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An Adaptive Tradeoff Model for Constrained
Evolutionary Optimization
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Abstract—In this paper, an adaptive tradeoff model (ATM) is
proposed for constrained evolutionary optimization. In this model,
three main issues are considered: 1) the evaluation of infeasible so-
lutions when the population contains only infeasible individuals;
2) balancing feasible and infeasible solutions when the population
consists of a combination of feasible and infeasible individuals; and
3) the selection of feasible solutions when the population is com-
posed of feasible individuals only. These issues are addressed in
this paper by designing different tradeoff schemes during different
stages of a search process to obtain an appropriate tradeoff be-
tween objective function and constraint violations. In addition, a
simple evolutionary strategy (ES) is used as the search engine. By
integrating ATM with ES, a generic constrained optimization evo-
lutionary algorithm (ATMES) is derived. The new method is tested
on 13 well-known benchmark test functions, and the empirical re-
sults suggest that it outperforms or performs similarly to other
state-of-the-art techniques referred to in this paper in terms of the
quality of the resulting solutions.

Index Terms—Constrained optimization, evolutionary strategy
(ES), multiobjective optimization, tradeoff model.

I. INTRODUCTION

EVOLUTIONARY ALGORITHMs (EAs) have been
broadly applied to tackle global optimization prob-

lems. Over the past decade, solving constrained optimization
problems (COPs) via EAs has attracted much attention. By
integrating various constraint-handling techniques with EAs,
researchers have proposed a large number of constrained opti-
mization evolutionary algorithms (COEAs) ([1]–[3]).

Without loss of generality, the nonlinear programming (NLP)
problem of interest can be formulated as follows (in minimiza-
tion sense):
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where , and is an -dimensional rectangle space
in defined by the parametric constraints

The feasible region is defined by a set of additional
linear or nonlinear constraints

where is the number of inequality constraints and is the
number of equality constraints.

If an inequality constraint that satisfies
at any point , we say it is active at . All

equality constraints are considered
active at all points of .

As we know, the ultimate goal of COEAs is to find the fea-
sible optimal solution. To achieve this goal, more feasible in-
dividuals are required to be involved in reproduction during
the evolutionary process. However, on the other hand, some in-
feasible individuals may carry more important information for
the final solution than their feasible counterparts in some gen-
erations. Hence, these two aspects lead to a contradiction in
constrained evolutionary optimization. To address this contra-
diction, the main challenge is to handle the constraints and to
optimize the objective function simultaneously. One possible
way is to determinate the tradeoff between the constraint vi-
olations and the objective function. Although various tradeoff
mechanisms have been proposed, adaptive tradeoff has seldom
been investigated.

In this paper, we propose a novel adaptive tradeoff model
(ATM) for constrained evolutionary optimization. This model
takes advantage of the valuable information derived from
the last evolution to direct the next evolution. In general, a
constraint-handling technique will inevitably encounter the fol-
lowing three stages in the process of search: 1) the population
contains infeasible individuals only; 2) the population consists
of both feasible and infeasible individuals; and 3) the population
is entirely composed of feasible individuals. In this paper, the
approach is to design a tradeoff scheme in each stage according
to the characteristic of each stage.

In the first stage, we design a hierarchical nondominated in-
dividual selection scheme, which tends to guide the population
toward feasibility from various directions. At the second stage,
we devise a converted fitness function to adaptively balance fea-
sible and infeasible solutions according to the information pro-
vided by the last population. In this way, a diverse and robust
search is guaranteed. Finally, during the third stage, the selection
of individuals is based solely on their objective function values,
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since all of them are feasible in this case. These three schemes
in different stages constitute the ATM in this paper. Moreover, a
generic COEA (ATMES) is obtained by integrating ATM with
evolutionary strategy (ES) which is an important part of EAs.

We evaluate the efficiency and effectiveness of the proposed
method on 13 benchmark test functions. The experimental re-
sults indicate that ATMES is competitive with, or superior to,
some state-of-the-art COEAs, such as stochastic ranking (SR)
[4] and simple multimembered evolutionary strategy (SMES)
[5], when measured by several performance metrics, e.g., the
best, median, mean, and worst objective function values, and
the standard deviations.

The remainder of this paper is organized as follows. Section II
presents a detailed review of tradeoff methods in constrained
evolutionary optimization. In Section III, the proposed ATM,
which involves three independent phases is presented. The ex-
perimental results are reported in Section IV. In Section V, the
effects of algorithm parameters on the performance are demon-
strated by various experiments. Finally, Section VI concludes
this paper.

