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A Multiobjective Optimization-Based Evolutionary
Algorithm for Constrained Optimization

Zixing Cai, Senior Member, IEEE, and Yong Wang

Abstract—A considerable number of constrained optimization
evolutionary algorithms (COEAs) have been proposed due to
increasing interest in solving constrained optimization problems
(COPs) by evolutionary algorithms (EAs). In this paper, we first
review existing COEAs. Then, a novel EA for constrained opti-
mization is presented. In the process of population evolution, our
algorithm is based on multiobjective optimization techniques, i.e.,
an individual in the parent population may be replaced if it is domi-
nated by a nondominated individual in the offspring population. In
addition, three models of a population-based algorithm-generator
and an infeasible solution archiving and replacement mechanism
are introduced. Furthermore, the simplex crossover is used as a
recombination operator to enrich the exploration and exploitation
abilities of the approach proposed. The new approach is tested on
13 well-known benchmark functions, and the empirical evidence
suggests that it is robust, efficient, and generic when handling
linear/nonlinear equality/inequality constraints. Compared with
some other state-of-the-art algorithms, our algorithm remarkably
outperforms them in terms of the best, mean, and worst objective
function values and the standard deviations. It is noteworthy that
our algorithm does not require the transformation of equality
constraints into inequality constraints.

Index Terms—Constrained optimization, evolutionary algo-
rithm (EA), multiobjective optimization, nondominated individ-
uals.

I. INTRODUCTION

N MANY science and engineering disciplines, it is not un-
I common to face a large number of constrained optimization
problems (COPs). Without loss of generality, the general non-
linear programming (NLP) problem that we are interested in can
be formulated as

,Tn) € R™)
such that f(Z) is optimized

Find Z(Z = (21, 22, - . .

where 7 € 2 C S, and S is an n-dimensional rectangle space
in R™ defined by the parametric constraints
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The feasible region 2 C S is defined by a set of m additional
linear or nonlinear constraints (m > 0)
9;(7) <0,

where q is the number of inequality constraints and m — ¢ is the
number of equality constraints.

For an inequality constraint that satisfies g;(Z) = 0(j €
{1,...,q}) at any point Z € (2, we say it is active at Z. All
equality constraints h;(Z)(j = ¢ + 1,...,m) are considered

active at all points of (2.

Recently, as a search and optimization technique inspired
by nature, evolutionary algorithms (EAs) have been broadly
applied to solve COPs ([1]-[3]). Although many methods have
been proposed to handle constraints by EAs for parameter
optimization problems, experimental results actually reveal
that most of them do not have general capability in handling
various constrained optimization problems, e.g., optimization
problems with equality constraints, inequality constraints, or
mixed constraints.

There is no formal guarantee of an algorithm’s general effec-
tiveness if insufficient knowledge of the problem characteris-
tics is incorporated into the algorithm domain according to the
no-free-lunch theorems ([4], [5]). However, optimization prob-
lems in nature have certain pertinence with each other rather
than total independence. Thus, we are faced with the difficulty
of how to explore knowledge in order to design effective and
efficient algorithms in a specific domain.

The current study proposes a novel EA based on multiobjec-
tive optimization techniques for COPs. In the new approach, a
given COP is converted into a biobjective optimization problem.
Meanwhile, the nondominated individuals replacement scheme
is devised in terms of the converted fitness. Three models of
a population-based algorithm-generator are introduced on the
basis of different replacement and comparison rules. The aim
of these models is to guide the search toward the global op-
tima of COPs. To accelerate the convergence speed, an infea-
sible solution archiving and replacement mechanism (ISARM),
which helps the population to approach or land in the feasible
region of the search space from different directions rapidly is
added. Simplex crossover is used to improve the exploration
and exploitation capabilities of our algorithm. With these com-
bined elements, we show that the proposed algorithm has ad-
vantages over other algorithms compared in many indicators
of the experimental results. The main contribution of our ap-
proach is that it can reach the global feasible optima of all test
cases without the transformation of equality constraints into in-
equality constraints.

1089-778X/$20.00 © 2006 IEEE

Authorized licensed use limited to: Central South University. Downloaded on February 12,2022 at 14:23:47 UTC from IEEE Xplore. Restrictions apply.



CAI AND WANG: A MULTIOBJECTIVE OPTIMIZATION-BASED EVOLUTIONARY ALGORITHM FOR CONSTRAINED OPTIMIZATION 659

The remainder of this paper is organized as follows. Section II
reviews the related work of handling COPs via EAs. Section III
presents a detailed description of the proposed algorithm. In
Section IV, our algorithm with six state-of-the-art algorithms
is used to produce experimental results for the chosen test func-
tions. Several performance metrics are examined to compare the
performance of our algorithm against the chosen algorithms. Fi-
nally, Section V provides some concluding remarks.

II. PREVIOUS WORK

Michalewicz and Schoenauer [1] and Coello [2] provided a
comprehensive survey of the most popular constraint-handling
techniques currently used with EAs and grouped them into four
and five categories, respectively. As stated in [2], the constraint-
handling techniques can be divided into: 1) penalty functions;
2) special representations and operators; 3) repair algorithms;
4) separate objective and constraints; and 5) hybrid methods.

Penalty function methods are among the most common
methods for solving COPs. The principal idea of this kind of
methods is to reformulate a constrained optimization problem
as an unconstrained one by introducing a penalty term into the
original objective function to penalize constraint violations. In
general, a penalty term is based on the distance of an individual
from the boundaries of the feasible set. The distance of an
individual # from the jth constraint can be constructed as

1<75<q

() — IH&X{O,gj(f)},
6, = | g+i<j<m’

|7 (©)],

Let G(¥) = 37", G(&) denote the distance of the individual
Z from the boundaries of the feasible set, which also reflects the
degree of its constraint violation.

In this kind of methods, the static penalty refers to the penalty
term that increases with the degree of constraint violation, and
the dynamic penalty is the penalty term that increases with both
the degree of constraint violation and generation number. In ad-
dition, annealing penalties and death penalties are also used in
some methods to deal with COPs.

Le Riche et al. [6] proposed a segregated genetic algorithm.
Two different penalized fitness functions f; and f5 are designed
with two static penalty terms p; and p», one is smaller and the
other is larger. Individuals will be more likely to lie within the
infeasible region when selected on the basis of f;. On the con-
trary, the ones selected on the basis of fy will more likely stay
in the feasible region. During the search process, the feasible
optimum will be reached from both sides of the feasible region
boundaries.

Adaptive constraint-handling methods ([7], [8]) are very
promising for constrained optimization, since they can make
use of information obtained during the search to adjust their
own parameters.

Farmani and Wright [9] presented a self-adaptive fitness for-
mulation method, an enhanced version of the algorithm in [10],
where the penalty is divided into two stages. The improved ap-
proach eliminates the fixed weight for the second penalty stage
proposed in [10], by assigning the penalized objective function
value of the worst individual to be equal to that of the individual

with maximum objective function value in the current popula-
tion. This makes the method self-adaptive and more dynamic
due to the fact that the individual with maximum objective func-
tion value may vary from one generation to another. However,
to find the optimum or the approximate optimum, considerable
computational effort would be required.

A remarkable limitation of the penalty function methods is
that most of them require a careful fine-tuning of parameters to
obtain competitive results. A too small penalty parameter results
in underpenalization, and consequently, the population will ex-
perience difficulty in landing within the feasible region and may
converge to an infeasible solution. Instead, a too large penalty
coefficient will result in the loss of some valuable information
provided by infeasible individuals. Even the most dynamic set-
ting methods, which start with a low parameter value and end up
with a high one, are unlikely to work well for problems where
the unconstrained global optimum is far away from the con-
strained one [11]. Further, these methods lack generality and
are usually only fit for optimization problems with certain con-
straint types.

The homomorphous mapping approach [12] converts COPs
into unconstrained optimization problems by using a mapping
between an n-dimensional cube and the feasible space of the
given problem. This approach has many advantages over other
constraint-handling techniques. For example, it does not require
any special operators to maintain feasible solutions and it does
not need to evaluate infeasible solutions. However, it also ex-
hibits a number of drawbacks. First, the implementation of this
method is very difficult especially for nonconvex feasible search
spaces. Second, it requires initial feasible solutions.

In recent years, emphasis has been increasingly placed on
COEAs based on multiobjective concepts ([13]-[28]). The main
idea of these algorithms is to treat constraints as one or more ob-
jectives. In this paper, we classify the methods based on multi-
objective concepts into two categories: 1) methods based on bi-
asing feasible over infeasible solutions; and 2) methods based on
multiobjective optimization techniques. We next discuss them in
turn.

The first category usually redefines a single objective opti-
mization problem in such a manner that two objectives are con-
sidered: the first is to optimize the original objective function
f(Z), and the second is to minimize the degree of constraint vi-
olation G(Z).

Inspired by Powell and Skolnick [13], Deb [14] proposed
an alternative method that requires no penalty parameters. This
method uses a tournament selection operator, where pair-wise
solutions are compared at a time using the following criteria:
1) any feasible solution is preferred to any infeasible solution;
2) between two feasible solutions, the one with better objective
function value is preferred; and 3) between two infeasible so-
lutions, the one with smaller degree of constraint violation is
preferred. The main drawback of this scheme is that it is hard to
maintain a reasonable proportion of infeasible and feasible solu-
tions in the population. These or similar criteria are also adopted
to compare individuals in [15] and [16].

After systematically analyzing the pitfalls of the penalty func-
tion methods, Runarsson and Yao [17] introduced a stochastic
ranking method to balance the aforementioned two objectives.
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A probability parameter p; is involved to compare individuals
as follows: given pairwise adjacent individuals, 1) if both in-
dividuals are feasible, the one having better objective function
value wins, else 2) if a uniformly generated random number «
between 0 and 1 is less than p¢, the one with better objective
function value wins, otherwise, the one with smaller degree of
constraint violation wins. This approach significantly improves
the search performance without any specialized operators. But
empirical evidence shows that it is sensitive to the parameter py.
Recently, a further exploration has been done by the same au-
thors [18].

