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Simplex Method With Mutations
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Abstract—Constrained optimization problems are very impor-
tant and frequently appear in the real world. The constrained
method is a new transformation method for constrained opti-
mization. In this method, a satisfaction level for the constraints
is introduced, which indicates how well a search point satisfies
the constraints. The level comparison, which compares search
points based on their level of satisfaction of the constraints, is also
introduced. The constrained method can convert an algorithm
for unconstrained problems into an algorithm for constrained
problems by replacing ordinary comparisons with the level
comparisons. In this paper, we introduce some improvements
including mutations to the nonlinear simplex method to search
around the boundary of the feasible region and to control the
convergence speed of the method, we apply the constrained
method and we propose the improved constrained simplex
method for constrained optimization problems. The effectiveness
of the constrained simplex method is shown by comparing
its performance with that of the stochastic ranking method on
various constrained problems.

Index Terms— constrained method, constrained optimization,
evolutionary algorithms, nonlinear optimization, nonlinear sim-
plex method.

I. INTRODUCTION

CONSTRAINED optimization problems, where the objec-
tive functions are optimized under given constraints are

very important and frequently appear in the real world. The
general constrained optimization problem (P) with inequality,
equality, upper bound, and lower bound constraints is defined
as follows:

minimize

subject to

(1)

where is an dimensional vector of de-
cision variables, is an objective function, are
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inequality constraints, and are equality
constraints. The functions , , and are linear or nonlinear
real-valued functions. The values and are the upper bound
and the lower bound of , respectively. The upper and lower
bounds define the search space . The inequality and equality
constraints define the feasible region . The feasible solutions
exist in .

There exist many studies on solving constrained optimization
problems using evolutionary algorithms [1]–[4]. These studies
can be classified into several categories according to the way the
constraints are treated as follows.

1) Constraints are only used to see whether a search point is
feasible or not. In this category, the search process begins
with a feasible point or multiple feasible points and con-
tinues to search for new points within the feasible region.
When a new search point is generated and the point is not
feasible, the point is repaired or discarded. Approaches
in this category are called death penalty. Michalewicz
and Nazhiyath proposed a method in which an infeasible
search point is repaired and changed to a feasible point
by referring to one of the feasible points [5]. El-Gallad
et al. proposed a method in which an infeasible search
point is discarded and replaced by the best visited point
[6]. In this category, generating initial feasible points is
difficult and computationally demanding when the fea-
sible region is very small. Especially, if the problem has
equality constraints, it is almost impossible to find initial
feasible points.

2) The constraint violation, which is the sum of the viola-
tion of all constraint functions, is combined with the ob-
jective function. The penalty function method is in this
category. In the penalty function method, an extended ob-
jective function is defined by adding the constraint vi-
olation to the objective function as a penalty. The opti-
mization of the objective function and the constraint vio-
lation is realized by the optimization of the extended ob-
jective function. The main difficulty of the penalty func-
tion method is the difficulty of selecting an appropriate
value for the penalty coefficient that adjusts the strength
of the penalty. If the penalty coefficient is large, feasible
solutions can be obtained. However, in this case, the op-
timization of the objective function will be insufficient
and the quality of the solution will not be high, because
search around the boundary of the feasible region tends to
be avoided. On the contrary, if the penalty coefficient is
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small, high-quality (but infeasible) solutions can be ob-
tained as it is difficult to decrease the constraint viola-
tion. Several methods that control the penalty coefficient
dynamically have been proposed [7]–[9], however, ideal
control of the coefficient is problem dependent [10] and
it is difficult to determine a general control scheme. Far-
mani and Wright proposed self-adaptive fitness formula-
tion [11]. The approach does not require parameter tuning
because the value of penalty for each search point is de-
cided based on three bounding points: the best point, the
worst of the infeasible points, and the point with the worst
objective function value in the current search points. It is
shown that the method can find good solutions. But the
solutions for some problems are not sufficient when they
are compared to solutions found by Runarsson and Yao
[12].