II. TRADEOFF IN CONSTRAINED

EVOLUTIONARY OPTIMIZATION

A great deal of work has already been undertaken on con-
straint-handling techniques, which are the main focus of this
paper. Michalewicz and Schoenauer [1] and Coello [2] provided
a comprehensive survey of the most popular constraint-han-
dling techniques currently used with EAs, grouping them into
four and five categories, respectively. As stated in [2], the con-
straint-handling techniques can be divided into five categories:
1) penalty functions; 2) special representations and operators;
3) repair algorithms; 4) separate objective and constraints; and
5) hybrid methods. Next, we will review these techniques from
the tradeoff point-of-view.

Penalty function methods are among the most common
methods to solve COPs. The principal idea of these methods is
to transform a COP into an unconstrained one by introducing
a penalty term into the original objective function in order to
penalize constraint violations. In general, a penalty term is
based on the degree of constraint violation of an individual. Let

(1)

where is a positive tolerance value for inequality constraints.
Then, reflects the degree of constraint
violation of the individual .

As analyzed in [4], all that a penalty method tries to do is to
obtain the right tradeoff between the objective function and the
penalty function so that the search moves toward the optimum in
the feasible space. In [4], the authors characterized the problem
of choosing the appropriate coefficient for the penalty func-
tion, describing how it affected the domination between the con-
straint violations and the objective function when deciding the
rank of each individual. Indeed, for any population, there ex-
ists a certain range , such that: 1) if , then the
comparisons of individuals are based solely on their objective
function; 2) if , then the comparisons of individuals are
based solely on their penalty function; and 3) if ,

then the comparisons of individuals are based on a combination
of their objective and penalty functions. Notice that the values
of the parameters and are related to the given population
and, consequently, they are problem dependent.

Adaptive penalty methods are very promising for constrained
optimization, since they can make use of information obtained
during the search to adjust their own parameters. Rasheed [6]
proposed an adaptive penalty approach for constrained genetic-
algorithm optimization. The idea is to start with a relatively
small penalty coefficient and then increase it or decrease it on
demand as the optimization progresses. Farmani and Wright [7]
presented an adaptive fitness formulation method, an enhanced
version of the algorithm in [8], where the penalty is divided into
two stages. The improved approach eliminates the fixed weight
for the second penalty stage proposed in [8], by assigning the
penalized objective function value of the worst infeasible indi-
vidual to be equal to that of the individual with maximum ob-
jective function value in the current population. This makes the
method adaptive and more dynamic due to the fact that the indi-
vidual with maximum objective function value may vary from
one generation to another.

In [4], Runarsson and Yao also introduced a SR-based method
to balance the objective and penalty functions. A probability pa-
rameter is involved to compare individuals as follows: given
pairwise adjacent individuals: 1) if both individuals are feasible,
the one with better objective function value wins, else 2) if a uni-
formly generated random number between 0 and 1 is less than

, the one with better objective function value wins, otherwise,
the one with a smaller degree of constraint violation wins. This
approach significantly improves the search performance without
any special constrained operator.

Definition 1 (Pareto Dominance): A vector
is said to Pareto dominate another vector ,
denoted as , if

In terms of the SR, alternative selection criteria can be em-
ployed to analyze it: given pairwise adjacent individuals: 1) if
one individual Pareto dominates the other, the superior one is
preferred; else, namely, the two individuals are nondominated
with respect to each other and 2) if , the one with better
objective function value is preferred, else the one with smaller
constraint violation is preferred. It is provable that the above
criteria are equivalent to the SR. However, from these criteria,
we can make the SR easier to understand. It is obvious that the
probability plays an important role only when the two indi-
viduals in comparison are nondominated with each other.

Inspired by Powell and Skolnick [9], Deb [10] devised a fit-
ness formulation as follows:

if
otherwise

(2)
where is the objective function value of the worst feasible
solution in the population. This method uses a tournament selec-
tion operator, i.e., two solutions are compared at a time. When
comparing pairwise solutions, the fitness formulation in (2) re-
flects the following comparison criteria: 1) any feasible solution
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is preferred to any infeasible solution; 2) between two feasible
solutions, the one with better objective function value is pre-
ferred; and 3) between two infeasible solutions, the one with
smaller degree of constraint violation is preferred. Such tourna-
ment selection can be regarded as a special case of SR when
is equal to 0. The disadvantage of this method is that enough em-
phasis has not been placed on infeasible individuals. If a large
number of individuals in the population are feasible, then infea-
sible individuals in the current generation have little chance to
survive and, therefore, this method has a strong tendency to get
stuck in a local optimum. Based on this method, Mezura and
Coello [5] introduced a simple diversity mechanism in order to
introduce some infeasible solutions into the next population.