As for the second category of the multiobjective concepts
based methods, i.e., the methods based on multiobjective op-
timization techniques, the main idea is to convert COPs into
multiobjective optimization problems (MOPs) that have m + 1
objectives, where m is the number of constraints. Then, we
can apply any multiobjective optimization techniques to new
vector 7 = (f(Z), f1(£), ..., fm(F)), where f1(Z),..., fm(T)
are constraints of the given problem. Several representative ap-
proaches in this area are reviewed next.

Coello [19] used a population-based multiobjective technique
such as Vector Evaluated Genetic Algorithm (VEGA) [20] to
treat each constraint as an objective. In each generation, the
population is split into m + 1 subpopulations with equal size,
where m refers to the number of constraints (they add one to
consider also the objective function). In this approach, some in-
dividuals of the population are selected using the objective func-
tion as their fitness, and the remaining individuals are selected
by applying the corresponding constraints as their fitness. For
the subpopulation guided by the objective function, the evalua-
tion of such objective function for a given vector Z is used di-
rectly as the fitness function. For all the other subpopulations,
the algorithm used in [19] was the following: if ¢;(Z) < 0,
then fitness = —g;(&); else if v # 0, then fitness = —wv; else
fitness = — f(&), where g;(Z) refers to the constraint corre-
sponding to the 7 + 1 subpopulation and v refers to the number
of constraints that are violated. However, since the size of each
subpopulation should not be fixed, how to determine the appro-
priate size of each subpopulation remains an open issue.

Coello and Mezura [21] implemented a version of the
Niched-Pareto Genetic Algorithm (NPGA) [22]. Unlike
NPGA, this approach does not require niching. Instead, it uses
an additional parameter called S, to control the diversity of
the population. The selection ratio .S,. denotes the minimum
number of individuals that are selected through dominance-
based tournament selection. The remaining (1 —.S,.) individuals
are selected by a purely probabilistic approach. During the dom-
inance-based tournament selection, four comparison rules are
involved as follows: 1) when both individuals are feasible, the
individual with better fitness value is preferred; 2) any feasible
individual is preferred to any infeasible individual; 3) when
both are infeasible, the nondominated individual is selected,
only if the other candidate is dominated; and 4) when both are
infeasible and both are either nondominated or dominated, the
individual with the lower amount of constraint violation wins.
However, this selection procedure also faces the defects of
Deb’s tournament selection [14].

Besides, the method [23] based on Fonseca and Fleming’s
Pareto ranking process [24], and the method [25] based on the

combination of VEGA and Pareto ranking are also developed to
handle COPs.

Aguirre et al. [26] proposed an alternative approach, which
is an extension of the Pareto Archived Evolutionary Strategy
(PAES) [27] and uses Pareto dominance as the selection cri-
terion. In this method, two crucial features are introduced,
i.e., inverted “ownership” and shrinking the objective space.
In the process of evolution, the search space is shrunk contin-
uously through exploring the information of the individuals
surrounding the feasible region. Thus, the size of the search
space will be very small and the solutions obtained will be
competitive in the end. However, the implementation of this
method is very complex. Moreover, once the decrease of the
search space is directed toward false direction, the algorithm
might be trapped in a local optimum.

In order to evaluate the capabilities of a set of constraint-
handling methods based on multiobjective optimization tech-
niques, Mezura and Coello [28] presented a comprehensive ex-
perimental study, in particular, focusing on four of this kind of
methods. The experimental results indicate that the selection cri-
terion of Pareto dominance gives better results than both Pareto
ranking and population-based approach. On the other hand, an
important conclusion in [28] is that additional mechanisms have
to be used to improve the effectiveness of these approaches.

III. PROPOSED APPROACH

As multiobjective evolutionary algorithms (MOEAs) have
two goals (convergence to the true Pareto optimal set, and main-
tenance of a uniform distribution of the Pareto front), COEAs
also have two definite objectives: 1) landing in or approaching
the feasible domain promptly, and 2) reaching the global op-
timal solution in the end. However, these ultimate goals are far
from being accomplished by the existing COEAs according to
empirical evidence. One of the main deficiencies of the existing
COEAs lies in designing a suitable scheme to compare and
select individuals, which is vital for the achievement of the
second objective. Again, unlike unconstrained optimization
problems, the search space of COPs is composed of the feasible
and infeasible regions. As a result, how to effectively utilize
infeasible solutions becomes very important, which also has a
notable impact on the realization of the first objective, espe-
cially when the optimum is located on the boundaries of the
feasible region or the ratio of the feasible region is very small
compared with the entire search space.

Usually, in order to find feasible solutions, an equality
constraint is replaced by pairwise inequality constraints:
WZ) — 6 < 0and —h(F) — 6 < 0, where § is a small positive
value. Note that this conversion changes the topology structure
of the feasible set. Obviously, if the structure of the feasible set
changes, then the optimum maybe changes accordingly and,
consequently, this conversion will directly affect the capability
of the approach, as well as the accuracy of the solution found.
Furthermore, such effects may arise provided this conversion
exists, although a dynamic tolerance value has been used in
some literature ([7], [16]).

Motivated by these considerations, we present a novel ap-
proach based on multiobjective optimization techniques. The
new approach can find the true feasible optima of 13 well-known
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benchmark functions chosen from [17] and relaxes the need to
transform equality constraints. It recasts COPs as biobjective
optimization problems to minimize the original objective func-
tion f () and the degree of constraint violation G(&) simultane-
ously. For the sake of clarity, let f(Z) = (f(Z), G(Z)). Without
loss of generality, minimization problems are assumed in this

paper.

A. Difference Between f(Z) and the General MOPs

In fact, the main purpose of changing a COP into a MOP is to
avoid using the penalty function. Despite the fact that a COP can
be converted into a biobjective optimization problem f(Z), still
an essential difference remains with the general MOPs. That is,
the philosophy of the general MOPs is obtaining a final popula-
tion with a diversity of nondominated individuals, whereas f (%)
would retrogress into a single objective optimization problem
f(&) within the feasible region (because in this case G(Z) = 0),
thus it still has only one global optimum and, consequently,
there is no need to care about the uniform distribution of the
resulting solutions which is one of the goals of MOEAs, when
optimizing f(%). So the solution of () is not equivalent to that
of the general MOPs.

Definition 1 (Global Minimum): z* € S is called global
minimum if and only if G(#*) = 0 and =3% € S such that
G(Z) = Oand f() < f(z7).

B. Nondominated Individuals Replacement Scheme

Unlike the existing COEAs, the fundamental idea of this
paper aims at: 1) taking advantage of multiobjective optimiza-
tion techniques to extract the main information contained in
the current population and 2) directing the population to evolve
according to that valuable information. We next introduce four
essential definitions regarding multiobjective optimization in
the context of our approach.

Definition 2 (Pareto Dominance): A vectord = (uy,...,ux)
is said to Pareto dominate another vector ¥ = (vq,...,vg),
denoted as 4 < v, if

Vie{l,...k},ui <v; and 3Jje€{l,...,k},u; <wvj.
Definition 3 (Pareto Optimality): #,, € S is said to be Pareto
optimal (in .S) if and only if -3%, € S,7 < w, where v =
f(fv) = (’Ul,ﬂz)/l]: = f(fu) = (ul,uz).
Definition 4 (Pareto Optimal Set): The Pareto optimal set,
denoted as p*, is defined as

p*={%, € S|-3%, € S,V < i}.
The vectors included in the Pareto optimal set are called non-
dominated individuals.

Definition 5 (Pareto Front): According to the Pareto optimal
set, the Pareto front, denoted as pf*, is defined as

pf* ={i=1()|7, € p"}.

A

/ Solid Segment

f

Pareto Front

/

Global Optimum

v

0 G

Fig. 1. Graph representation for f(z). The Pareto optimal set p* is mapped
to the Pareto front p f*. The feasible region €2 is mapped to the solid segment.
The global optimum z* is mapped to the intersection of the Pareto front and the
solid segment. The search space S is mapped to points on and above the Pareto
front.

Clearly, the Pareto front is the image of the Pareto optimal set
in the objective space.

Since COPs are transformed to MOPs, the definition of Pareto
optimality is considered with respect to the decision variable
space S instead of the feasible region (2. Based on the above
definitions, a more profound illustration of f (%) is given in Fig. 1
[29].

In MOEAs, each individual in the population is associated
with a rank. Moreover, all nondominated individuals in the pop-
ulation have the same rank value. For instance, the rank value of
nondominated individuals is assigned to 1 in [24] and [30], but
to Oin [31]. In contrast to MOEASs, since nondominated individ-
uals represent the most important feature of the population they
belong to, our concern in this paper is only the nondominated
individuals. Thus, we can avoid assigning a rank value to each
individual in the population, which makes the new algorithm
more efficient. The complexity of identifying all nondominated
individuals in a population is O(N V), where N is the popula-
tion size, N is the number of nondominated individuals in the
population.!

Fig. 2(a) shows an example for illustrating the importance
of nondominated individuals. For example, there are three non-
dominated individuals denoted as “e,” “f,” and “g” in a popu-
lation. It can be found that individual “e” denotes the best fea-
sible solution, individual “f” denotes the infeasible solution with
the lowest degree of constraint violation, and individual “g” de-
notes the infeasible solution with the minimum objective func-
tion value, therefore the most important information of a popu-
lation is clearly represented by nondominated individuals.

As for nondominated individuals, their characteristics can be
summarized as follows.

Theorem 1: There exists at most one feasible solution in non-
dominated individuals in a population.