3) The constraint violation and the objective function are
used separately. In this category, both the constraint
violation and the objective function are optimized by
a lexicographic order in which the constraint violation
precedes the objective function. Takahama and Sakai
[13]–[15] proposed the constrained method, which
adopts a lexicographic ordering with relaxation of the
constraints. This method can optimize problems with
equality constraints effectively through the relaxation of
the constraints. Deb [16] proposed a method in which
the extended objective function that realizes the lex-
icographic ordering is used. Runarsson and Yao [12]
proposed the stochastic ranking method in which the sto-
chastic lexicographic order, which ignores the constraint
violation with some probability, is used. These methods
were successfully applied to various problems.

4) The constraints and the objective function are optimized
by multiobjective optimization methods. In this category,
the constrained optimization problems are solved as the
multiobjective optimization problems in which the objec-
tive function and the constraint functions are objectives
to be optimized [17]–[21]. In many cases, solving mul-
tiobjective optimization problems is a more difficult and
expensive task than solving single objective optimization
problems.

In this paper, we investigate the constrained method in the
promising category 3). In the constrained method, a satisfac-
tion level for the constraints is introduced to indicate how well a
search point satisfies the constraints and the level comparison
is defined as an order relation that gives priority to the satisfac-
tion level over the value of the objective function. The con-
strained method is a new transformation method that converts an
algorithm for unconstrained optimization into an algorithm for
constrained optimization by replacing the ordinal comparisons
with the level comparisons in direct search methods such as
Powell’s method, the nonlinear simplex method and genetic al-
gorithms. In [13]–[15], we proposed the constrained Powell’s
method which is a combination of the constrained method
and Powell’s direct search method [22]. In [23] and [24], we
proposed the constrained simplex method which is a combi-
nation of the constrained method and the nonlinear simplex
method by Nelder and Mead [25]. In [26] and [27], we pro-

posed the constrained genetic algorithm which is a combi-
nation of the constrained method and the genetic algorithm
using linear ranking selection. We showed that constrained op-
timization problems were effectively solved by these methods.

In the nonlinear simplex method, a simplex is spanned by
multiple search points and the simplex shows the region in
which an optimal solution will exist. The simplex is gradually
reduced while better points are found primarily inside the sim-
plex. When the simplex has sufficiently converged, the optimal
solution with a high precision will be obtained. However, when
the simplex method is applied to constrained optimization
problems, points around the boundary of the feasible region
are sometimes skipped when the simplex is reduced. In this
paper, to avoid such skipping, we modify the nonlinear simplex
method by adding mutations for searching the boundary and
by using multiple simplexes instead of a single simplex. We
propose the improved constrained simplex method, which
solves constrained optimization problems, by applying the
constrained method to the modified nonlinear simplex method.
The simplex method can be seen as an evolutionary algorithm
with high convergence speed, in which a particular selection,
special variation operators, and replacement strategy are used.
There exist several studies on hybridizing the simplex method
with a genetic algorithm to improve the convergence speed
of the genetic algorithm [28]–[30]. But they are for solving
unconstrained problems. We show that the constrained
simplex method is a fast and stable algorithm for constrained
optimization problems. We also show the effectiveness of the
simplex method by comparing its performance with that of the
stochastic ranking method on various constrained problems.

The rest of this paper is organized as follows. Section II de-
scribes the constrained method briefly. Section III describes
the improved constrained simplex method by introducing
mutations and multiple simplexes. Section IV presents exper-
imental results on various benchmark problems discussed in
[12]. Comparisons with the results in [12] are included in this
section. Section V describes discussion on parameter settings.
Finally, Section VI concludes with a brief summary of this
paper and a few remarks.

II. THE CONSTRAINED METHOD

In this section, we survey briefly the constrained method
[13], [14].

A. Satisfaction Level of Constraints

We introduce the satisfaction level of constraints to in-
dicate how well a search point satisfies the constraints. The
satisfaction level is the following function:

if
for all

otherwise
(2)

In order to define the satisfaction level of (P), the satisfac-
tion level of each constraint in (P) is defined and all individual
satisfaction levels are combined. For example, each constraint
in (P) can be transformed into one of the following satisfaction
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levels that are defined by piecewise linear functions on and

if
if
otherwise

(3)

if
otherwise

(4)

where and are proper positive fixed numbers. In order to
obtain the satisfaction level of (P), the satisfaction levels

and need to be combined. In this paper, mini-
mization is used for the combination operator

(5)

Also, it is possible to define a penalty and define the satis-
faction level from the penalty

(6)

(7)

where and are proper positive fixed numbers.

