristics.

The aim of this work is to show that using concepts from

multiobjective optimization [6], it is possible to derive new

constraint-handling techniques that are not only easy to

implement, but also computationally efficient (in terms of

the number of fitness function evaluations required by the

algorithm), and competitive with traditional approaches in

terms of the quality of results that they produce.

The organization of this paper is the following: Section 2

contains the basic concepts used throughout this paper.

Section 3 presents the most relevant previously published

related work. Then, our approach is described in Section 4

and validated with the examples of Section 5. Our results are

briefly discussed in Section 7 and our conclusions and some

paths of future research are provided in Section 8.

2. Basic concepts

The problem that is of particular interest to us in this

paper is the general nonlinear optimization problem in

which we want to

Find ~x which optimizes f ð~xÞ ð1Þ

subject to

gið~xÞ # 0; i ¼ 1;…; n ð2Þ

hjð~xÞ ¼ 0; j ¼ 1;…; p ð3Þ

where ~x is the vector of solutions ~x ¼ ½x1; x2;…; xr�
T; n is the

number of inequality constraints and p is the number of
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equality constraints (in both cases, constraints could be

linear or nonlinear). Only inequality constraints will be

considered in this work, because equality constraints can be

transformed into inequalities using

lhjð~xÞl2 e # 0 ð4Þ

where e is the tolerance allowed (a very small value).

If we denote with F to the feasible region and with S to

the whole search space, then it should be clear that F # S:

For an inequality constraint, when it is the case that it

satisfies gið~xÞ when gið~xÞ ¼ 0; then we say that is active at ~x:

Active constraints are normally very difficult to satisfy

because they are exactly in the boundary between the

feasible and infeasible regions. All equality constraints hj

(regardless of the value of ~x used) are considered active at

all points of F.

A point ~x [ F is Pareto optimal if for every ~x [ F and

I ¼ {1; 2;…; k} either

;i[Iðfið~xÞ ¼ fið~x
pÞ ð5Þ

or, there is at least one i [ I such that

fið~xÞ . fið~x
pÞ ð6Þ

In words, this definition says that ~x is Pareto optimal if there

exists no feasible vector ~x which would decrease some

criterion without causing a simultaneous increase in at least

one other criterion. The phrase Pareto optimal is considered

to mean with respect to the entire decision variable space

unless otherwise specified.

A vector ~u ¼ ðu1;…; ukÞ is said to dominate (in the Pareto

sense) ~v ¼ ðv1;…; vkÞ (denoted by ~u W ~v) if and only if u is

partially less than v, i.e. ;i [ {1;…; k}; ui # vi ^ ’i [
{1;…; k} : ui , vi:

3. Related work

The idea of using evolutionary multiobjective optimiz-

ation techniques [6] to handle constraints is not entirely

new. A few researchers have reported approaches that rely

on the use of multiobjective optimization techniques as we

will see in this section.

The most common approach is to redefine the single-

objective optimization of f ð~xÞ as a multiobjective optimiz-

ation problem in which we will have m þ 1 objectives,

where m is the number of constraints. Then, we can apply

any multiobjective optimization technique [14] to the new

vector ~v ¼ ðf ð~xÞ; f1ð~xÞ;…; fmð~xÞ; where f1ð~xÞ;…; fmð~xÞ are the

original constraints of the problem. An ideal solution ~x

would thus have fið~xÞ ¼ 0 for 1 # i # m and f ð~xÞ $ f ð~yÞ for

all feasible ~y (assuming maximization).

Surry et al. [36,37] proposed the use of Pareto ranking

[13] and the vector evaluated genetic algorithm (VEGA)

[33] to handle constraints. In their approach, called

COMOGA, the population was ranked based on constraint

violations (counting the number of individuals dominated

by each solution). Then, one portion of the population was

selected based on constraint ranking, and the rest based on

real cost (fitness) of the individuals. COMOGA compared

fairly with a penalty-based approach in a pipe-sizing

problem, since the resulting GA was less sensitive to

changes in the parameters, but the results achieved were not

better than those found with a penalty function [37]. It

should be added that COMOGA [37] required several extra

parameters, although its authors argue [37] that the

technique is not particularly sensitive to the values of such

parameters.

Parmee and Purchase [26] implemented a version of

VEGA [33] that handled the constraints of a gas turbine

problem as objectives to allow a GA to locate a feasible

region within the highly constrained search space of this

application. However, VEGA was not used to further

explore the feasible region, and instead they opted to use

specialized operators that would create a variable-size

hypercube around each feasible point to help the GA to

remain within the feasible region at all times [26]. Parmee

and Purchase’s approach was specially developed for a

heavily constrained search space and it proved to be

appropriate to reach the feasible region. However, this

application of a multiobjective optimization technique does

not aim at finding the global optimum of the problem, and

the use of special operators suggested by the authors

certainly limits the applicability of the approach.