Takahama and Sakai [11] proposed the constrained method
that converts an algorithm for unconstrained optimization prob-
lems into an algorithm for COPs by replacing ordinary compar-
isons with the level comparison. In this approach, the authors
apply the following tradeoff to the objective function and the
constraint violations: given pairwise individuals and , let

and denote their level of satisfaction of the constraints,
respectively: 1) if , , then the one with better objec-
tive function value wins; 2) if , then the one with better
objective function value wins; otherwise; 3) the one with higher
satisfaction level wins, where the level is controlled according
to an exponential function and .

Using multiobjective optimization to tackle COPs can be
considered as another kind of tradeoff in constrained evo-
lutionary optimization, since it is essentially desired to also
balance the objective function and the constraint violations. In
this case, constraints can be regarded as one or more objectives.
If constraints are treated as one objective, then the original
problem will be transformed into a multiobjective optimiza-
tion problem (MOP) that has two objectives. In general, one
objective is the original objective function , and the other
one is the degree of constraint violation of an individual ,
i.e., . Alternatively, each constraint can be treated as
an objective and the original problem is transformed into a
MOP which has objectives. Therefore, we get a new
vector to be optimized, where

are the constraints of the given problem.
Several typical paradigms are reviewed next.

By combining the vector evaluated genetic algorithm
(VEGA) [12] with Pareto ranking, Surry and Radcliffe pro-
posed a method called COMOGA [13]. COMOGA uses a
single population but randomly decides whether to consider
the original problem as a constraint satisfaction problem or as
an unconstrained optimization problem. The relative likelihood
of adopting each view is adjusted using a simple adaptive
mechanism that tries to set a target proportion (e.g., 0.1) of
feasible solutions in the population. Its main advantage is that
it does not require a tuning of penalty factor.

Venkatraman and Yen [14] presented a two-phase framework
to solve COPs. In the first phase, COP is treated as a constrained
satisfaction problem, as in [13], and the genetic search is di-
rected toward minimizing the constraint violations of the solu-
tions. In the second phase, COP is treated as a biobjective op-
timization problem, and a nondominated sorting algorithm, as
described in [15], is adopted to rank the individuals. This algo-

rithm has the advantage of being problem independent and has
the added benefit of not having to rely on any parameter tuning.

Zhou et al. [16] proposed a novel method which uses Pareto
dominance to assign an individual’s Pareto strength.

Definition 2 (Pareto Strength): Each individual in a pop-
ulation is assigned an integer , called Pareto strength
of . is the number of individuals in the population
Pareto dominated by , that is

where is the cardinality of the set.
Based on Pareto strength, the ranking of individuals in the

population is conducted in such a manner that, upon comparing
each individual’s strength: 1) the one with higher strength wins
and 2) if the strength is equal, the one with lower degree of
constraint violation is better.

Besides, other methods are also developed to handle COPs,
for example, the method [17] based on population-based mul-
tiobjective technique such as VEGA, the method [18] based on
Fonseca and Fleming’s Pareto ranking process [19], the method
[20] based on the niched-Pareto genetic algorithm (NPGA) [21],
and the method [22] based on the Pareto archived evolutionary
strategy (PAES) [23].

From our analyses of the algorithms previously proposed to
solve COPs, we can conclude that their fundamental principle is
to design an appropriate tradeoff between the objective function
and the constraint violations. However, the method describing
how to make the tradeoff adaptive is usually neglected by most
of them, namely, most of them are not capable of exploiting the
helpful information acquired during the evolution to guide the
population for further search. Motivated by this consideration,
this paper proposes an ATM that consists of three main phases.
Furthermore, a generic COEA (i.e., ATMES) is obtained by in-
tegrating a simple ES with the ATM.

III. AN ADAPTIVE TRADEOFF MODEL (ATM)

As previously discussed, in general, a constraint-handling
technique will inevitably experience three phases. Therefore,
we can develop alternate tradeoff schemes for different phases
to facilitate a more explicit adaptation. Next, we will discuss
how to design such tradeoff schemes step by step.