B. The Level Comparison

The level comparison is defined as an order relation on the
set of . If the satisfaction level of a point is less
than 1, the point is not feasible and its worth is low. The level
comparisons are defined by a lexicographic order in which
precedes , because the feasibility of is more important
than the minimization of .

Let and be the function value and the satisfac-
tion level respectively, at a point . Then, for any satis-
fying , the level comparisons and between

and are defined as follows:

if
if
otherwise

(8)

if
if
otherwise

(9)

In the case of , the level comparisons and are
equivalent to the ordinal comparisons and between function
values. Also, in the case of , and are equivalent
to the lexicographic order in which the satisfaction level
precedes the function value .

C. Properties of the Constrained Method

An optimization problem solved by the constrained
method, that is, a problem in which ordinary comparisons are
replaced with the level comparisons, , is defined as
follows:

minimize (10)

where denotes the minimization based on the
level comparison . Also, a problem is defined such that
the constraint of (P), that is, , is relaxed and replaced
with

minimize

subject (11)

The problem means searching the minimum point or-
dered by the order relation level comparison . The problem

means searching the minimum point ordered by the ordi-
nary comparison under the relaxed condition .

For the three types of problems, , , and (P), the
following theorems are given [13], [14].

Theorem 1: If an optimal solution of exists, any optimal
solution of is an optimal solution of .

Theorem 2: If an optimal solution of (P) exists, any optimal
solution of is an optimal solution of (P).

Theorem 3: Let be a strictly increasing nonnegative se-
quence converging to 1. Let and be continuous func-
tions of . Assume that an optimal solution of exists
and an optimal solution of exists for any . Then,
any accumulation point of the sequence is an optimal so-
lution of .

The proof of theorem is given in the Appendix.
Theorems 1 and 2 show that a constrained optimization

problem can be transformed into an equivalent unconstrained
optimization problem by using the level comparisons. So,
if the level comparisons are incorporated into an existing
unconstrained optimization method, constrained optimization
problems can be solved. It is thought that the constrained
method converts an algorithm for unconstrained optimization
into an algorithm for constrained optimization by replacing the
ordinary comparisons with the level comparisons. Theorem 3
shows that, in the constrained method, an optimal solution of

can be obtained by converging to 1, in a similar fashion
to increasing the penalty coefficient to infinity in the penalty
function method.

III. THE CONSTRAINED SIMPLEX METHOD

In this section, we first describe the nonlinear simplex method
proposed by Nelder and Mead [25]. Then, we describe the im-
proved constrained simplex method, which is the integration
of the constrained method and the nonlinear simplex method
with some modifications including mutations.

A. Nonlinear Simplex Method

A set is called a simplex if it is the convex hull
spanned by points which are affine independent. Let the set
of all vertices of be denoted by and each vertex be denoted
by , where is the dimension of .

In the search process, a new search point, which has a desir-
able value with respect to the objective function, is determined
based on the points in . This new search point then replaces the
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least desirable point in . This process is iterated until the sim-
plex has sufficiently converged. For the sake of this process,
the following three points are determined:

(12)

(13)

(14)

where , , and are the points in which currently have
the best, the worst, and the second worst function values, respec-
tively. Thus, is the point to be replaced in each iteration. To
determine a new search point, the centroid of all other points
except is calculated

(15)

Using , , , and defined in (12)–(15), the following
operations are defined.

• Reflection generates the reflection point of about

(16)

• Contraction generates the contraction point dividing
between and

(17)

• Expansion generates the expansion point in the direc-
tion from to

(18)

• Reduction replaces all points by the middle of
and

(19)

where , , and are the algorithm parameters with recom-
mended values of , , and .

The nonlinear simplex method is described as follows.

Step 0) An initial simplex is created by generating
vertices .

Step 1) The points , , , and are determined.
Step 2) The reflection point is calculated. If is better

than the best point , then go to
Step 3). Otherwise, go to Step 4).

Step 3) The expansion point is calculated. If is better
than , is replaced by . Otherwise, replace
by and return to Step 1).

Step 4) If is better than or equal to , replace by
and return to Step 1). Otherwise, go to Step 5).

Step 5) If is better than , is replaced by .
Step 6) The contraction point is calculated. If is better

than , is replaced by . Otherwise, all points
except for are replaced by their reduction points.
Go back to Step 1).