Camponogara and Talukdar [4] proposed the use of a

procedure based on an evolutionary multiobjective optim-

ization technique. Their proposal was to restate a single

objective optimization problem in such a way that two

objectives would be considered: the first would be to

optimize the original objective function and the second

would be to minimize

Fð~xÞ ¼
Xn

i¼1

max½0; gið~xÞ�
b ð7Þ

where b is normally 1 or 2.

Once the problem is redefined, nondominated solutions

with respect to the two new objectives are generated. The

solutions found define a search direction d ¼ ðxi 2 xjÞ=lxi 2

xjl; where xi [ Si; xj [ Sj; and Si and Sj are Pareto sets. The

direction search d is intended to simultaneously minimize

all the objectives [4]. Line search is performed in this

direction so that a solution x can be found such that x

dominates xi and xj (i.e. x is a better compromise than the

two previous solutions found). Line search takes the place of

crossover in this approach, and mutation is essentially the

same, where the direction d is projected onto the axis of one

variable j in the solution space [4]. Additionally, a process

of eliminating half of the population is applied at regular

intervals (only the less fitted solutions are replaced by

randomly generated points).

Camponogara and Talukdar’s approach [4] have

obvious problems to keep diversity (a common problem
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when using evolutionary multiobjective optimization

techniques [6]), as it is indicated by the fact that the

technique discards the worst individuals at each gener-

ation. Also, the use of line search increases the cost

(computationally speaking) of the approach and it is not

clear what is the impact of the segment chosen to search in

the overall performance of the algorithm.

Jiménez and Verdegay [20] proposed the use of a min–

max approach [5] to handle constraints. The main idea of

this approach is to apply a set of simple rules to decide the

selection process:

1. If the two individuals being compared are both feasible,

then select based on the minimum value of the objective

function.

2. If one of the two individuals being compared is feasible

and the other one is infeasible, then select the feasible

individual.

3. If both individuals are infeasible, then select based on

the maximum constraint violation (max gjð~xÞ; for j ¼

1;…;m; and m is the total number of constraints). The

individual with the lowest maximum violation wins.

A subtle problem with this approach is that the

evolutionary process first concentrates only on the con-

straint satisfaction problem and therefore its samples points

in the feasible region essentially at random [37]. This means

that in some cases (e.g. when the feasible region is disjoint),

we might land in an inappropriate part of the feasible region

from which we will not be able to escape. However, this

approach (as in the case of Parmee and Purchase’s [26]

technique) may be a good alternative to find a feasible point

in a heavily constrained search space.

Coello [7] proposed the use of a population-based

multiobjective optimization technique similar to VEGA

[33] to handle each of the constraints of a single-objective

optimization problem as an objective. At each generation,

the population is split into m þ 1 sub-populations (m is the

number of constraints), so that a fraction of the population is

selected using the (unconstrained) objective function as its

fitness and another fraction uses the first constraint as its

fitness and so on.

For the sub-population guided by the objective function,

the evaluation of such objective function for a given vector ~x

is used directly as the fitness function (multiplied by (21) if

it is a minimization problem), with no penalties of any sort.

For all the other sub-populations, the algorithm used was the

following [7]:

if gjð~xÞ , 0:0 then fitness ¼ gjð~xÞ

else if v – 0 then fitness ¼ 2v

else fitness ¼ f ð~xÞ

where gjð~xÞ refers to the constraint corresponding to sub-

population j þ 1 (this is assuming that the first sub-

population is assigned to the original objective function

f ð~xÞ), and v refers to the number of constraints that are

violated ð# mÞ:

The approach of Coello [7] provided good results in

several optimization problems, but required a relatively

large number of fitness function evaluations to converge.

Ray et al. [30] proposed an approach in which solutions

were ranked separately based on the value of their objective

functions and their constraints. Then, a set of mating

restrictions were applied based on the information that each

individual had of its own feasibility (this idea was inspired

on an earlier approach by Hinterding and Michalewicz

[18]), so that the global optimum could be reached through

cooperative learning. Ray’s approach seems to be very

efficient, but it has a drawback as the fact that it requires a

lot of extra knowledge about the problem at hand in order to

be effective. Although this knowledge is extracted directly

from the problem itself, the approach is certainly far more

complicated than using straightforward dominance relation-

ships, and its implementation seems to be cumbersome.

The limitations of the previously reported multiobjective

optimization techniques used to handle constraints were the

main motivation of this work.

4. The proposed approach

The concept of nondominated vector is used in multi-

objective optimization to denote solutions that represent the

best possible compromise, given a set of objective

functions. None of the objective function values of these

nondominated vectors can be improved without worsening

another one (see Ref. [6] for details). Our hypothesis is that

this concept can be used to extend evolutionary multi-

objective optimization techniques to be used as single-

objective optimization approaches in which the constraints

are handled as additional objectives. Although the use of an

evolutionary multiobjective optimization technique can be

quite useful to reach the feasible region in highly

constrained search spaces, is not straightforward to extend

it to solve single-objective optimization problems. The main

difficulty is that we could bias the search towards a certain

specific portion of the feasible region and, as a consequence,

we could be unable to reach the global optimum.