A. Phase One

Phase one refers to the case where the current population con-
tains no feasible solutions, namely, , where represents
the feasibility proportion of the current population.

In this phase, while the feasibility of an individual is more
important than the minimization of its objective function ,
the diversity in the population should also be considered care-
fully. A desirable search mechanism should guide the popula-
tion toward feasibility from various directions (see Fig. 1), since
we have no a prior knowledge about the location of the global
minimum.

After observing the fact that some methods (such as the SR)
simultaneously handle both objective functions and constraints,
but fail to produce feasible solutions for every run, Venkatraman
and Yen [14] argued that the objective function should be com-
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Fig. 1. A search schematic diagram.

pletely disregarded in the first phase so as to provide a greater
assurance of producing feasible solutions. Nevertheless, such a
mechanism not only lacks the desirable property of being able
to attain low-fitness, nearly feasible solutions, but may also be
a poor method of searching the feasible region if the feasible
region is a highly sparse and disconnected subset of the search
space. Therefore, constraint satisfaction certainly needs to be
reconciled with the optimization of the objective function in the
first stage; but some special operators to bias the search are com-
pletely necessary.

In our tradeoff scheme for this phase, a hierarchical non-
dominated individual selection scheme is proposed. Since this
scheme is based on Pareto dominance, three related definitions
in multiobjective optimization are given as follows. For the sake
of clarity, let .

Definition 3 (Pareto Optimality): is said to be Pareto
optimal (in ) if and only if , , where

, .
Definition 4 (Pareto Optimal Set): The Pareto optimal set,

denoted as is defined as

The vectors included in the Pareto optimal set are called non-
dominated individuals.

Definition 5 (Pareto Front): According to the Pareto optimal
set, the Pareto front, denoted as is defined as

Clearly, the Pareto front is the image of the Pareto optimal set
in the objective space.

In the hierarchical scheme proposed, since nondominated in-
dividuals represent the Pareto optimal set of the population, they
will be identified in the population as the prior candidates.

Intuitively, with respect to constrained optimization, it does
not make sense if an individual is far away from the boundaries
of the feasible region. Thus, we are only concerned with those
nondominated individuals with less constraint violations in the
population. Note that this can act as a search bias. A simple
way to achieve this is to select only the first half of nondom-
inated individuals and to store them into the offspring popula-
tion, after ranking nondominated individuals based on their con-
straint violations in ascending order. An illustration is shown in

Fig. 2. Schematic diagram to illustrate the hierarchical nondominated indi-
vidual selection scheme. The individuals in Part I will be selected and deleted
from the population subsequently, since the constraint violations of them are
less than those of the individuals in Part II. In addition, the individuals in Part II
will remain in the remaining population for the next competition.

Fig. 2. Subsequently, the selected individuals are deleted from
the parent population. Next, half of nondominated individuals
with less constraint violations in the remaining population are
also stored into the offspring population, and then eliminated
from the parent population. This process continues until the
number of individuals archived reaches the size of the offspring
population.

A property of the process above is given as follows.
Property 1: The individual with the minimum constraint vi-

olation in the parent population is the first individual in the off-
spring population.

This scheme tends to guide the population toward feasibility
from various directions by constantly partitioning the hierarchy
of individuals in the population.

Remark 1: The second half of nondominated individuals in
a nondominated level is given an opportunity to remain in the
rest of the population for the next competition. The reason is
that these individuals may also contain some important infor-
mation and have minor constraint violations, even if their con-
straint violations are greater than those of the first half of non-
dominated individuals at the same nondominated level. Indeed,
if these individuals are certain to have a relatively higher degree
of constraint violations, the possibility that they are selected and
archived into the offspring population is low, even though they
are kept in the remaining population.

Remark 2: Although in [24] nondominated individuals are
also concerned when the population is infeasible; the identifica-
tion of nondominated individuals is only based on the constraint
violations.

B. Phase Two

Phase two refers to the case where the current population
consists of a combination of feasible and infeasible individuals,
namely, .

In this phase, it is commonly accepted that the infeasible in-
dividuals with better objective function values and lower infea-
sibility should survive into the next population. The reason is
that such individuals may be more important than their feasible
counterparts in some generations, especially when the propor-
tion of the feasible region is very small compared to the entire
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search space or the optimum is located exactly on the boundaries
of the feasible region. However, on the other hand, since the ul-
timate goal of COEAs is to find the feasible optimal solution,
we cannot forsake feasible solutions absolutely. In general, we
tend to retain some important feasible and infeasible solutions
in the population.