Usually, the simplex in which the distances between the ver-
tices are the same is used as an initial simplex. The points
for an initial simplex in which the distances are can be defined
as follows:

(20)

(21)

...
...

...
...

...
...

...
...

...
...

...

(22)

The iterations will stop when the simplex is converged
enough, such as when the standard deviation of the function
values of all vertices becomes sufficiently small

(23)

(24)

The simplex method can be seen as an evolutionary algorithm
using population of individuals, a particular selection of
parents, special variation operators (such as reflection, contrac-
tion and expansion) and replacement strategy.

B. Modifications to the Nonlinear Simplex Method

To solve constrained optimization problems, several modifi-
cations are introduced to the nonlinear simplex method.

The first and most important modification is the application
of the constrained method. The ordinary comparisons in the
nonlinear simplex method are replaced with the level compar-
isons. By this replacement, the constrained simplex method is
defined and the method can solve constrained problems.

The second modification is the introduction of mutations. In
this study, we adopt mutations which are similar to the boundary
mutation proposed by Michalewicz et al. [5]. In the boundary
mutation, an individual is changed into a point on the boundary
of the feasible region. A gene of an individual is randomly
selected, and is mutated and changed to a new gene , which is
selected from either or with equal probability, where

and are determined as follows:

(25)

(26)

Here, and are the lower bound and the upper bound,
respectively, of the gene such that the new individual

exists in the feasible region.
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In the constrained simplex method, some infeasible points
might be included as search points and or might
not be defined for these infeasible points. In this case, we adopt
another mutation, in which the satisfaction level is max-
imized to approach the feasible region [26], [27]. That is, if a
point is feasible, it is mutated by the boundary mutation and if
not, the satisfaction level of the point is maximized by the other
mutation. In the constrained simplex method, the worst point
is changed by the mutations. A variable of the worst point

is randomly selected and mutated, producing a new point
. In other words, the mutations

replace by with a probability equal to the mutation rate
as follows:

or if
if (27)

where and are the upper and lower bound of the th vari-
able , respectively. The decision of and and the
maximization of is realized by the combination
of bracketing and binary search. These mutations are effective
in order to search for optimal solutions in constrained optimiza-
tion problems, because optimal solutions of such problems very
often exist near the boundary of the feasible region.

The third modification is the introduction of multiple sim-
plexes. It is known that the simplex sometimes loses affine
independence and the nonlinear simplex method cannot find op-
timal solutions well. To avoid this situation, multiple simplexes
are used in the constrained simplex method. In the initializa-
tion step, the points are generated as initial search
points. When a centroid is determined, a simplex is com-
posed by selecting points from all points except for the
worst point and the centroid of the simplex is used as the cen-
troid . The centroids are defined by the different simplexes.
So, even if some simplexes lose affine independence, the other
affine independent simplexes can lead the search process. In this
operation, at least search points is used, because
points are used for a simplex and one point is used for the worst
point.

The nonlinear simplex method realizes very fast conver-
gence, but it also sometimes skips important regions and falls
into a local minimum. To control the convergence speed, the
following modifications are introduced: The reduction oper-
ation is replaced with the contraction operation between the
worst point and the best point to avoid rapid convergence of
the search points. A higher value is selected as the coefficient

such as to control the convergence speed. The
introduction of the mutations and the multiple simplexes also
help to control the convergence speed.

C. Algorithm of the Constrained Simplex Method

The algorithm of the constrained simplex method is de-
scribed as follows.

Step 0) An initial search points are generated, where
.

Step 1) The points , , and are determined.

Step 2) With a probability equal to the mutation rate ,
the mutations are applied to and Step 1) is re-
turned to. Otherwise, with a probability of , a
simplex is composed by selecting points from

and is determined as the centroid of
the simplex. In this latter case, go to Step 3). In this
paper, the points are selected in a simple way
where the points are taken sequentially based on the
vertex number with skipping the worst vertex .

Step 3) The reflection point is calculated. If is better
than the best point , that is,

, then go to Step 4). Otherwise, go to
Step 5).

Step 4) The expansion point is calculated. If is better
than , is replaced by . Otherwise, is re-
placed by . Go back to Step 1).

Step 5) If is better than or equal to , replace by
and return to Step 1). Otherwise, go to Step 6).