This paper presents a proposal based on a technique

known as the niched-pareto genetic algorithm (NPGA) [19]

that uses tournament selection decided through nondomi-

nance. In the original proposal of the NPGA, the idea was to

use a sample of the population to determine who is the

winner between two candidate solutions to be selected, and

to choose one of them based on nondominance with respect

to the sample taken. Checking for nondominance has a

computational cost of OðkM2Þ per generation, where k refers

to the number of objective functions and M refers to the

population size. Since our approach only uses a portion of

the population (a value which is always less than M ), then

its computational complexity is (on average) lower than that
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of traditional evolutionary multiobjective optimization

techniques [6].

To adapt the NPGA to solve single-objective constrained

optimization problems, we performed the following

changes:

† The tournament performed is not completely determi-

nistic. We use a parameter called selection ratio ðSrÞ;

which indicates the minimum number of individuals that

will not be selected through tournament selection. These

individuals will be selected using a probabilistic

procedure. This means that ð1 2 SrÞ individuals in the

population are probabilistically selected.

† When comparing two individuals, we can have four

possible situations:

3.1. Both are feasible. In this case, the individual with a

better fitness value wins.

3.2. One is infeasible, and the other is feasible. The

feasible individual wins, regardless of its fitness

function value.

3.3. Both are infeasible. The nondominated individual is

selected, only if the other candidate is dominated.

3.4. Both are infeasible and both are either nondomi-

nated or dominated. The individual with the lowest

amount of constraint violation wins, regardless of its

fitness function value.

† Our approach does not require niching [11] (a

mechanism used to penalize individuals in the

population who are too ‘similar’—measured over a

certain metric—with a reduction of their fitness;

niching is used to avoid convergence to a single

solution in multiobjective and multimodal optimiz-

ation) or any other similar approach to keep diversity,

since the value of Sr will control the diversity of the

population. For the experiments reported in this paper,

a value close to one ð$ 0:8Þ was adopted for Sr:

The pseudocode of our approach is presented below. The

following notation is adopted: oldpop is the current

population, tdom is the size of the comparison set and

flipðPÞ is a function that returns TRUE with probability P,

tournlist is the index of the individuals in the current

population. This ordering of the list is randomly perturbed

by the shuffle procedure:

function select

begin

shuffle(tournlist);

candidate_1 ¼ tournlist[0];

candidate_2 ¼ tournlist[1];

if (flip(Sr)) /* fitness-feasibility-nondominance

based tournament */

begin

candidate_1_dominated ¼ FALSE;

candidate_2_dominated ¼ FALSE;

if (oldpop[candidate_1] ¼ ¼ feasible AND

oldpop[candidate_2] ¼ ¼ feasible)

/* fitness checking */

if (oldpop[candidate_1].fitness $ oldpop[candidate_2].-

fitness)

winner ¼ candidate_1;

else

winner ¼ candidate_2;

else /* feasibility checking */

if (oldpop[candidate_1] ¼ ¼ feasible AND

oldpop[candidate_2] ¼ ¼ nonfeasible)

winner ¼ candidate_1;

else

if (oldpop[candidate_1] ¼ ¼ nonfeasible AND

oldpop[candidate_2] ¼ ¼ feasible)

winner ¼ candidate_2;

else

begin /* nondominance checking */

for (i ¼ 2 to tdom þ 2)

begin

comparison_individual ¼ tournlist[i];

if (oldpop[comparison_individual] dominates oldpop[-

candidate_1])

candidate_1_dominated ¼ TRUE;

if (oldpop[comparison_individual] dominates oldpop[can-

didate_2])

candidate_2_dominated ¼ TRUE;

end

if (candidate_1_dominated ¼ ¼ TRUE AND

candidate_2_dominated ¼ ¼ FALSE)

winner ¼ candidate_2;

else

if (candidate_1_dominated ¼ ¼ FALSE AND

candidate_2_dominated ¼ ¼ TRUE)

winner ¼ candidate_1;

else /* tie break with accumulated constraint violation */

if (oldpop[candidate_1].sumviol , oldpop[candida-

te_2].sumviol)

winner ¼ candidate_1;

else

winner ¼ candidate_2;

end

end

else

if (flip(0.5))

winner ¼ candidate_1;

else

winner ¼ candidate_2;

return(winner);

end

The way in which our algorithm works is described next.

First, our algorithm tries to reach the feasible region of the

search space in two ways: finding nondominated solutions

and choosing those with a lower accumulation of constraint

violation. When the number of feasible solutions in the

population increases, those with a better fitness value will be
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preferred, because the feasible region is sufficiently sampled

and the aim then becomes to reach the global optimum.