Proof: Assume that there are k(k > 1) feasible solutions
in nondominated individuals in a population. Then, the feasible

! Although Deb [30] described a fast nondominated sorting approach which
requires O(MN?) comparisons, the storage requirement has increased to
O(MN?). In this paper, the aim here is to identify the first nondominated
front, therefore O(N') storage is required.
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Fig. 2. (a) Nondominated individuals in a population consist of a combination of feasible and infeasible solutions. (b) Nondominated individuals in a population
consist of one feasible solution. (c) Nondominated individuals in a population consist of infeasible solutions.

solution with the minimum f(Z) in these k individuals must
dominate other feasible solutions in these % individuals based
on Pareto dominance. This is a contradiction.

Theorem 1 implies that in terms of the whole search space,
the feasible individual in nondominated individuals is just the
global optimum (see Fig. 1).

Property 1: Nondominated individuals in a population may
consist of one feasible solution [Fig. 2(b)], infeasible solutions
[Fig. 2(c)], or a combination of feasible and infeasible solutions
[Fig. 2(a)].

Property 2: Feasible solutions of nondominated individuals
in the offspring population can dominate either feasible or infea-
sible solutions in the parent population. However, infeasible so-
lutions of nondominated individuals in the offspring population
can only dominate infeasible solutions in the parent population.

Property 2 can be obtained from the definition of Pareto
dominance.

After all nondominated individuals are selected from the off-
spring population; they are then applied to replace individuals
in the parent population dominated by them.

C. Models of a Population-Based Algorithm-Generator

As a class of EAs, evolutionary strategy (ES) has been at-
tached more importance to solve COPs ([7], [16], [17]). Two
main reasons for this are: 1) there is a theoretical background
that supports the ES convergence and 2) ES’s original self- adap-
tation mechanism helps itself to deal with constrained search
spaces ([32], [33]). On the whole, experimental results reveal
that with the same constraint-handling technique the overall ca-
pability of ES is better than GA [34].

In order to test the effectiveness of ES, Mezura and Coello
[32] implemented different types of ES with three simple com-
parison criteria and demonstrated that ES is not effective with
respect to the test functions with high dimension, large fea-
sible regions, or many nonlinear equality constraints. Mean-
while, an essential limitation of ES is that ES usually neglects
the crossover operator of the decision variables, whereas the
crossover operator is very important for constrained optimiza-
tion, especially when it occurs between feasible and infeasible
individuals close to the border of the feasible region. Although
discrete and intermediate crossover operators can be employed
[16], their abilities are limited.

Additionally, real-coded genetic algorithm (RCGA) has been
proposed to overcome the drawbacks of the binary string repre-

Step 1 Choose U solutions (the set Q) from B using a selection plan
(SP).

Step 2 Create A solutions (the set C') from Q using a generation plan
(GP).

Step 3 Choose ¥ solutions (the set R ) from B for replacement using a
replacement plan (RP).

Step 4 Update these ¥ solutions by ¥ solutions chosen from a comparison

setof R, Q and C, using an update plan (UP).

Fig. 3. Population-based algorithm-generator for real-parameter optimization.

sentation in traditional GA. In RCGA, crossover is the principal
operator for search, which utilizes the information on several
parents to yield new offspring adaptively according to the distri-
bution of the parents. Kita [35], by comparing the self-adaptive
ES with the RCGA with unimodal normal distribution crossover
(UNDX) operator, pointed out that the RCGA is more suitable
to optimize multimodal and high dimension functions.

In RCGA, besides crossover operator, population evolution
model also has a significant influence on the capability of opti-
mization. Recently, Deb [36] proposed a population-based al-
gorithm-generator for real-parameter optimization, which di-
vides the task of searching the optimum into four independent
plans: 1) selection plan; 2) generation plan; 3) replacement plan;
and 4) update plan. The primary advantage of this algorithm-
generator is the functional decomposition of these four impor-
tant plans. It is described in Fig. 3. Note that the signs (i.e.,
w, Ay, R, @, and C) in Fig. 3 do not have any special meaning.

Inspired by Deb’s algorithm-generator, we propose two
computation models (i.e., Models 1 and 2) on the basis of the
nondominated individuals replacement scheme described in
Section III-B. The difference between these two models is that
Model 1 uses all information provided by nondominated indi-
viduals, while Model 2 only uses partial information provided
by nondominated individuals. The pseudocode of Model 1 is
shown in Fig. 4. Model 2 is different from Model 1 only in steps
3 and 4; the steps 3 and 4 of Model 2 are depicted in Fig. 5.

There are two differences between Deb’s algorithm-generator
and the two proposed computation models. First, in Deb’s algo-
rithm-generator, the aim of step 3 is to choose some individuals
to be replaced by the individuals produced by step 4. On the
contrary, the purpose of step 3 in our computation models is to
choose some individuals to replace the individuals produced by
step 4. Second, in Deb’s algorithm-generator the individuals to
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Step 1 Choose i solutions (the set Q) from the set B randomly,
thereafter B =B —Q

Step 2 Create A offspring solutions (the set C) from the set Q using
simplex crossover (SPX, see Section III-F for details).

Step 3 Choose the nondominated individuals (the set R ) from the set C .
Assume there exist m” nondominated individuals, denoted as
}1""3;/11' .

Step 4 Suppose that there are 7’ individuals in the set O dominated by

5.
if n”=0 then
no replacement will happen;
elseif n’ =1 then
the corresponding dominated individual will be replaced
by )?1 5
else /*it means n” > 1%/
if the dominated individuals are feasible then
the individuals with the maximum original objective
function value will be replaced by X ;
else
one of the dominated individuals chosen at random,
will be replaced by X ;
end if
end if
Thereafter, the remaining nondominated individuals of the set R
will continue the same process for the updated set Q in turn.

Step5 B=BUQ.

Fig. 4. Pseudocode of Model 1.

Step 3 Randomly choose one individual from the set R that contains all
nondominated individuals in the set C, denoted as )?1 .
Step 4 Suppose that there are 7’ individuals of the set O dominated by
3.
if ”” =0 then
no replacement will happen;
elseif #” =1 then
the corresponding dominated individual will be replaced by
'fl .
/*it means n’ >1%/
if the dominated individuals are feasible then
the individual with the maximum original objective
function value will be replaced by X ;

else

else
one of the dominated individuals chosen at random,

will be replaced by X ;

end if
end if

Fig. 5. Steps 3 and 4 of Model 2.

be replaced are chosen from the set B, however, from the set
in our computation models. Indeed, Models 1 and 2 are similar
to (u+(m’,\)) ES and (4 (1, \)) ES, respectively. Note that,
n' and m’ are dynamic in the process of population evolution.
An explanation of the implementation process of Models 1 and
2 is shown in Fig. 6.

Both models have the ability to coordinate exploration and
exploitation.

1) The variance in the population provides good information
about the extent of the potential search region. At the early
stage of the search, through randomly selecting several in-
dividuals in the population, the variance among individuals
is expected to be large. Therefore, the creation of several
individuals from the chosen individuals results in exploring
a wider region. On the other hand, the variance in the pop-
ulation is expected to be small, thereby ensuring a focused
search near the optimum, which occurs at the later stage
when the individuals in the population have converged near
the optimum.

2) Nondominated individuals in the offspring population
are chosen and replace dominated individuals of the
parent population dynamically (the parent population
corresponds to the set () and the offspring population
corresponds to the set C'). This ensures the exploitation of
the global information during the early stage and of the
local information during the later stage.

D. Infeasible Solution Archiving and Replacement Mechanism
(ISARM)

A nontrivial difference between unconstrained optimization
problems and COPs is that the latter’s search space comprises
of the feasible and infeasible parts. Thereby, the proportion
of these two parts, the types of constraints (linear/nonlinear,
or equality/inequality), and the location of the optimum (on
the boundaries of the feasible region or within the feasible
region) concurrently add difficulties to the search of the global
optimum.

Researchers have gradually realized the effects of infeasible
solutions on finding the global optimum in the feasible region.
Farmani and Wright [9] formulated a method to ensure that
slight infeasible solutions with a low objective function value
remain fit. Mezura and Coello [16] and Coello and Mezura [21]
tended to bring into play the function of infeasible solutions by
a diversity mechanism.

Nevertheless, unlike the above approaches, a new proposal,
called ISARM, is introduced here to attack the first objective of
COEAs, namely, efficiently guiding the population toward fea-
sibility. The main principle of our mechanism is that, provided
the current offspring population is composed of only infeasible
individuals, the “best” of infeasible individuals in the current
offspring population, who has the lowest degree of constraint
violation is stored into a predefined archive A. Then, after a
fixed interval of generations, some randomly selected individ-
uals of the main population P (the population P corresponds to
the set B in Section III-C) are replaced by the same number of
randomly selected infeasible individuals in the archive A. This
process is described in Fig. 7.

With respect to COPs with a large proportion of the fea-
sible region, the proposed mechanism seems to play a minor
role in finding the optimal solution. Since the initial popula-
tion contains a large number of feasible solutions in this case,
the archiving and replacement of infeasible individuals do not
happen unless the offspring population is composed of only in-
feasible individuals, but the likelihood of such case occurring is
very small.
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Fig. 6. Animplementation process of Models 1 and 2 when nondominated individuals consist entirely of infeasible solutions. . ” denotes the parent, “A” denotes

the offspring, and “o0” denotes the nondominated individual in the offspring population. (a)—(d) describe the implementation process of Model 1: (a) create ten
offspring from nine parents using simplex crossover (step 2 in Fig. 4); (b) choose nondominated individuals from the ten offspring (step 3 in Fig. 4); (c) use the
nondominated individuals to replace the dominated individuals in the parent population (step 4 in Fig. 4); and (d) get a new population (step 5 in Fig. 4). Meanwhile,
(a), (b), (e), and (f) describe the implementation process of Model 2: (e) use one of the nondominated individuals to replace the dominated individual in the parent

population (step 4 in Fig. 5) and (f) get a new population.

X : “best” of the infeasible individuals, which refers to the infeasible
individual with the lowest degree of constraint violation in the current
offspring population.