Step 6) If is better than , is replaced by .
Step 7) The contraction point is calculated. If is better

than , is replaced by . Otherwise, is
replaced by the contraction point between and

. Go back to Step 1).
The initial search points are randomly selected in the

boundary of the search space as follows: The th dimension
is randomly selected and either the lower bound or the upper
bound is assigned to . The other variables are generated
randomly between the lower bound and the upper bound of
each variable. The iterations are executed until the maximum
iteration .

Usually, the level does not need to be controlled. Many
constrained problems can be solved based on the lexicographic
order where the level is constantly 1. However, for some prob-
lems in which the feasible region is very small, such as problems
with equality constraints, the level should be controlled prop-
erly to obtain high quality solutions. For example, a simple con-
trol strategy increases
the level from the initial value to 1. The algorithm in
which the level is controlled is shown in Fig. 1. Sample
source files can be downloaded from http://www.chi.its.hi-
roshima-cu.ac.jp/~takahama/eng/research.html.

IV. CONSTRAINED NONLINEAR PROGRAMMING PROBLEMS

In this paper, the 13 benchmark problems mentioned in
Runarsson and Yao [12] are optimized, and the results by the
constrained simplex method are compared with their results.

A. Test Problems and the Experimental Conditions

In the 13 benchmark problems, g02, g03, g08, and g12 are
maximization problems, and the others are minimization prob-
lems. Problems g03, g05, g11, and g13 contain equality con-
straints. For the problems, the equality constraints are relaxed,
that is, all equality constraints are replaced by in-
equalities: , , where 10 . Problem g12
is the harder version studied in [31], where the feasible region
consists of 9 disjointed spheres, each with a radius of 0.25.
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Fig. 1. Algorithm of the � constrained simplex method with control of the � level, where �(t) is the function for controlling the � level and u(0; 1) is a uniform
random number generator in [0,1].

The parameters for the constrained method are as follows.
Every satisfaction level is defined as a piecewise linear func-
tion in (3) and (4), and the parameters for the satisfaction level
are . The satisfaction levels are combined by

minimization in (5). The level is controlled according to the
(28). The initial level is the mean value of the best satisfac-
tion level and the average of all satisfaction levels in the initial
search points. The level is updated when the number of itera-
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TABLE I
EXPERIMENTAL RESULTS ON 13 BENCHMARK PROBLEMS USING STANDARD SETTINGS; 30 INDEPENDENT RUNS WERE PERFORMED

tion becomes the multiple of . After the number of iterations
exceeds , the level is set to 1 to obtain solutions with
minimum constraint violation

if

if
and

if
and

if
(28)

The level is controlled using and for all
problems. The parameters for the simplex method are as fol-
lows: The number of search points , the maximum it-
erations , the mutation rate and the
operation parameters , , and in (16), (17)
and (18) are common settings. In g12, is used.
In this paper, 30 independent runs are performed. The effect of
parameters will be discussed later.

B. Experimental Results

Table I summarizes the experimental results. The table shows
the known “optimal” solution for each problem and statistics for
the 30 independent runs. These include the best, median, mean,
worst, and standard deviation of the objective values found.
Also, the average number of evaluations of the objective func-
tion and the constraints in each run are shown in the columns
labeled #func and #const, respectively. The average execution
time (seconds) in each run using a 1.3 GHz Mobile Pentium III
notebook PC is shown in the column labeled time(s). The prob-
lems marked by an up arrow are maximization problems.

For every problem, the best solution is almost equivalent
to the optimal solution. For problems g04, g06, g08, g09,
and g12, the optimal solutions are found consistently in all 30
runs. For problems g01, g07, and g10, the near-optimal solu-
tions are found in all 30 runs. For problems g03, g05, g11,
and g13 which contain equality constraints, objective values

that were better than the optimal values were found, because
the equality constraints are relaxed. The constant violation,
which is given by the maximum of the constraint functions,
or , for each problem was just 10 ,
which was same as the value of . For problem g13, the
solutions equivalent to the best solution were found in 29 runs
and the exception was only once. For problem g02, the optimal
solutions were not consistently found. This problem has many
local optima (maxima) with high peak near the global optimum.
Once a local optimum, which is much better than other search
points, has found, the constrained simplex method tends to
converge to it and the global optimum is sometimes skipped.
To avoid this situation, it is thought that adjusting algorithm
parameters to decrease convergence speed is useful, such as
increasing the mutation rate and increasing the contraction
parameter .