During all this process, some individuals are probabil-

istically selected. These individuals can be either infeasible

or dominated. The reason for this is to avoid that our GA

stagnates and prematurely converges to a local optimum.

This mechanism is thus responsible for keeping the diversity

required in the population to ensure that the search

progresses.

A significant difference of our approach with respect to

the NPGA is the way in which dominance between vectors

is checked. In order to move the search towards the feasible

region of the problem, we eliminate the value of the fitness

function of the dominance checking. In other words, we

only check dominance between the values of the constraints.

Such elimination reduces the computational cost of the

approach and helps our GA to move efficiently towards the

feasible region.

In the following experiments, we use a GA with binary

representation, two-point crossover, and uniform mutation.

The parameters used for our GA are the following:

population size ¼ 200 individuals, maximum number of

generations ¼ 400, crossover rate ¼ 0.6, mutation

rate ¼ 0.03, Sr ¼ 0:99 (i.e. one out of every one hundred

selections will be done probabilistically, rather than in a

deterministic way), tournament size ¼ 10.

5. Examples

Several examples taken from the optimization literature

will be used to show the way in which the proposed approach

works. These examples have linear and nonlinear constraints,

and have been previously solved using a variety of other

techniques (both GA-based and traditional mathematical

programming methods), which is useful to determine the

quality of the solutions produced by the proposed approach.

5.1. Example 1: welded beam design

The following problem is taken from Ref. [29]. A welded

beam is designed for minimum cost ðf ð~xÞ is the cost in the

equation below) subject to constraints on: ðg1Þ shear stress

ðtÞ; ðg2Þ bending stress in the beam ðsÞ; ðg7Þ buckling load

on the bar ðPcÞ; ðg6Þ end deflection of the beam ðdÞ; and

ðg3; g4; g5Þ side constraints [29]. There are four design

variables as shown in Fig. 1: hðx1Þ; lðx2Þ; tðx3Þ and bðx4Þ:

The problem can be stated as follows:

Minimize:

f ð~xÞ ¼ 1:10471x2
1x2 þ 0:04811x3x4ð14:0 þ x2Þ ð8Þ

Subject to

g1ð~xÞ ¼ tð~xÞ2 tmax # 0 ð9Þ

g2ð~xÞ ¼ sð~xÞ2 smax # 0 ð10Þ

g3ð~xÞ ¼ x1 2 x4 # 0 ð11Þ

g4ð~xÞ ¼ 0:10471x2
1 þ 0:04811x3x4ð14:0 þ x2Þ2 5:0 # 0 ð12Þ

g5ð~xÞ ¼ 0:125 2 x1 # 0 ð13Þ

g6ð~xÞ ¼ dð~xÞ2 dmax # 0 ð14Þ

g7ð~xÞ ¼ P 2 Pcð~xÞ # 0 ð15Þ

where

tð~xÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðt0Þ2 þ 2t0t00

x2

2R
þ ðt00Þ2

r
ð16Þ

t0 ¼
Pffiffi

2
p

x1x2

; t00 ¼
MR

J
; M ¼ P L þ

x2

2

� �
ð17Þ

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

2

4
þ

x1 þ x3

2

� �2
s

ð18Þ

J ¼ 2
ffiffi
2

p
x1x2

x2
2

12
þ

x1 þ x3

2

� �2
" #( )

ð19Þ

sð~xÞ ¼
6PL

x4x2
3

; dð~xÞ ¼
4PL3

Ex3
3x4

ð20Þ

Pcð~xÞ ¼
4:013E

ffiffiffiffiffiffiffiffiffi
x2

3x6
436

q
L2

1 2
x3

2L

ffiffiffiffiffi
E

4G

r !
ð21Þ

P ¼ 6000 lb; L ¼ 14 in; E ¼ 30 £ 106 psi;

G ¼ 12 £ 106 psi

ð22Þ

tmax ¼ 13 600 psi; smax ¼ 30 000sfhpsi;

dmax ¼ 0:25 in

ð23Þ

5.2. Example 2: design of a pressure vessel

The following problem is taken from Ref. [21]. A

cylindrical vessel is capped at both ends by hemispherical

Fig. 1. The welded beam used for the first example. The decision variables

are the following: hðx1Þ; lðx2Þ; tðx3Þ and bðx4Þ: In this case, the cost of the

beam ðf ð~xÞÞ is to be minimized.
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heads as shown in Fig. 2. The objective is to minimize the

total cost ðf ð~xÞÞ; including the cost of the material, forming

and welding. There are four design variables: Ts (thickness

of the shell), Th (thickness of the head), R (inner radius) and

L (length of the cylindrical section of the vessel, not

including the head). Ts and Th are integer multiples of

0.0625 in, which are the available thicknesses of rolled steel

plates, and R and L are continuous. Using the same notation

given by Kannan and Kramer [21], the problem can be

stated as follows

Minimize:

f ð~xÞ ¼ 0:6224x1x3x4 þ 1:7781x2x2
3 þ 3:1661x2

1x4

þ 19:84x2
1x3 ð24Þ

Subject to

g1ð~xÞ ¼ 2x1 þ 0:0193x3 # 0 ð25Þ

g2ð~xÞ ¼ 2x2 þ 0:00954x3 # 0 ð26Þ

g3ð~xÞ ¼ 2px2
3x4 2

4
3
px3

3 þ 1 296 000 # 0 ð27Þ

g4ð~xÞ ¼ x4 2 240 # 0 ð28Þ

5.3. Example 3: minimization of the weight of a

tension/compression string

This problem is described by Arora [1] and Belegundu

[2], and it consists of minimizing the weight ðf ð~xÞÞ of a

tension/compression spring (Fig. 3) subject to constraints on

minimum deflection, shear stress, surge frequency, limits on

outside diameter and on design variables. The design

variables are the mean coil diameter Dðx2Þ; the wire

diameter dðx1Þ and the number of active coils Nðx3Þ:

Formally, the problem can be expressed as:

Minimizeðx3 þ 2Þx2x2
1 ð29Þ

Subject to

g1ð~xÞ ¼ 1 2
x3

2x3

71 785x4
1

# 0 ð30Þ

g2ð~xÞ ¼
4x2

2 2 x1x2

12 566ðx2x3
1 2 x4

1Þ
þ

1

5108x2
1

2 1 # 0 ð31Þ

g3ð~xÞ ¼ 1 2
140:45x1

x2
2x3

# 0 ð32Þ

g4ð~xÞ ¼
x2 þ x1

1:5
2 1 # 0 ð33Þ

5.4. Example 4: disjoint feasible region

The following problem is proposed by Michalewicz and

Schoenauer [24], and its search space consists of 93 disjoint

spheres. A point ðx1; x2; x3Þ is feasible if and only if there

exist p; q; r such that below inequality holds. The optimum

is located at x ¼ ð5; 5; 5Þ where f ðxpÞ ¼ 1: The solution lies

within the feasible region.

Maximize f ð~xÞ

¼
100 2 ðx1 2 5Þ2 2 ðx2 2 5Þ2 2 ðx3 2 5Þ2

100
ð34Þ

Fig. 2. Center and end section of the pressure vessel used for the second example. The design variables are the following: Ts (thickness of the shell), Th

(thickness of the head), R (inner radius) and L (length of the cylindrical section of the vessel, not including the head). The total cost of the cylindrical vessel

ðf ð~xÞÞ is to be minimized in this case.

Fig. 3. Tension/compression string used for the third example. The design

variables are the following: mean coil diameter Dðx2Þ; the wire diameter

dðx1Þ and the number of active coils Nðx3Þ: The weight of the spring ðf ð~xÞÞ is

to be minimized in this case.
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Subject to

gð~xÞ ¼ ðx1 2 pÞ2 þ ðx2 2 qÞ2 þ ðx3 2 rÞ2 2 0:0625

# 0 ð35Þ

where 0 # 10 i ¼ 1; 2; 3 and p; q; r ¼ 1; 2;…; 9:

5.5. Example 5: design of a 10-bar plane truss

Consider the 10-bar plane truss shown in Fig. 4 and taken

from Ref. [2]. The problem is to find the moment of inertia

of each member of this truss, such that we minimize its

weight ðf ð~xÞÞ; subject to stress and displacement constraints.

The weight of the truss is given by

f ðxÞ ¼
X10

j¼1

rAjLj ð36Þ

where x is the candidate solution, Aj is the cross-sectional

area of the jth member (Aj ¼
ffiffi
Ij

p
; where I is the moment of

inertia of member j ), Lj is the length of the jth member, and

r is the weight density of the material.

The assumed data are modulus of elasticity,

E ¼ 1:0 £ 104 ksi (68 965.5 MPa), r ¼ 0:10 lb/in3

(2768.096 kg/m3), and a load of 100 kips (45 351.47 kg)

in the negative y-direction is applied at nodes 2 and 4. The

maximum allowable stress of each member is called sa; and

it is assumed to be ^25 ksi (172.41 MPa). The maximum

allowable displacement of each node (horizontal and

vertical) is represented by ua; and is assumed to be 2 in

(5.08 cm).

There are 10 stress constraints, and 12 displacement

constraints (we can really assume only eight displacement

constraints because there are two nodes with zero displace-

ment, but they will nevertheless be considered as additional

constraints by the new approach). The moment of inertia of

each element can be different, thus the problem has 10

design variables.