The second tradeoff scheme is proposed to accomplish the
above goal. It has the capability to adaptively convert the fit-
ness of individuals based on the feasibility proportion of the
last population, and works as follows. Suppose that a popula-
tion has individuals, whose subscripts are recorded into a set

, i.e., . Then, the population is divided into
the feasible group and the infeasible group , according to
the feasibility of each individual

(3)

(4)

Also, the best and worst feasible solutions are found by (5) and
(6)

(5)

(6)

The converted objective function has the fol-
lowing form:

(7)
where denotes the feasibility proportion of the last population.
Note that only the objective function of infeasible individuals is
altered after conversion. Each objective function value is then
normalized

(8)

Similarly, the constraint violations can be normalized according
to

(9)

Notice that the normalized constraint violations of infeasible in-
dividuals are based only on the maximum and minimum con-
straint violations in the infeasible group. In contrast, the normal-
ization of objective function value is based on both the feasible
and infeasible groups.

A final fitness function is obtained by adding the normalized
objective function and constraint violations together

(10)

As for the above transformation, it has several important
properties summarized as follows.

Property 2: The comparisons among feasible solutions are
based only on their objective function values. However, both
the objective function values and the degree of constraint vio-
lations should be taken into account when comparing feasible

solutions with infeasible solutions or comparing among infea-
sible solutions.

Property 3: If the parameter has a larger value, the ob-
jective function values of infeasible individuals defined by (7)
are smaller, thereby the probability increases for infeasible in-
dividuals to survive into the next population. On the contrary, if
the parameter has a lower value, the objective function values
of infeasible individuals defined by (7) are greater, which in-
duces feasible solutions to be selected with a higher probability.
Obviously, these behaviors reflect the adaptive feature of our
approach.

Property 4: Some infeasible individuals with lower objec-
tive function values and lower infeasibility are considered better
than some feasible ones.

Property 5: The best feasible individual in the current popu-
lation is also the individual with the minimum fitness1; this en-
sures that the best individual in the current population is always
feasible.

Due to these good properties, this tradeoff scheme is an ef-
fective approach to achieve the goal in the second phase.

Now, we employ an example to illustrate the above process.
Suppose that a population contains ten individuals with the fol-
lowing vector values of :

The first five individuals are feasible and the remaining individ-
uals are infeasible. With respect to the different values of , we
sort the ten participant individuals in ascending order of their
fitness.

If , the corresponding ordered sequence is

Apparently, a preference has been given to feasible solutions in
this case so that the next population may involve more feasible
solutions.

If , the corresponding ordered sequence becomes

If , the corresponding ordered sequence becomes

Regarding these two cases, some infeasible solutions can out-
perform some feasible solutions, so that a proper balance be-
tween feasible and infeasible solutions might always be main-
tained. Moreover, the larger the value of the parameter , the
higher the probability that infeasible solutions can survive into
the next population.

From the above results, one can conclude that the tradeoff
scheme in phase two is capable of adapting the rank of feasible

1Note that the algorithm is formulated for solving minimization problems.
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and infeasible solutions by making use of the information ob-
tained from the last population.

Remark 3: Farmani and Wright [7] used the information
of the best individual and the worst infeasible individual to
calculate the fitness of a solution. However, the main idea of
this method is adaptive fitness formulation and it does not
consider the feasibility proportion in the population. Deb [10]
also adopted a converted fitness to select individuals, but in his
approach, infeasible solutions are always ranked below feasible
solutions for selection in the reproduction process. In addition,
although Surry and Radcliffe [13] used an adaptively proba-
bility to determine the likelihood of selection based on
objective function value (in this case the remaining individuals
are selected based on Pareto ranking with respect to constraint
violations), the adjusting of the parameter is done by
setting a fixed target proportion of feasible solutions in the
population (e.g., 0.1).

C. Phase Three

Phase three refers to the case where the current population is
entirely composed of feasible individuals, namely, .

It is obvious that the evolution of this phase is totally equiv-
alent to that of unconstrained optimization. Thus, the compar-
isons of individuals are based only on their objective function
values. This essentially is also a tradeoff, since the fitness func-
tion can be formulated in the following form:

(11)

where the term has no influence on the individual
evaluation.