The constrained simplex method is a very fast algorithm.
The execution times ranged from 0.2 to 0.99 s using a note-
book PC. In all problems, the execution time is less than 1 s
and in 11 problems the execution time is less than 0.5 s. The
number of evaluations of the constraints ranged from 290 000
to 330 000 with the exception of g12. The number of evalua-
tions of the objective function ranged between 13 000–130 000.
In the constrained simplex method, the objective function and
the constraints are treated separately. So, when the order relation
of the search points can be decided only by the satisfaction level
of the constraints, the objective function is not evaluated. The
number of evaluations of the objective function is less than the
number of evaluations of the constraints even when the muta-
tion is not applied, or the mutation rate is zero. This nature
contributes to the efficiency of the algorithm especially when
the objective function is computationally demanding.

C. Comparison With the Stochastic Ranking Method

To show the effectiveness of the constrained simplex
method, the solutions found by this method are com-
pared with those found by Runarsson and Yao’s stochastic
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TABLE II
COMPARISON BETWEEN OUR (INDICATED BY �SIMPLEX) AND RUNARSSON AND YAO’S (INDICATED BY RY [12]) ALGORITHMS

ranking method [12]. In [12], 30 independent runs were per-
formed, the maximum number of evaluations in each run was

except for g12
and all equality constraints were relaxed using 10 .
Table II shows the comparison of the two methods. The better
cases are highlighted using boldface. The results of the
constrained simplex method were taken from Table I, where all
equality constraints were relaxed using 10 and the max-
imum number of evaluations was about 30 000 for problem g12
and about from 290 0000 to 330 000 for the other problems.
The solutions found by the stochastic ranking method were
very high-quality solutions that were equivalent to the known
optimal solutions. Nevertheless, the constrained simplex
method found better solutions for problems g02, g03, g07,
g10, and g13. Also, the stability of the constrained simplex
method was better than that of the stochastic ranking method
for problems g05, g06, g07, g09, and g10. Therefore, the
performance of the constrained simplex method is at least as
good as the performance of the stochastic ranking method.

In particular, for problem g10, better solutions than the best
solution in [12] was found in all 30 runs. The value of the
objective function , all variables and all con-
straints of the best solution found by the con-
strained simplex method and the best solution in [12] are shown
in Table III.

D. Solving Problems With Equality Constraints

It is very difficult to solve problems with equality constraints
directly without relaxing the constraints. In this case, it is diffi-
cult to find a feasible point. Even if a feasible point is found,
almost all points in the neighborhood of the point are infea-
sible and there is little chance to find a better point, which is
feasible and has better objective value than the point. Thus, all
search points tends to converge to the feasible point, which is
not optimal. To avoid this situation, problems with equality con-
straints are often solved by relaxing the equality constraints and
expanding the feasible region. However, constrained simplex

TABLE III
BEST SOLUTION OF PROBLEM g10

method can solve problems with equality constraints directly by
controlling the level and reducing expanded feasible region
to the original feasible region internally. Even in constrained
simplex method, the maximization of the satisfaction level is
not easy and search points often converge to a point which has
higher satisfaction level. Thus, it is necessary to use many search
points and adopt slower control of the level. In this experi-
ment, the number of search points and the parameter
for controlling the level (and ) are used and
other settings are same as the standard settings.

Table IV summarizes the statistics of experimental results for
the 30 independent runs. The rows labeled violation show the
best, median, mean, worst, and standard deviation of the con-
straint violation of each problem. In the case of solving prob-
lems with relaxing constraints 10 , constraint violation
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TABLE IV
EXPERIMENTAL RESULTS ON PROBLEMS WITH EQUALITY CONSTRAINTS USING N = 180, � = 0:015, AND � = 0

TABLE V
EXPERIMENTAL RESULTS ON 13 BENCHMARK PROBLEMS WITH VARYING P ; 30 INDEPENDENT RUNS WERE PERFORMED

was 10 . In this experiment, constrained simplex method
found the very good solutions with constraint violation ranged
from 0 to 10 . The objective value of each problem is almost
equal to the optimal value. These results show that the con-
strained simplex method can solve problems with equality con-
straints directly by controlling the level. This feature is an
important advantage of the constrained simplex method.