6. Comparison of results

6.1. Example 1

This problem has been solved by Deb [9] using a simple

GA with binary representation, and a traditional penalty

function as suggested by Goldberg [16]. It has also been

solved by Ragsdell and Phillips [28] using geometric

programming. Ragsdell and Phillips also compared their

results with those produced by the methods contained in a

software package called ‘Opti-Sep’ [35], which includes the

following numerical optimization techniques: ADRANS

(Gall’s adaptive random search with a penalty function),

APPROX (Griffith and Stewart’s successive linear approxi-

mation), DAVID (Davidon–Fletcher–Powell with a pen-

alty function), MEMGRD (Miele’s memory gradient with a

penalty function), SEEK1 and SEEK2 (Hooke and Jeeves

with two different penalty functions), SIMPLX (Simplex

method with a penalty function) and RANDOM (Richard-

son’s random method).

Their results are compared against those produced by the

approach proposed in this paper, which are shown in Table 1

(note that f ð~xÞ represents cost of the beam in this case). In

the case of Siddall’s techniques [35], only the best solution

produced by the techniques contained in Opti-Sep is

displayed. The solution shown for the technique proposed

Fig. 4. Ten bar plane truss used for the fifth example. The moments of

inertia of the bars are the decision variables in this case and the total weight

of the truss is to be minimized.

Table 1

Comparison of the results for the first example (optimal design of a welded beam)

Design variables Best solution found

This paper Deb [9] Siddall [35] Ragsdell [28]

x1ðhÞ 0.205986 0.2489 0.2444 0.2455

x2ðlÞ 3.471328 6.1730 6.2189 6.1960

x3ðtÞ 9.020224 8.1789 8.2915 8.2730

x4ðbÞ 0.206480 0.2533 0.2444 0.2455

g1ð~xÞ 20.074092 25758.603777 25743.502027 25743.826517

g2ð~xÞ 20.266227 2255.576901 24.015209 24.715097

g3ð~xÞ 20.000495 20.004400 0.000000 0.000000

g4ð~xÞ 23.430043 22.982866 23.022561 23.020289

g5ð~xÞ 20.080986 20.123900 20.119400 20.120500

g6ð~xÞ 20.235514 20.234160 20.234243 20.234208

g7ð~xÞ 258.666440 24465.270928 23490.469418 23604.275002

f ð~xÞ 1.728226 2.43311600 2.38154338 2.38593732
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here is the best produced after 30 runs, and using the

following ranges for the design variables: 0:1 # x1 # 2:0;

0:1 # x2 # 10:0; 0:1 # x3 # 10:0; 0:1 # x4 # 2:0:

The mean from the 30 runs performed was f ð~xÞ ¼

1:792654; with a standard deviation of 0.074713. The worst

solution found was f ð~xÞ ¼ 1:993408; which is better than

any of the solutions produced by any of the other techniques

shown in Table 1. The number of fitness function

evaluations of our approach was 80000.

6.2. Example 2

This problem has been solved by Deb [10] using GeneAS

(genetic adaptive search), by Kannan and Kramer using an

augmented Lagrangian Multiplier approach [21], and by

Sandgren [32] using a branch and bound technique. Their

results were compared against those produced by the

approach proposed in this paper, and are shown in Table 2

(note that in this case f ð~xÞ represents total cost of the

cylindrical vessel). The solution shown for the technique

proposed here is the best produced after 30 runs, and using

the following ranges for the design variables: 1 # x1 # 99;

1 # x2 # 99; 10:0 # x3 # 200:0; 10:0 # x4 # 200:0: The

values for x1 and x2 were considered as integer (i.e. real

values were rounded up to their closest integer value)

multiples of 0.0625, and the values of x3 and x4 were

considered as real numbers.

The mean from the 30 runs performed was f ð~xÞ ¼

6177:253268 with a standard deviation of 130.929702. The

worst solution found was f ð~xÞ ¼ 6469:322010: We can see

that in this case, our average solution was better than any of

the solutions produced by any of the other techniques shown

in Table 2. The total number of fitness function evaluations

performed was 80 000. Note also that Kannan and Kramer’s

method produces a solution with a significantly lower value

of L. This solution is, however, not feasible since the first

constraint is slightly violated. The results produced by the

other methods (including ours) indicate that is more

reasonable to variate the other design variables and allowing

larger values of L since this produces designs which are

feasible and have a lower cost.

6.3. Example 3

This problem has been solved by Belegundu [2] using

eight numerical optimization techniques: CONMIN (a

feasible directions method developed by Vanderplaats

[38]), OPTDYN (a feasible directions method developed

by Bhatti and Polak [3], LINMR, GRP-UI (a gradient

projection technique developed by Haug and Arora [17]),

SUMT (an exterior penalty approach implemented by

Belegundu [2]), M-3 (a Lagrange multipliers code based

on Powell’s algorithm [27] which was implemented by

Belegundu [2]), M-4 (a variation of M-3 implemented by

Table 2

Comparison of the results for the second example (optimization of a pressure vessel)