A . archive, which is used to store the “best” of the infeasible individuals

m' and n'": user-defined parameters

Condition 1: the absolute difference of the original objective function
values (i.e., f(x) ) between the best and worst feasible solutions in the
population P is less than 6, , where 6, is a user-defined parameter with a
very small positive value.

/*Condition 1 means the distinction among feasible solutions in a
population is very slight.*/

if condition 1 does not hold then
if —3 feasible individual in the current offspring population then /* It
implies that the parent population is still far from
the feasible region or a majority of individuals in
the parent population are still far from the feasible

region */
A:=AUx; /*Preserve the “best” of the infeasible individuals. */
end if /*See Fig. 6 (a) for illustration*/
if mod (gen, m )=0 then [*“gen” refers to the current generation*/

randomly choose at most n' individuals from the archive A to
replace the same number individuals randomly selected from the
population P;
4=9;
end if
end if

Fig. 7. Pseudocode of the ISARM. The procedure above also embodies a self-
adaptive process, because the number of infeasible individuals in archiving and
replacing changes dynamically.

However, the proposed mechanism is very useful for COPs
with a small proportion of the feasible region. Because in this
case, the population P and the offspring population are always

composed of only infeasible solutions at the early stage, the
proposed mechanism will drive the population approaching
or landing in the feasible region constantly from the fact that
the archiving and replacement of infeasible individuals occur
frequently. Thereafter, in the general cases: 1) if the global
optimum is located on the boundaries of the feasible region,
then the search will synchronously occur from both sides of the
boundaries of the feasible region based on the nondominated
individuals replacement scheme and 2) if the global optimum
lies within the feasible region, then feasible individuals will
rapidly accumulate approximately from the middle stage, and
finally strive for meeting the global optimum according to the
nondominated individuals replacement scheme.

In addition, based on the Property 2 of nondominated indi-
viduals, feasible solutions will gradually increase as the itera-
tion proceeds. So, this mechanism can also serve as a diversity
operator to adjust the balance between feasible and infeasible
individuals in the population because of the randomicity of the
replacement of infeasible individuals.

On the other hand, when the population has converged or been
very close to the optimum at the later stage, one may assume
the optimal solution is located on the boundaries of the feasible
region and the region surrounding the optimum consists of a
very big scale of the infeasible region yet a very small scale of
the feasible region (Fig. 8). In this case, if the procedure still
does not terminate, the offspring population created from the
crossover operator may be always composed of infeasible solu-
tions, which means a sampling error has occurred. If the current
offspring population consists of only infeasible solutions, ac-
cording to ISARM, then the “best” of the infeasible solutions is
to be archived. Hence, if the sampling error occurs with a very
high frequency, it is very likely that the feasible individuals in
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Fig. 8. A structure of the search space.

the population P are unreasonably replaced by the infeasible
solutions in the archive A. The worst scenario is that the feasi-
bility proportion of the final population could possibly decrease
to zero in the end because of the lack of sufficient knowledge
about when the sampling error arises and the time the procedure
should halt. To overcome this weakness, a simple yet effective
measure is introduced in this paper as follows: once condition
1 is satisfied, the “best” of the infeasible solutions are not pre-
served in the archive A later on.

E. Two Extreme Cases

In this section, we will proceed to discuss a very difficult kind
of COPs, i.e., COPs with equality constraints, in which the fea-
sibility proportion of the entire search space is very small (al-
most equal to 0). First, the reason why feasible solutions cannot
be found in the final population is analyzed. Then, one possible
way to overcome this issue is presented, which relaxes the need
for transforming equality constraints into inequality constraints
adopted by most previous approaches.

With respect to the COPs with equality constraints, since the
offspring population contains no feasible individual at the early
stage, population P will continuously approach the feasible set
during the evolution on the basis of ISARM.

At the later stage, population P will cluster in a small part of
the search space. Assume that population P remains infeasible
and is not trapped in a local optimum. Two extreme cases then
may occur: 1) if nondominated individuals in the offspring pop-
ulation include feasible solution, and if such feasible solution
is nondominated with infeasible individuals in the parent pop-
ulation, then it cannot be accepted to the next population; and
2) few feasible solutions can enter the population, but due to
ISARM, such stored feasible solutions are eliminated by infea-
sible solutions subsequently and, therefore, the population still
does not contain any feasible solution in the end. The occurrence
of these two extreme cases is the essential reason why feasible
solutions cannot be found until the evolution halts, without the
transformation of equality constraints.

Condition 2: Population P consists entirely of in-
feasible individuals and |max{f(Z;)|1<i< N} -
min{f(Z;)|1 < j < N}| < s, where 6, is a user-defined
parameter with a very small positive value, N is the population
size.

Condition 2 indicates that the distinction among infeasible
individuals in an infeasible population is extremely tiny.

Fig. 9. Density of the offspring produced with three-parent SPX.

To avoid the first extreme case, we introduce additional indi-
vidual comparison criteria as follows: if condition 2 holds, then
1) any feasible solution is preferred to any infeasible solution;
2) between two feasible solutions, the one with better objective
function value is preferred; and 3) between two infeasible solu-
tions, the one with smaller constraint violation is preferred. Ac-
cording to the above individual comparison criteria, we can ob-
tain Model 3. Model 3 is the same as Model 1, with the exception
of step 4 in which we eliminate the former criterion of individual
comparison in Models 1 and 2 (Pareto dominance), and only use
the above criteria to judge which individual in the parent popu-
lation is worse than a nondominated individual in the offspring
population. Meanwhile, the way to address the second extreme
case is that ISARM should not be applied if condition 2 holds.

By overcoming these two extreme cases, we can hold feasible
solutions in the final population and relax the need to modify
equality constraints.

F. Recombination

In RCGA, the common recombination operators involve sim-
ulated binary crossover (SBX), unimodal normal distribution
crossover (UNDX), simplex crossover (SPX) [37], etc. In this
paper, our algorithm adopts SPX, which generates offspring
based on uniform probability distribution and does not need any
fitness information, as the recombination operator. The reason
for using SPX is that it is very simple and the computational
complexity for creating an offspring is only O(N). Note that,
no mutation operator is used in this paper.

In R", ;1 mutually independent parent vectors (Z;,i =
1,...,p) form a simplex. The production of an offspring
consists in: 1) employing a certain ratio to expand the original
simplex in each direction (#; — 0, where & is the center of p
vectors, i.e., 0 = (1)/(n+1)Y %, ) and forming a new
simplex; and 2) choosing one point from the new simplex as
an offspring. For simplicity, we consider this process with a
three-parent SPX in two-dimensional space, where Z'1, s, and
73 indicate three vectors of the parents. Then, these vectors
form a simplex. We expand this simplex in each direction
by a factor of (1 + €) (¢ > 0 is the expanding rate). Let
G=(1/3)0_, & and i = (14 &)(&; — 3), thus §1, 72, and
i3 form a new simplex. We then randomly choose a point 2’
from the new simplex, i.e., Z = k141 + ka9 + k3i3 + 0, where,
k1, ks, and k3 are randomly selected within the range [0, 1] and
satisfy the condition k1 + k2 + k3 = 1. Fig. 9 illustrates the
density of the offspring produced with three-parent SPX.
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Begin
Select appropriate parameters and generate the initial main population
P randomly;
Repeat
If condition 2 does not hold then
Execute one model of a population-based algorithm-generator
(i.e., Model 1 or Model 2);
Else
Execute Model 3;
End if (operator 1)
If condition 2 does not hold then
Implement the infeasible solutions archiving and replacement
mechanism;  (operator 2)
End if
Until either an acceptable solution or a predetermined number of
fitness function evaluations (FFEs) is reached
End.

Fig. 10. Framework of the proposed algorithm.

G. Framework

We incorporate the individual components described in detail
above and present the framework of our algorithm in Fig. 10.

It is necessary to note that the operators 1 and 2 in the pro-
cedure are detached but interactive. Moreover, in the process of
evolution, the number of nondominated individuals in the off-
spring population, the number of individuals in the parent pop-
ulation replaced by nondominated individuals (only in Model
1), and the number of infeasible individuals chosen from the
archive A to replace the same number of individuals in the pop-
ulation P are dynamic, respectively.

We now explain how the two objectives of COEAs are ad-
dressed by our algorithm. For the first objective, the operator
2 in the procedure is designed to motivate the population ap-
proaching or landing in the feasible region efficiently. For the
second objective, the algorithm provides operator 1 including
three computation models in the procedure to guide the search
toward the optimum. Meanwhile, the effects of operator 2 will
become weaker and weaker with the gradual landing of individ-
uals in the feasible region. A remarkable difference between our
algorithm and other methods is that, in our approach guiding the
population toward feasibility and refining the fitness of individ-
uals are pursued simultaneously by combining the operators 1
and 2, while some other methods (such as [16], [38], and [39])
only focus on reaching the feasible region of the search space
before improving the objective performance of individuals.

H. Computational Time Complexity

From all of the psuedocodes listed above, we can see that the
algorithm proposed here is an efficient approach. The identi-
fying of all nondominated individuals in the offspring popula-
tion requires 2A\ comparisons among individuals, where X is
the number of nondominated individuals in the offspring popu-
lation. The operation of adopting nondominated individuals to
replace the dominated individuals needs 2u:\ comparisons for
Models 1 and 3, and 2y comparisons for Model 2. The number
of comparisons can be negligible for ISARM. Therefore, the
overall comparisons will be 2(z1 -+ A)A or 2(AX\ + 1) when using
Model 1 or 2, respectively.