V. DISCUSSION

In this section, the effect of algorithm parameters such as the
mutation rate and the number of search points will be discussed.

A. Effect of the Mutations

The mutations are effective for finding solutions around the
boundary of the feasible region and controlling the convergence
speed of the search points. However, mutations with a high mu-
tation rate tend to increase the number of evaluations of the
constraints and, hence, deteriorate the speed of the algorithm in
some cases. Therefore, suitable mutation rates must be selected.
Table V summarizes the mean of the objective values in the case
of the mutation rate alone being changed to 0.0, 0.02, 0.04,

0.06, 0.08, and 0.1 from standard settings. The better cases are
highlighted using boldface. In the case of , the results
for problems g01, g02, and g03 are much worse than the re-
sults when is greater than or equal to 0.02. Also, in the case
of , the result of problem g02 is much better than the
other results. These results highlight the necessity of the muta-
tions. These results show that a mutation rate between 0.06 and
0.1 is an appropriate setting for many problems.

B. Effect of Multiple Simplexes

The number of search points adjusts the diversity of search
points and the convergence speed of search process. If is too
small, although the convergence speed is very high, the diver-
sity becomes low and the search points often converge to a local
optimum. If is too large, the convergence speed becomes low
and the search points cannot reach the global optimum. There-
fore, suitable number of search points must be selected. Table VI
summarizes the mean of the objective values in the case of the
number of search points alone being changed to 22, 45, 90,
135, 180, and 270 from standard settings. In the case of ,
the results for problems g01, g02, g04, g05, g07, g09, g10,
and g13 are worse than the other results. These results high-
light the necessity of the multiple simplexes. Also, these results
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TABLE VI
EXPERIMENTAL RESULTS ON 13 BENCHMARK PROBLEMS WITH VARYING N ; 30 INDEPENDENT RUNS WERE PERFORMED

TABLE VII
EXPERIMENTAL RESULTS ON 13 BENCHMARK PROBLEMS WITH VARYING b; 30 INDEPENDENT RUNS WERE PERFORMED

show that the number of search points between 90 and 180 is an
appropriate setting for many problems.

C. Effect of Contraction Parameter

The contraction parameter adjusts the convergence speed of
search process. When is small, the search points approach its
centroid rapidly. Although the convergence speed of the search
points is high, the search points might skip the global optimum
and converge to a local optimum. When is large, although
the risk of convergence to a local optimum becomes low, the
convergence speed becomes low and the search points might
not reach the global optimum. Therefore, suitable contraction
parameter must be selected. Table VII summarizes the mean of
the objective values in the case of the contraction parameter
alone being changed to 0.5, 0.6, 0.7, 0.75, 0.8, and 0.9 from
standard settings. In the case of , the results for problems
g07 and g13 are worse than the other results and the result
for problem g02 is not good, although the result for problem
g01 is good. These results show that a value of the contraction

parameter between 0.6 and 0.8 is an appropriate setting for many
problems.

D. Effect of Parameters for the Satisfaction Level

The parameters and are used to define the satisfaction
level . If or is too small, the satisfaction level becomes
zero in wide area and it becomes difficult to maximize the level.
Therefore, and should be large enough to let the level be
greater than zero in almost the whole search space. In this study,
the same value of and is selected for all constraints. In this
case, if the value is large enough, the value does not affect the
order relation of the satisfaction levels, it does not affect the
level comparison and the result of optimization does not depend
on the value when the same level is hold. Thus, it is almost
needless to adjust the value of the parameters when the value
is large enough. However, if the value is extremely large, there
is risk that the precision of the level comparison decreases
because the precision of real numbers is limited on computers.
Table VIII summarizes the mean of the objective values in the
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TABLE VIII
EXPERIMENTAL RESULTS ON 13 BENCHMARK PROBLEMS WITH VARYING b AND b ; 30 INDEPENDENT RUNS WERE PERFORMED

TABLE IX
EXPERIMENTAL RESULTS ON 13 BENCHMARK PROBLEMS WITH VARYING �; 30 INDEPENDENT RUNS WERE PERFORMED

case of the value of and alone being changed to 1, 10, 100,
1000, 10 000, and 100 000 from standard settings. The value of

and little affect the search results. These results show that
a value of the parameters for the satisfaction level between 10
and 100 000 is an appropriate setting for many problems.