Design variables Best solution found

This paper GeneAS [10] Kannan [21] Sandgren [32]

x1ðTsÞ 0.812500 0.9375 1.125 1.125

x2ðThÞ 0.437500 0.5000 0.625 0.625

x3ðRÞ 42.097398 48.3290 58.291 47.700

x4ðLÞ 176.654047 112.6790 43.690 117.701

g1ð~xÞ 20.000020 20.004750 0.000016 20.204390

g2ð~xÞ 20.035891 20.038941 20.068904 20.169942

g3ð~xÞ 227.886075 23652.876838 221.220104 54.226012

g4ð~xÞ 263.345953 2127.321000 2196.310000 2122.299000

f ð~xÞ 6059.946341 6410.3811 7198.0428 8129.1036

Table 3

Comparison of the results for the third problem (minimization of the weight of a tension/compression spring)

Design variables Best solution found

This paper Aroraa [1] M-5 [2] OPTDYNa [2]

x1ðdÞ 0.051989 0.053396 0.050000 0.0644

x2ðDÞ 0.363965 0.399180 0.315900 0.7488

x3ðNÞ 10.890522 9.185400 14.25000 2.9597

g1ð~xÞ 20.000013 0.000019 20.000014 20.005134

g2ð~xÞ 20.000021 20.000018 20.003782 0.002609

g3ð~xÞ 24.061338 24.123832 23.938302 24.450398

g4ð~xÞ 20.722698 20.698283 20.756067 20.457867

f ð~xÞ 0.012681 0.01273027 0.01283343 0.01540256

a Infeasible solution.
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Belegundu [2]), and M-5 (a Lagrange multipliers code

based on Fletcher’s method [12] which was implemented by

Belegundu [2]). Additionally, Arora [1] also solved this

problem using a numerical optimization technique called

constraint correction at constant cost (CCC).

In Belegundu’s experiments, GRP-UI and CONMIN

failed to solve this problem. Therefore, these two techniques

were not included in the results presented in Table 3 (note

that in this case f ð~xÞ represents the weight of the spring)

where the best result of our approach is compared.

The mean value from this problem after 30 runs was

f ð~xÞ ¼ 0:012742: The worst solution found was f ð~xÞ ¼

0:012973 with a standard deviation of 0.000059. The

number of fitness function evaluations for each run was

80 000. The mean value found is even better than the best

solutions reported by Arora [1] which is infeasible [2].

6.4. Example 4

This problem has been solved by Runarsson and Yao

using an evolution strategy [34] with stochastic ranking [31]

and by Koziel and Michalewicz using a GA with a technique

called homomorphous maps [22]. The values of the decision

variables lie within the following ranges: 0 # xi # 10; i ¼

1; 2; 3:

After 30 runs performed, each one with 80 000 fitness

function evaluations, the mean was f ð~xÞ ¼ 1:000000; the

worst solution has also a value of f ð~xÞ ¼ 1:000000 with a

standard deviation of 0.000000. We can observe a very

robust behavior of the proposed technique in this example.

The best solution of our approach is compared in Table 4.

Note that the approach proposed by Koziel and Michalewicz

[22] required 1 400 000 evaluations of the fitness function

to produce the result shown in Table 4. The approach of

Runarsson and Yao [31] required 35 000 evaluations of the

fitness function. In contrast, our approach only required

80 000 evaluations of the fitness function and it produced

equivalent results.

6.5. Example 5

This problem was used by Belegundu [2] to evaluate the

following numerical optimization techniques: Feasible

directions (CONMIN and OPTDYN), Pshenichny’s Recur-

sive Quadratic Programming (LINRM), Gradient Projection

(GRP-UI), Exterior Penalty Function (SUMT), Multiplier

Methods (M-3, M-4 and M-5).

The results reported by Belegundu [2] are compared to

the current approach in Tables 5 and 6 (all the solutions

presented are feasible). Note that in this case f ð~xÞ represents

the weight of the truss. To solve this problem, it was

necessary to add a module responsible for the analysis of the

plane truss. This module uses the matrix factorization

method included in Gere and Weaver together with the

stiffness method [15] to analyze the structure, and returns

the values of the stress and displacement constraints, as well

as the total weight of the structure.

The solution shown for the technique proposed here is

the best produced after 30 runs. The range 0:1 # x # 999:0

was used for the 10 design variables (moments of inertia

were used as the design variables, and their square roots

were found in order to obtain the cross-sectional areas of

each truss member).

The mean from the 30 runs performed was f ð~xÞ ¼

5198:085918 with a standard deviation of 29.496938. The

Table 4

Comparison of the results for the fourth problem (disjoint feasible region)

Design variables Best solution found

This paper RY [31] KM [22]

x1ðdÞ 5.000000 5.000000 NA

x2ðDÞ 5.000000 5.000000 N.A.

x3ðNÞ 5.000000 5.000000 NA

gð~xÞ 0.000000 0.000000 NA

f ð~xÞ 1.000000 1.000000 0.999999857

RY: Runarsson and Yao [31], KM: Koziel and Michalewicz [22]. NA:

not available.