TABLE 1
SUMMARY OF 13 BENCHMARK FUNCTIONS
Fen n Type of f p LI | NE | NI a
g01 13 | quadratic 0.0003% 9 0 0 6
202 20 nonlinear 99.9965% 1 0 1 1
203 10 | nonlinear 0.0000% 0 1 0 1
204 5 quadratic 26.9356% 0 0 6 2
205 4 nonlinear 0.0000% 2 3 0 3
206 2 nonlinear 0.0064% 0 0 2 2
207 10 | quadratic 0.0003% 3 0 5 6
208 2 nonlinear 0.8640% 0 0 2 0
209 7 nonlinear 0.5256% 0 0 4 2
gl0 8 linear 0.0005% 3 0 3 3
gll 2 quadratic 0.0000% 0 1 0 1
gl2 3 quadratic 0.0197% 0 0 93 0
gl3 5 nonlinear 0.0000% 0 3 0 3

IV. EXPERIMENTAL STUDY

In this section, we evaluate the performance of our algorithm
on thirteen well-known benchmark functions. All test functions
are taken from [17]. These test cases include various types
(linear, nonlinear and quadratic) of objective functions with
different number of decision variables (n) and a range of types
[linear inequalities (LI), nonlinear equalities (NE), and non-
linear inequalities (NI)] and number of constraints. The main
characteristics of the test cases are reported in Table I, where a
is the number of constraints active at the optimal solution. In
addition, p is the ratio between the size of the feasible search
space and that of the entire search space, i.e.,

p=12/15]

where | S| is the number of solutions randomly generated from
S, || is the number of feasible solutions out of these |\S| solu-
tions. In our experiment setup, |S| = 1 000 000.

For each test case, 50 independent trials are executed in
MATLAB (the source code may be obtained from the authors
upon request). Weuse 1 = n+1, A = 10, m’ = 10, _n" = 2and
61 = 1E —10. Also, 5 is set to 1003 logfy" e e ,
where #3 = —12, and “current_min_objective” denotes the
minimum original objective function value [i.e., f(Z)] in the
current population P. These parameters were kept in all the
experiments.

Indeed, one can conclude that there are about (n + 1)m” in-
dividuals taking part in the crossover operation before [ISARM
is implemented every time. To ensure that each individual in the
population has enough lifespan to contribute its valuable infor-
mation, we hope that each individual can carry out the crossover
operation about once before being replaced. According to the
above analysis, for the sake of convenience, the population size
of each test case is set as follows:

50, 0<n<5
100, 5<n<15
150, 15 <n <20

N =

The number of FFEs is 350 000 for all the test cases. Note that,
ten FFEs are performed at each generation.
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TABLE II
EXPERIMENT RESULTS WITH 50 INDEPENDENT RUNS ON 13 BENCHMARK FUNCTIONS USING MODEL 1 OR MODEL 2 (THE RESULTS
WITH MODEL 1 ARE BETTER THAN THE CORRESPONDING ONES WITH MODEL 2 ARE SHOWN IN “BOLDFACE”)

O;:t(i:r?{al model best median mean st. dev worst FFEs
201/ Model 1 -15.000000 -15.000000 -15.000000 1.109E-08 -15.000000 350000
-15.000000 Model 2 -15.000000 -15.000000 -15.000000 1.332E-14 -15.000000 350000
02/ Model 1 -0.803619 -0.803619 -0.803169 2.201E-03 -0.792608 350000
-0.803619 Model 2 -0.803619 -0.803619 -0.803220 1.987E-03 -0.792608 350000
203/ Model 1 -1.000000 -1.000000 -1.000000 8.027E-15 -1.000000 350000
-1.000000 Model 2 -1.000000 -1.000000 -1.000000 2.757E-16 -1.000000 350000
04/ Model 1 -30665.539 -30665.539 -30665.538 4.262E-03 -30665.508 350000
-30665.539 Model 2 -30665.539 -30665.539 -30665.539 7.990E-12 -30665.539 350000
205/ Model 1 5126.4981 5126.4981 5126.4981 1.837E-12 5126.4981 350000
5126.4981 Model 2 5126.4981 5126.4981 5126.4981 1.513E-12 5126.4981 350000
206/ Model 1 -6961.81388  -6961.81388  -6961.81388 1.837E-12 -6961.81388 350000
-6961.81388 Model 2 -6961.81388  -6961.81388  -6961.81388 1.837E-12 -6961.81388 350000
207/ Model 1 24.3062091 24.3062091 24.3062091 2.807E-12 24.3062091 350000
24.3062091 Model 2 24.3062091 24.3062091 24.3062091 5.652E-12 24.3062091 350000
208/ Model 1 -0.095825 -0.095825 -0.095825 5.414E-17 -0.095825 350000
-0.095825 Model 2 -0.095825 -0.095825 -0.095825 3.241E-17 -0.095825 350000
209/ Model 1 680.6300573  680.6300573  680.6300573 5.742E-13 680.6300573 350000
680.6300573 Model 2 680.6300573  680.6300573  680.6300573 4.661E-13 680.6300573 350000
g10/ Model 1 7049.248021  7049.248021  7049.637057 1.753E+00 7060.096482 350000
7049.248 Model 2 7049.248021  7049.248021 7049.248021 4.013E-09 7049.248021 350000
gll/ Model 1 0.750000 0.750000 0.750000 0.000E+00 0.750000 350000
0.750000 Model 2 0.750000 0.750000 0.750000 0.000E+00 0.750000 350000
gl2/ Model 1 -1.000000 -1.000000 -1.000000 0.000E+00 -1.000000 350000
-1.000000 Model 2 -1.000000 -1.000000 -1.000000 0.000E+00 -1.000000 350000
gl3/ Model 1 0.0539498 0.0539498 0.0539498 5.607E-17 0.0539498 350000
0.0539498 Model 2 0.0539498 0.0539498 0.0539498 6.539E-17 0.0539498 350000
A. General Performance of the Proposed Algorithm 50
We summarize the experimental results using the above pa-
rameters with Model 1 or 2 in Table II. For each test case, we .
list the “known” optimal solution and the best, median, mean =
and worst objective function values, and the standard deviations :‘g 30
after 50 independent runs by our algorithm. 5
When Model 2 is adopted, our algorithm performs pretty 1 | et
well in that it consistently finds the global optima of all test Z
cases for all 50 runs, except for problem g02. Moreover, 10 beemmmmmem e e _
with respect to problem gl10, a typical solution found by our
algorithm is: £ = (579.30663371658 1359.97068227017 0 : i T
5109.97070454191  182.01769534597  295.60117181832 -0.81 -0.805 -08 -0.795 -0.79

217.98230465403 286.1652352765 395.60117181832) with
f(Z) = 7049.248020528672, which is the “best” result re-
ported so far. For problem g02, a typical solution found by
our algorithm is: ¥ = (3.16246065061821 3.12833143125259
3.09479210698838 3.06145063097946  3.02792912724552
2.99382607867366 2.95866874241085 2.92184233357046
0.49482516067620 0.48835710726434 0.48231645861281
0.47664473053803  0.47129550866925 0.46623098401343
0.46142001695710  0.45683664685665 0.45245869011821
0.44826764426227 0.44424698415295 0.44038291462275)
with f(Z) = —0.80361910412559, which is also the “best” re-
sult reported so far. Furthermore, for problem g02, the resulting
objective function values are less than —0.803619 for 48 out
of the 50 runs. Fig. 11 describes the distribution of the solution
quality achieved over 50 trials for problem g02. In addition,
it is apparent that the standard deviations provided in Table II
are very small, which reflects that our approach is capable of
performing a robust and stable search.

Solution quality

Fig. 11. Plot shows the number of trials versus the solution quality achieved.
Results are derived from 50 independent trials on problem g02.

Compared with the execution of Model 2, the algorithm with
Model 1 is relatively easy to get stuck in a local optimum due
to a higher selection pressure. For example, premature conver-
gence presents for problems g04 and g10 in addition to problem
g02. Model 1 finds a “better” standard deviation in two prob-
lems (g07 and g13), whereas Model 2 finds “better” standard
deviations in the remaining problems. In general, the overall
performance of Model 1 appears appreciably worse than that
of Model 2.

The results in Table II also reveal that our algorithm has sub-
stantial potential in coping with various COPs without any com-
plex operators. Hereafter, we will only discuss the results pro-
vided by Model 2 unless otherwise specified.
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TABLE III
AVERAGE PERCENTAGE OF FEASIBLE SOLUTIONS IN THE FINAL POPULATION WITH 50 INDEPENDENT RUNS
Fen g0l  g02 g03 g04 g05 g06 207 08 g09 gl0 gll gl2 glI3
average percentage 100 99 91 86 100 35 88 71 66 94 42 100 9
TABLE 1V
AVERAGE DISTANCE FROM THE BEST INDIVIDUAL OF THE POPULATION TO THE BOUNDARIES OF THE
FEASIBLE REGION AT EVERY 5000 GENERATIONS FOR THE 50 TRIALS
Fen Iteration number
5000 10000 15000 20000 25000 30000 35000
201 0 0 0 0 0 0 0
202 0 0 0 0 0 0 0
203 9.54E-09 6.57E-10 4.12E-12 6.66E-16 0 0 0
g04 0 0 0 0 0 0 0
205 3.27E-05 0 0 0 0 0 0
206 0 0 0 0 0 0 0
207 0 0 0 0 0 0 0
208 0 0 0 0 0 0 0
209 0 0 0 0 0 0 0
gl0 0 0 0 0 0 0 0
gll 3.78E-12 0 0 0 0 0 0
gl2 0 0 0 0 0 0 0
gl3 3.62E-03 3.16E-05 1.94E-09 5.67E-12 0.00E-14 0 0
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Fig. 12. Proportion of feasible solutions during the evolution with two different trials on test function g04. (a) Without using the parameter 6, (i.e., §; = 0).

(b) Using the parameter 6, (i.e., ¢y = 1E — 10).

B. Feasibility Proportion of the Final Population

For all test cases, feasible solutions are consistently found for
all 50 trials. Table III depicts the average feasibility percentage
of the final population.