E. Effect of Parameters for Controlling Level

In constrained simplex method, feasible region can be ex-
panded by relaxing the level. The expanded feasible region
can be reduced to the original feasible region by increasing the

level to 1. The parameter adjusts the speed of increasing
the level and the speed of reducing the expanded feasible re-
gion. If is small enough, the level approaches to 1 gradually
and the risk that the search points converge to a local optimum
is low. But if is too small, the search points must search wide
area including infeasible area and the search efficiency becomes
low. In this case, the expanded region is still wide at and
when the level becomes 1, the search points might converge to
a feasible point rapidly and skip the global optimum. Therefore,

suitable control parameter must be selected. Table IX summa-
rizes the mean of the objective values in the case of the control
parameter alone being changed to 0.015, 0.03, 0.045, 0.06,
0.075, and 0.1 from standard settings. The value of did not
affect the results much except for g13. These results show that
control parameter between 0.015 and 0.045 is an appropriate
setting for many problems.

VI. CONCLUSION

The nonlinear simplex method is a well-known mathematical
method for unconstrained nonlinear optimization. In this paper,
we proposed the improved constrained simplex method by
integrating the mathematical method with mutations from evo-
lutionary computation, and applying the constrained method.
Also, to control the convergence speed, operations on multiple
simplexes, replacement of the reduction operation with the con-
traction operation, and the change of the algorithm parameters
were introduced. The original constrained simplex method
could only solve a limited number of simple problems. On
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the other hand, we showed that the improved constrained
simplex method could solve 13 standard benchmark problems
very quickly. Also, by comparing the constrained simplex
method with the stochastic ranking method which is a high-per-
formance algorithm for constrained optimization, it was shown
that the constrained simplex method was an efficient and
stable algorithm. The experiments for parameter settings were
performed and it was shown that the constrained simplex
method could search high-quality solutions when the parame-
ters were changed among appropriate range.

In the penalty function method, feasible points can be found
by increasing the penalty coefficient toward infinity in a theo-
retical sense, although it is difficult to do so computationally. In
the constrained simplex method, feasible points can be found
by increasing the level to 1 and this is easy to do computa-
tionally. If the constraints of a point are not satisfied, the satis-
faction level is maximized, and the point will become feasible.
In the penalty function method, the objective function and the
constraints must be evaluated for every new search point. How-
ever, in the constrained simplex method, the objective func-
tion and the constraints are treated separately, and the evaluation
of the objective function can often be omitted. Therefore, the
constrained simplex method can find feasible points efficiently
compared with the penalty function method.

In the future, we will apply the constrained simplex method
to various problems in the real world.

APPENDIX

A. Proof of Theorem 3

From theorem 1, is an optimal solution of the problem
and .

Let be an accumulation point of the sequence and
let be a subsequence of converging to . That is,

. By the continuity of ,
. Thus, .

On the other hand, from the continuity of and
,

. Then, is a feasible solution of the problem and
.

Therefore, . That is, is an optimal solution of
the problem .

B. Test Problems

g01 [32]:

minimize

subject to

The optimal solution is
and the optimal value is .

g02 [31]:

maximize

subject to

The maximum value is unknown. The known best value is
[12].

g03 [33]:

maximize

subject to

The optimal solution and the
optimal value .

g04 [34]:

minimize

subject to
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The optimal solution
and the optimal value

.

g05 [35]:

minimize

subject to

The minimum value is unknown. The known best value is
[31].

g06 [32]:

minimize

subject to

The optimal solution and the op-
timal value .

g07 [35]:

minimize

subject to

The optimal solution is

and the optimal value .

g08 [31]:

maximize

subject to

The optimal solution and the
optimal value .

g09 [31]:

minimize

subject to

The optimal solution

and the optimal value .

g10 [35]:

minimize

subject to

The minimum value is unknown. The best value we found in
this paper is .

g11 [31]:

minimize

subject to
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The optimal solution is and the optimal
value .

g12 [31]:

maximize

subject to

The optimal solution is and the optimal value
.

g13 [35]:

minimize

subject to

The optimal solution is
and the optimal value

.
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