Table 5

Comparison of results for the fifth example (10-bar plane truss). The value

of all variables is given in in4. Part I

Design variables Best solution found

This paper CONMIN OPTDYN LINRM

x1 985.808351 639.20 664.30 21.57

x2 0.105877 3.60 0.01 10.98

x3 519.966658 618.40 630.70 22.08

x4 188.576078 250.50 375.90 14.95

x5 0.102124 0.01 0.01 0.10

x6 0.137725 3.05 0.01 10.98

x7 690.171450 280.80 235.90 18.91

x8 495.366009 389.20 413.00 18.42

x9 467.438050 440.10 430.30 18.40

x10 0.135133 6.30 1.30 13.51

f ð~xÞ 5157.685516 5563.32 5471.48 6428.89

Table 6

Comparison of results for the fifth example (10-bar plane truss). The value

of all variables is given in in4. Part II

Design variables Best solution found

GRP-UI SUMT M-3 M-4 M-5

x1 614.30 942.00 667.90 1000.0 667.70

x2 17.40 5.60 9.40 139.40 8.30

x3 614.40 1000.0 697.80 1000.0 699.40

x4 208.80 135.90 163.10 306.40 162.60

x5 0.01 0.01 0.01 1000.0 0.01

x6 17.40 13.80 11.80 105.00 14.20

x7 304.80 471.20 373.90 1000.00 375.50

x8 370.90 467.00 367.60 1000.00 368.00

x9 371.30 195.30 351.90 1000.00 352.20

x10 27.70 10.60 19.50 1000.00 19.20

f ð~xÞ 5727.05 5932.21 5719.19 11 279.22 5726.08
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worst solution found was f ð~xÞ ¼ 5274:693439; which is

better than any of the solutions produced by any of the other

techniques shown in Tables 5 and 6.

7. Discussion of results

There are a few things about our approach that deserve to

be mentioned. First, we have empirically shown the

feasibility of using a multiobjective optimization technique

to handle constraints. Our approach has as its main

advantage its computational efficiency, based on the number

of evaluations of the fitness function. This metric is

normally adopted in evolutionary computation since the

number of fitness function evaluations is independent of the

hardware used for the experiments. Furthermore, we have

shown that it is highly competitive and was even able to

match (or even improve) the results produced by other

algorithms, some of which are more complex constraint-

handling techniques used with GAs.

The parameter Sr plays a crucial role in our approach,

since it is responsible for providing the diversity needed. By

diversity we refer to having enough individuals in the

population which encode different solutions. A diversity

loss occurs when most of the population contains copies of

the same individual. A diversity loss eventually occurs with

an evolutionary algorithm because is a consequence of the

stochastic noise characteristic of this type of algorithm.

However, it is desirable to maintain diversity for as long as

possible so that our evolutionary algorithm does not

prematurely converges to a local optimum. In order to

evaluate the capability of our algorithm to preserve

diversity, we monitored the population of our GA as the

search progressed, and we found out that about 50% of the

total population was feasible when reaching the last

generations in all the test functions adopted. If nonfeasible

individuals are still in the population at this point of the

evolutionary process (i.e. in the last few generations), this

allows our algorithm to explore other regions of the search

space and we avoid getting trapped in a local optimum. It is

worth mentioning that traditional evolutionary multiobjec-

tive optimization techniques normally cannot be used

directly to handle constraints because their emphasis is to

drive the GA towards the feasible region, but not necessarily

to the global optimum [37].

The addition of a new parameter ðSrÞ may be debatable.

However, at least in the test functions that we have used so

far, the algorithm does not require a fine tuning of this

parameter. If a value closer to 1 is used for Sr ð0:7 , Sr ,

1:0Þ; the selection process allows the GA to reach and

sample sufficiently well the feasible region of a problem.

Moreover, it helps the search process to reach the vicinity of

the global optimum. However, if the problem turns out to be

very difficult (i.e. a highly constrained search space), we

suggest to use a lower value for Sr as those indicated before.

This is to avoid premature convergence of the GA.

8. Conclusions and future work

This paper has introduced a new constraint-handling

approach that is based on a multiobjective optimization

technique called NPGA [19]. The approach is intended to be

used with evolutionary algorithms as a way to reduce the

burden normally associated with the fine-tuning of a penalty

function.

The proposed approach performed well in several test

problems both in terms of the number of fitness function

evaluations required and in terms of the quality of the

solutions found. The results produced were compared

against those generated with other (evolutionary and

mathematical programming) techniques reported in the

literature.

As part of our future work, we are analyzing the

elimination of the parameter Sr: Additionally, we are

considering the extension of other multiobjective optimiz-

ation techniques to handle constraints in EAs [8]. Finally,

we also have interest in using techniques such as the one

proposed in this paper coupled to an evolutionary multi-

objective optimization algorithm.
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