In order to ascertain the rate at which the algorithm is able
to approach or enter the feasible region, we monitor the average
distance from the best individual of the population to the bound-
aries of the feasible region at every 5000 generations for the 50
trials. The results are presented in Table IV. As can be seen, for
the test problems without equality constraints (gO1, g02, g04,
206, g07, g08, g09, g10, and g12), the algorithm can enter the
feasible region within 5000 generations (i.e., 50 000 FFEs); for
problems g05 and gl1, the algorithm can enter the feasible re-
gion within 10000 generations (i.e., 100 000 FFEs). Although
for problems g03 and g13, the algorithm can enter the feasible
region within 25 000 and 30 000 generations (i.e., 250 000 and
300 000 FFEs), after 10 000 generations, the best individual of
the population has had very little distance to the boundaries of

the feasible region. The above observation verifies that the algo-
rithm has the capability in approaching or entering the feasible
region quickly.

Now, we will use test function g04 whose optimum is located
on the boundaries of the feasible region, to explain the effects
of the sampling error of the crossover operator on population
feasibility. We design two contrasting trials, i.e., implement our
algorithm with or without using the parameter 61, and the feasi-
bility proportion of the population is recorded at every 30 gen-
erations. From Fig. 12(a), we can easily observe that when the
population has been very close or converged to the optimum at
the later stage, the sampling error induces a rapid decrease of
the feasibility proportion of the population. Fig. 12(b) verifies
the effectiveness of the use of the parameter 6.

Figs. 13 and 14 account for the effects of the two extreme
cases described in Section III-E on finding feasible solutions
for COPs with equality constraints. Also, the feasibility propor-
tion of the population is recorded at every 30 generations. In test
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Fig. 13. Proportion of feasible solutions during the evolution with two different trials on test function g13. (a) The first extreme case happens. (b) Overcome the
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Fig. 14. Proportion of feasible solutions during the evolution with two different trials on test function g05. (a) The second extreme case happens. (b) Overcome

the second extreme case by stopping performing ISARM when condition 2 is satisfied.

case gl3, some feasible solutions can be found in the offspring
population during the search process. However, these feasible
solutions cannot survive in the next generation, because they
are nondominated with infeasible solutions in the parent popu-
lation and the population P only involves infeasible solutions
(note that this is the first extreme case). By applying the addi-
tional individual comparison criteria when condition 2 holds,
this phenomenon can be addressed to some extent [Fig. 13(b)].
For problem g05, although some feasible solutions can enter the
population P, they are replaced by infeasible solutions in the
archive A subsequently due to ISARM, thereby the population
P does not contain any feasible solution in the end [Fig. 14(a),
note that this is the second extreme case]. It is clearly shown in
Fig. 14(b) that stopping performing ISARM when condition 2
is satisfied can help the population to land within the feasible

set under this condition.

C. Comparison of Different Constrained
Optimization Approaches

We compare our algorithm against some other representative
approaches using two metrics suggested in [40], i.e., solution

qualities and computation effort. The other approaches in the
comparison include:

1) Self-Adaptive Fitness Formulation (SAFF) method [9];

2) Simple Multimembered Evolution Strategy (SMES)

method [16];

3) Stochastic Ranking (RY) method [17];

4) Inverted-Shrinkable PAES (IS-PAES) method [26];

5) Derivative-Free Filter Simulated Annealing (FSA) method
[401;

6) Improved Stochastic Ranking (IRY) method [18].

Among the six algorithms above, algorithm 5 is a point-to-
point method and the rest are population-based methods. The
experiment results are listed in Table V.

One can conclude that our algorithm can consistently produce
the best performance for all the test functions, as opposed to
methods 1-5, which only manage to achieve best performance
for certain test functions. Besides, our algorithm consistently
converges to the optimum for all 50 runs, except for problem g02
where premature convergence occurs for 2 out of 50 runs. While

methods 1-5 seem to have a great tendency to converge to a local
optimum, especially for those complicated functions, e.g., g02,
205, g07, g09, 10, and g13. For the large feasible problem g02,
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COMPARISON OF OUR ALGORITHM (INDICATED BY CW) WITH RESPECT TO SAFF [9], SMES [16], RY [17], IS-PAES [26], FSA [40],
AND IRY [18] ON 13 BENCHMARK FUNCTIONS. NA = NOT AVAILABLE. THE RESULTS OBTAINED BY ALGORITHMS 1-6 AND

BETTER THAN THE CORRESPONDING ONES RESULTED FROM OUR ALGORITHM ARE SHOWN IN “BOLDFACE”

F(;m" status methods
optimal SAFF[9] SMES[16] RY[17] IS-PAES[26] FSA[39] IRY[18] CW
best -15.000 -15.000 -15.000 -15.000 -14.999 -15.000 -15.000
201/ mean -15.000 -15.000 -15.000 -14.494 -14.993 -15.000 -15.000
-15.000 worst -15.000 -15.000 -15.000 -12.446 -14.980 -15.000 -15.000
st. dev 0 0 0.0E+00 9.3E-01 4.8E-03 1.3E-13 1.3E-14
best -0.80297 -0.803601 -0.803515 -0.803376 -0.754913 -0.803619 -0.803619
202/ mean -0.79010 -0.785238 -0.781975 -0.793281 -0.371708 -0.772078 -0.803220
-0.803619 worst -0.76043 -0.751322 -0.726288 -0.768291 -0.271311 -0.683055 -0.792608
st. dev 1.2E-02 1.7E-02 2.0E-02 9.0E-03 9.8E-02 2.6E-02 2.0E-03
best -1.000 -1.000 -1.000 -1.000 -1.000 -1.001 -1.000
203/ mean -1.000 -1.000 -1.000 -1.000 -0.999 -1.001 -1.000
-1.000 worst -1.000 -1.000 -1.000 -1.000 -0.992 -1.001 -1.000
st. dev 7.5E-05 2.1E-04 1.9E-04 9.7E-05 1.7E-03 6.0E-09 2.8E-16
best -30665.50 -30665.539 -30665.539 -30665.539 -30665.538 -30665.539 -30665.539
204/ mean -30665.20 -30665.539 -30665.539 -30665.539 -30665.467 -30665.539 -30665.539
-30665.539 worst -30663.30 -30665.539 -30665.539 -30665.539 -30664.688 -30665.539 -30665.539
st. dev 4.9E-01 0 2.0E-05 0 1.7E-01 2.2E-11 8.0E-12
best 5126.989 5126.599 5126.497 NA 5126.4981 5126.4981 5126.4981
205/ mean 5432.080 5174.492 5128.881 NA 5126.4981 5126.4981 5126.4981
5126.498 worst 6089.430 5304.167 5142472 NA 5126.4981 5126.4981 5126.4981
st. dev 3 9E+03 5.0E+01 3.5E+00 NA 0 6.2E-12 1.513E-12
best -6961.800 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814 -6961.814
206/ mean -6961.800 -6961.284 -6875.940 -6961.813 -6961.814 -6961.814 -6961.814
-6961.814 worst -6961.800 -6952.482 -6350.262 -6961.810 -6961.814 -6961.814 -6961.814
st. dev 0 1.9E+00 1.6E+02 8.5E-05 0 6.4E-12 1.8E-12
best 24 48 24327 24307 24338 24311 24306 24306
07/ mean 26.58 24475 24374 24.527 24380 24.306 24.306
24.306 worst 28.40 24.843 24.642 24.995 24.644 24.308 24.306
st. dev 1.1E+00 1.3E-01 6.6E-02 1.7E-01 7.2E-02 2.7E-04 5.7E-12
best -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
208/ mean -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
-0.095825 worst -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825 -0.095825
st. dev 0 0 2.6E-17 0 0 4.2E-17 3.2E-17
best 680.64 680.632 680.630 680.630 680.630 680.630 680.630
209/ mean 680.72 680.643 680.656 680.631 680.636 680.630 680.630
680.630 worst 680.87 680.719 680.763 680.634 680.698 680.630 680.630
st. dev 5.9E-02 1.6E-02 34E-02 8.1E-04 1.5E-02 4.6E-13 4.7E-13
best 7061.34 7051.903 7054.316 7062.019 7059.864 7049.248 7049.248
10/ mean 7627.89 7253.047 7559.192 7342.944 7509.321 7049.249 7049.248
7049.248 worst 8288.79 7638.366 8835.655 7588.054 9398.649 7049.296 7049.248
st. dev 3.7E+02 1.4E+02 5.3E+02 14E+02 54E+02 49E-03 4.0E-09
best 0.750 0.75 0.750 0.750 0.750 0.750 0.750
ell/ mean 0.750 0.75 0.750 0.750 0.750 0.750 0.750
0.75 worst 0.750 0.75 0.750 0.751 0.750 0.750 0.750
st. dev 0 1.5E-04 8.0E-05 2.6E-04 0 1.8E-15 0.0E+00
best -1.000 -1.000 -1.000 NA -1.000 -1.000 -1.000
12/ mean -1.000 -1.000 -1.000 NA -1.000 -1.000 -1.000
-1.000 worst -1.000 -1.000 -1.000 NA -1.000 -1.000 -1.000
st. dev 0 0 0.0E+00 NA 0 9.6E-10 0.0E+00
best NA 0.053986 0.053957 0.05517 0.0539498 0.053942 0.0539498
el3/ mean NA 0.166385 0.067543 0.28184 0.2977204 0.096276 0.0539498
0.0539498 worst NA 0.468294 0.216915 0.5471 0.4388511 0.438803 0.0539498
st. dev NA 1.8E-01 3.1E-02 1.8E-01 1.9E-01 1.2E-01 6.5E-17

methods 1-5 are unable to reach the true optimum. Although the
“best” objective function value of —0.803601 found by method
2 is very close to the optimum, the resulting objective function
values of our algorithm are less than that for 48 out of 50 trials.
In terms of the highly constrained problem g10, the “best” ob-
jective function values of these five methods are still far from
the true optimum. Moreover, for problems g10, methods 1 and
3 have trouble in finding feasible solutions. More specifically,
method 1 finds 17 feasible solutions from 20 runs, and method

3 finds only 6 from 30 runs. However, our algorithm consistently
finds the feasible optimum for this problem.

With respect to method 6, which is the most competitive ap-
proach known to date, most of its results match the solutions de-
rived from our algorithm. Method 6 obtains a “better” standard
deviation in problem g09, while our algorithm reaches “better”
standard deviations in the remaining 12. Also, method 6 cannot
consistently converge to the global optima for problems g02,
207, g10, and g13.
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TABLE VI
EXPERIMENT RESULTS WITH 50 INDEPENDENT RUNS ON 13 BENCHMARK FUNCTIONS WITHOUT USING ISARM.
“*” MEANS NO FEASIBLE SOLUTIONS WERE FOUND. “MEAN DISTANCE” DENOTES THE AVERAGE DISTANCE
FROM THE BEST INDIVIDUAL IN THE FINAL POPULATION TO THE BOUNDARIES OF THE FEASIBLE REGION

Fen optimal best median worst mean distance

201 -15.000 -57.897* -36.199* -14.178* 9.7E+01

202 -0.803619 -0.803619 -0.803619 -0.792608 0

203 -1.000 -2.301* -0.927* -0.151* 5.7E-03

204 -30665.539 -30665.539 -30665.538 -30665.515 0

205 5126.498 2979.760* 4248.671% 5076.819* 1.8E+02

206 -6961.814 -6961.814 -6961.788 -6955.513 0

207 24.306 24306 24.306 24.798 0

208 -0.095825 -0.095825 -0.095825 -0.095825 0

209 680.630 680.630 680.630 680.630 0

el0 7049.248 5107.408* 7588.978% 10681.686 1.6E-01

ell 0.75 0.75% 0.75* 0.985* 2.7E-05

gl2 -1.000 -1.000 -1.0000 -1.000 0

gl3 0.0539498 0.0465034* 0.0570823* 0.0911286* 1.0E-01

On the other hand, because of the transformation from an 380~
equality constraint into pairwise inequality constraints and the 300 | 2 ]
use of parameter ¢, some results provided by algorithms 1-6 are
better than the “known” optimum. For instance, for problems 250} 1
203, 204, g06, and g1, the “best” results provided by method 2 s00l* ¢ b
[41]; for problem g05, the “best” result provided by method 3; - ., J c
for problem g11, the “best” result provided by method 5; and for 150 1+ o” d
. e
problems g03 and g13, the “best” results provided by method 6 100! o~ ({( |
are better than the “known” optima, respectively. But the above ¢ . fV})
behaviors do not mean that the “new” optima are really found 501 . 1
by them. 0 ‘ . . .
0 10 20 30 40 50

As far as the computational cost (the number of FFEs) is
concerned, algorithms 2 and 5 seem to have the minimum
computational cost for most test functions, while algorithm
1 has considerable computational cost for all test functions
(1400000 FFEs). In general, the cost required by our algorithm
(350000 FFEs) is moderate among the constrained optimiza-
tion approaches in comparison.

D. Validation of ISARM

An important factor of our algorithm is the promotion of the
population feasibility by means of ISARM. In this section, we
attempt to examine whether ISARM works as expected, i.e., we
will remove ISARM from the algorithm proposed and monitor
whether there exist some changes of the capability. We have
used Table VI in order to accomplish this investigation. This
time, 50 independent runs are also performed. The following is
a summary of the results obtained.

A) Test Functions g01, g03, g05, gl0, gll, and gl3:
In these cases, feasible solutions cannot be found during the
evolution. This occurs because nondominated individuals in the
offspring population are always dominated by or nondominated
with the individuals in the parent population (see Fig. 15),
thus, new individuals produced cannot enter the population and
the population cannot proceed to approach the feasible region
under this condition. The use of ISARM clearly improved
the results by directing the population toward feasibility from
different directions.

B) Test Functions g04, g06, and g07: In these cases, al-
though the population can find feasible solutions, the global
optimum cannot be attained. Again, the use of ISARM pro-
duced a significant improvement for our algorithm. However,

G

7]

Fig. 15. Some nondominated individuals (e.g., individuals “a,” “b,” “e,” and
“f”) in the offspring population are dominated by the individuals in the parent
population. In addition, some nondominated individuals (e.g., individual “c” and
“d”) are nondominated with the individuals in the parent population.

this time ISARM serves as a diversity mechanism as stated in
Section III-D.

C) Test Function g02: In this case, the version without
ISARM provided a similar capability. As already analyzed, re-
garding some COPs with large ratio of the feasible set, similar
to problem g02, the role of the ISARM is not very apparent, but
empirical results indicate that the models of a population-based
algorithm-generator have powerful abilities in finding the global
optima.

D) Test Functions g08, g09, and gi2: In these cases, the
global optimum can be found consistently in all experiments.
Once more, the effect of ISARM is not very evident. We at-
tribute this behavior to the fact that these test functions have a
search space considerably easier to explore than the others em-
ployed in this paper.

Conclusions from Experiment: Based on the analysis per-
formed in this experiment, we conclude that the use of ISARM
turns out to be quite beneficial in most cases with small pro-
portion of the feasible region, but the impact of ISARM is not
evident when the feasibility proportion of the problem is very
large or the problem itself is relatively simple to solve. How-
ever, since the replacement behavior of ISARM happens ran-
domly and the likelihood of replacement becomes less and less
with the gradual increase of feasible solutions in the population,
the overall orientation of advance for the population is primarily
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TABLE VII
EXPERIMENTAL RESULTS ON FOUR PROBLEMS WITH EQUALITY CONSTRAINTS WITH VARYING 63; 50 INDEPENDENT RUNS WERE PERFORMED; MPF MEANS THE
MEAN PERCENTAGE OF FEASIBLE SOLUTIONS IN THE FINAL POPULATION; (#) DENOTES THE NUMBER OF TRIALS THAT FEASIBLE SOLUTIONS ARE NOT FOUND

P 03 205 gll gl3
3 Mean st. dev  MPF Mean st. dJev. MPF | Mean st. dev MPF Mean st. dev  MPF
-9 20) 5126.4981 2.9E-07 100 0.75 0.0E+00 98 ¢))
-10 | -1.000 9.6E-12 7 5126.4981 5.1E-09 100 0.75 0.0E+00 93 0.0539498 2.1E-14 8
-11 | -1.000 5.1E-13 56 51264981 7.5E-10 100 0.75 0.0E+00 72 0.0539498 3.7E-14 8
-12 | -1.000 2.8E-16 91 5126.4981 1.5E-12 100 0.75 0.0E+00 42 0.0539498 6.5E-17 9
-13 | -1.000 3.2E-15 90 5126.4981 18E-12 100 0.75 0.0E+00 22 0.0539498 5.6E-17 8
-14 | -1.000  1.4E-14 86 5126.4981 1.8E-12 96 1) (48)
controlled by the models of a population-based algorithm-gen- value of n”, the replacement of ISARM will occur with

erator and assisted by ISARM during the evolution. Thus, the
global optimum can always be found by coupling these two
main ingredients of our algorithm.

E. Influence of the Parameter 04

The parameter 6, is effective for finding feasible solutions
when tackling COPs with equality constraints. As discussed,
this parameter reflects the distinction among infeasible indi-
viduals in an infeasible population. To get a tradeoff between
the quality of the resulting solutions and the number of fea-
sible solutions, this parameter should be small. However, a too
small value may also induce the final population being infea-
sible. Therefore, suitable value of this parameter must be se-
lected. Table VII summarizes the mean of the objective function
values, the standard deviations of the objective function values,
and the mean percentage of feasible solutions in the final pop-
ulation in the case of the parameter 3 alone being changed to
-9,-10,—11, —12, —13, and —14. In the case of #3 = —9, fea-
sible solutions for problems g03 and g13 cannot be consistently
found, and the standard deviation for problem g05 is bigger than
the standard deviation when 63 is greater. Also, in the case of
03 = —14, feasible solutions for problems gl1 and g13 cannot
be consistently found. These results show that a value of the pa-
rameter 63 between —10 and —13 is an appropriate setting for
the problems with equality constraints.

In addition, the proposed method is very robust with respect
to the used setting of the parameter 6. The related results about
this parameter are not listed here for limited pages.

F. Sensitivity in Relation to the Parameters m andn’

In order to illustrate the effect of the parameters m’ and
n" used by ISARM on performance, a set of experiments has
been performed. We use the exact setting of values for the re-
maining parameters used in our previous experiments, and we
also maintain the number of FFEs to have a fair comparison.
We only modify the aforementioned two parameters in the fol-
10W1ng comblnatlons 1) m' =5andn = 2; 2/)/ m’ =15
andn = 2; 3)m =10andn’ = = 1;and 4) m = 10 and
n" = 3. For each combination, we perform 50 runs for per test
function. The experimental results are presented in Table VIII.
The results that are approximately the same as those shown in
Table II are omitted. The following is a summary of the results
obtained.

1) There is a negative effect when i mcreasmg the parameter

m’ or decreasing the parameter n . This phenomenon is
reasonable, because with higher value of 7 or with lower

a relatively lower frequency and ISARM cannot exert its
strength very well. Thus, in one respect, only a fraction of
the final populations can find feasible solutions for some
test cases, such as problems g03, gl1, and gl13. On the
other hand, although the final population can consistently
find feasible solutions for some test cases, it is unable to
converge to the global optimum, such as problems g01,
g04, ¢07, and g10.

2) We can argue that there is no significant negative effect
when decreasing the parameter m’ or increasing the pa-
rameter . Nevertheless, a lower value of m’ and higher
value of n” also indicate that the replacement of ISARM
will occur with a relatively higher frequency, so that some
fresh individuals in the population may be replaced unrea-
sonably before they contribute their valuable information
as analyzed and, therefore, the degradation of performance
tends to take place not only with respect to problems g05,
but to problem g13 where a part of the final populations
cannot find infeasible solutions.

G. Influence of the Parameter A

Finally, one may be interested in the sensitivity of the param-
eter \. Again, four new runs are performed with different pa-
rameter values (5, 8, 12, and 15), each using the same remaining
parameters and the number of FFEs adopted in our previous ex-
periments. The results are given in Table IX. From this table, it
can be seen that smaller values for A (5 and 8) do not influence
the capability of our algorithm. However, smaller values of A
also mean slower convergence. Indeed, the convergence relia-
bility of our algorithm when using A = 10 is appreciably better
than that of A = 5 and 8.

However, the degradation of capability arises when using the
bigger values of A (12 and 15) that mean a lower number of
iterations. On the one hand, a lower number of iterations may
result in an incomplete convergence of the population, see for
example functions g01, g04, g05, g07, and g10. On the other
hand, ISARM has difficulty in guiding the population toward
feasibility due to a lower number of iterations, see, for example,
functions g03, gl1, and g13.

H. Limitation and Discussion

The limitation of our algorithm is the problem-dependence
of the crossover operator, i.e., the expanding factor £ should
be altered based on specific problems. Though ¢ = /n + 2
is a theoretical guideline in using SPX, and it is shown that the
performance of this value works well on various test functions
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STATISTICS RESULTS OBTAINED BY CW WITH DIFFERENT VALUES FOR

TABLE VIII

THE m’ AND n”" PARAMETERS. N/E MEANS NO EVIDENT EFFECT
FOUND BY THIS PARAMETER COMBINATION COMPARED WITH THE
" "
RESULTS WHEN USING i = 10 ANDn = 2. (#) DENOTES THE
NUMBER OF TRIALS THAT FEASIBLE SOLUTIONS ARE NOT FOUND IN

50 TRIALS. [#] DENOTES THE AVERAGE DISTANCE OF THE POPULATION
FROM THE BOUNDARIES OF THE FEASIBLE REGION

different parameter values
Fen status m =5 m =15 m =10 m =10
n'=2 n =2 n =1 n =3
best N/E -15.000  -15.000 N/E
op | mean N/E -15.000  -15.000 N/E
g worst N/E 15000 -15.000 N/E
st. dev N/E 67E-10  2.6E-07 N/E
best N/E N/E N/E N/E
02 mean N/E N/E N/E N/E
g worst N/E N/E N/E N/E
st. dev N/E N/E N/E N/E
best N/E N/E N/E
03 mean N/E N/E 27) N/E
g worst N/E N/E [6.4E-15] N/E
st. dev N/E N/E N/E
best N/E 3066554 -30665.54 N/E
04 | mean N/E 30665.54  -30665.54 N/E
& worst N/E 30665.54  -30665.54 N/E
st. dev N/E 35609  9.0E-07 N/E
best | 5126.498 N/E N/E 5126.498
05 | mean | 5126513 N/E N/E 5126.499
g worst | 5126.747 N/E N/E 5126.550
st.dev | 5.5E-02 N/E N/E 7.3E-03
best N/E N/E N/E N/E
06 mean N/E N/E N/E N/E
g worst N/E N/E N/E N/E
st. dev N/E N/E N/E N/E
best N/E 24306 24306 N/E
07 | mean N/E 24306 24306 N/E
& worst N/E 24306 24306 N/E
st. dev N/E 76E-10  1.0E-08 N/E
best N/E N/E N/E N/E
03 mean N/E N/E N/E N/E
& worst N/E N/E N/E N/E
st. dev N/E N/E N/E N/E
best N/E N/E N/E N/E
0o | mean N/E N/E N/E N/E
g worst N/E N/E N/E N/E
st. dev N/E N/E N/E N/E
best N/E 7049248 7049.248 N/E
o | mean N/E 7049.248  7049.489 N/E
& worst N/E 7049254 7060.733 N/E
st. dev N/E 9.8E-04  1.6E+00 N/E
best N/E N/E
1 mean N/E (14) (19) N/E
& worst N/E [4.0E-06]  [1.3E-05] N/E
st. dev N/E N/E
best N/E N/E N/E N/E
12 mean N/E N/E N/E N/E
& worst N/E N/E N/E N/E
st. dev N/E N/E N/E N/E
best
13 | mean (19) (39) (50) (11
& worst | [5.2E-16] [2.8E-13] [1.2E-10]  [2.0E-15]
st. dev

[42], this setting does not seem to be absolutely effective for

COPs according to the experimental study.

In fact, the setting of the parameter ¢ is very simple, and there
is a large range of setting for this parameter to obtain better

TABLE IX
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STATISTICS RESULTS OBTAINED BY CW WITH DIFFERENT VALUES FOR THE A
PARAMETER. N/E MEANS NO EVIDENT EFFECT FOUND BY THIS PARAMETER
COMPARED WITH THE RESULTS WHEN USING A = 10. (#) DENOTES THE
NUMBER OF TRIALS THAT FEASIBLE SOLUTIONS ARE NOT FOUND IN 50
TRIALS. [#] DENOTES THE AVERAGE DISTANCE OF THE POPULATION

FROM THE BOUNDARIES OF THE FEASIBLE REGION

Fen

status

different parameter values

A=5 A=8 A=12 A=15
best N/E N/E -15.000 -15.000
201 mean N/E N/E -15.000 -15.000
worst N/E N/E -15.000 -14.999
st. dev N/E N/E 1.4E-06 1.3E-04
best N/E N/E N/E N/E
202 mean N/E N/E N/E N/E
worst N/E N/E N/E N/E
st. dev N/E N/E N/E N/E
best N/E N/E N/E
203 mean N/E N/E N/E (23)
worst N/E N/E N/E [2.0E-16]
st. dev N/E N/E N/E
best N/E N/E N/E -30665.54
204 mean N/E N/E N/E -30665.54
worst N/E N/E N/E -30665.54
st. dev N/E N/E N/E 1.3E-07
best N/E N/E N/E 5126.498
205 mean N/E N/E N/E 5126.502
worst N/E N/E N/E 5126.740
st. dev N/E N/E N/E 3.4E-02
best N/E N/E N/E N/E
206 mean N/E N/E N/E N/E
worst N/E N/E N/E N/E
st. dev N/E N/E N/E N/E
best N/E N/E 24.306 24.306
207 mean N/E N/E 24.306 24.306
worst N/E N/E 24.306 24.306
st. dev N/E N/E 5.6E-08 1.4E-06
best N/E N/E N/E N/E
208 mean N/E N/E N/E N/E
worst N/E N/E N/E N/E
st. dev N/E N/E N/E N/E
best N/E N/E N/E N/E
209 mean N/E N/E N/E N/E
worst N/E N/E N/E N/E
st. dev N/E N/E N/E N/E
best N/E N/E 7049.248  7049.248
210 mean N/E N/E 7049.255  7049.679
worst N/E N/E 7049.612  7070.711
st. dev N/E N/E 5.1E-02 3.0E+00
best N/E N/E
ell mean N/E N/E 6) (16)
worst N/E N/E [3.7E-06]  [2.7E-06]
st. dev N/E N/E
best N/E N/E N/E N/E
12 mean N/E N/E N/E N/E
worst N/E N/E N/E N/E
st. dev N/E N/E N/E N/E
best N/E N/E N/E
el3 mean N/E N/E N/E (30)
worst N/E N/E N/E [3.5E-13]
st. dev N/E N/E N/E

performance for a given COP. It is inconclusive to recommend
that, € can be an integer between 3 and 6 if 2 < n < 10,
and € can be an integer between 8 and 11 if 10 < n < 20.
When we decide this parameter for a given COP, first, we can
test each value among the above range based on the dimension
of the decision variables by running once, and then we ascertain
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which setting has the best performance and use this setting as
the unique selection for the parameter €. According to the above
method, in this paper, the parameter ¢ is fixed to §, 11, 6, 3, 4,
5,6,4,5,6,3, 3, and 5 for the 13 test functions, respectively.

In essence, SPX resembles Nelder and Mead’s method [43]
(arecent paper [44] adopts Nelder and Mead’s method for con-
strained optimization). Nelder and Mead’s method is known to
degrade its performance when adopting a large number of de-
cision variables (e.g., 50 or more), thus, this sort of limitation
in Nelder and Mead’s method might impact the performance of
SPX when tackling COPs with large scale. A possible way to
overcome this limitation is to adopt or design a more effective
parameter-independent crossover operator, a research direction
which can serve as a basis for future work.

In addition, the core procedures of our method are the two
computation models, as analyzed, Models 1 and 2 are similar to
(4 (m’, X)) ES and (i + (1, X)) ES, respectively. Thus, our
method can be used to to solve unconstrained problems directly,
since in this case we only need to set G(Z) = 0 and the com-
parison of individuals is only based on f(Z).

V. CONCLUSION AND FUTURE WORK

Based on multiobjective optimization techniques, a novel
COEA is presented in this paper. In our algorithm, an individual
in the parent population may be replaced if it is dominated by
a nondominated individual in the offspring population. In addi-
tion, two detached but interactive operators are introduced, one
is the set of models of a population-based algorithm-generator,
and the other is the ISARM. COEAs have two definite goals
that can be achieved by the above two operators as expected.

From the experimental results, it is evident that the approach
presented in this paper has substantial potential in handling var-
ious COPs, and its performance remarkably outperforms other
algorithms in many respects, though the results of other algo-
rithms are statistically competitive. Meanwhile, it can meet the
feasible optima of all test cases when there is no transformation
of equality constraints. The standard deviations also reveal the
strong robustness of our algorithm.

Since the test functions used in this paper are still far from
embodying a complete COP test suite, a more profound study
in designing a more representative test function set in this field is
absolutely necessary in future work. Another direction of future
work is to overcome the limitation of our algorithm discussed
in Section IV-H. As discussed, the main motivation to use SPX
is its simplicity and efficiency. However, there also exist many
other excellent crossover operators for real- parameter optimiza-
tion, such as UNDX and PCX [45]. In our future work, we may
do a thorough study comparing SPX with other crossover oper-
ators. We are also considering the possibility of extending this
algorithm so that it can deal with other types of COPs, such
as constrained combinational optimization problems and MOPs
with constraints.
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