We incorporate the individual components described above
and present ATM in Fig. 3.

D. Computational Time Complexity

Consider the complexity for one iteration of ATMES. Note
that we use a simple -ES as the search algorithm that does
not guarantee the globally optimal solution and will be speci-
fied later. In the entire algorithm, the basic operations and their
worst-case complexities are as follows:

1) in the first phase, the hierarchical nondominated individual
selection scheme is ;

2) in the second and third phases, the sorting based on (10)
and (11) is .

So, the overall complexity of the algorithm is .

IV. EXPERIMENTAL STUDY

A. Test Functions and the Experimental Conditions

In this section, we apply the proposed ATM to 13 benchmark
test functions from [4]. These test cases include various types
(linear, nonlinear, and quadratic) of objective functions with dif-
ferent number of decision variables and a range of types
[linear inequalities (LI), nonlinear equalities (NE), and non-
linear inequalities (NI)], and number of constraints. The main
characteristics of the test cases are reported in Table I, where

is the number of constraints active at the optimal solution. In

Fig. 3. Pseudocode of the proposed ATM.

TABLE I
SUMMARY OF 13 BENCHMARK FUNCTIONS

addition, is the approximated ratio between the size of the fea-
sible search space and that of the entire search space, i.e.,

(12)

where is the number of solutions randomly generated from
, is the number of feasible solutions out of these solu-

tions. In our experimental setup, .
In addition, we use a simple -ES as the search engine,

which is the identical version as in the SR [4] and only differs
in the initial stepsize of the ES and the selection operator. There
are two notable features of this kind of ES. First, it uses a global
intermediate recombination applied only to the strategy param-
eters. Second, the variation of the objective parameters is retried
if they fall outside of the parametric bounds. A mutation out of
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Fig. 4. Pseudocode of the proposed ATMES, where � = ( 2
p
n) , � =

(
p
2n) , and k is a random number in f1; . . . ; �g.

bounds is retried only ten times after which it is set to its parent
value. By combining ATM with this kind of ES, a generic COEA
called ATMES is derived and depicted in Fig. 4.

For each test case, 30 independent runs are performed in
MATLAB using the (50,300)-ES.2 The number of generations
is set to 800, thus the number of fitness function evaluations
(FFEs) is equal to 240 000. Since the number of iterations used
in this paper is nearly half of that used in SR, the initial stepsize
of the ES in this paper is only 80% of that provided in SR (i.e.,

).3

In order to deal with equality constraints, each of them is con-
verted into inequality constraints as

, where is a small tolerance value. A dynamic setting
of the parameter , which is originally proposed in ASCHEA
[25] and used in [5] and [26] is adopted. The parameter de-
creases with respect to the current generation using the fol-
lowing expression:

(13)

The initial is set to 3,4 and the value of is specified as
. Note that the use of the value 1.0168 causes the

2The source code may be obtained from the authors upon request.
3The initial stepsize reduction is originally proposed in [5].
4Although the setting of the parameter " is based on experiments, we also

refer to [5] when determining the value of it.

allowable tolerance for the equality constraints to go from 3 (ini-
tial value) to 5E-06 (final value), given the number of iterations
adopted by our approach.

B. General Performance of the Proposed Algorithm

Table II summarizes the experimental results using the above
parameters. This table shows the “known” optimal solutions for
each test function and statistics for the 30 independent runs.
These include the “best,” “median,” “mean,” and “worst” ob-
jective function values, the standard deviations, and the average
percentage of feasible solutions in the final population.

For each test function, the best solution is almost equivalent
to the optimal solution. For test functions g01, g03, g04, g06,
g08, and g11, the optimal solutions are consistently found in all
30 runs. For test functions g07, g09, g12, and g13, the near-op-
timal solutions are found in all 30 runs. For test function g02, the
optimal solution is not consistently found, this benchmark func-
tion is known to have a very rugged fitness landscape and is, in
general, the most difficult to solve. Another function whose op-
timum is not found consistently is g10; the main characteristic
of this function is its relatively large search space. For test func-
tion g05, the near-optimal solution is found in 20 runs and the
number of exceptions is only 10. Also, note that the standard
deviations over 30 runs for all the test functions other than g10
are extremely small. This implies that the algorithm is robust in
obtaining consistent results. Furthermore, feasible solutions are
continuously found for all the test functions in 30 runs. These
results reveal that ATMES has the substantial capability to deal
with various kinds of COEAs.

We decided to empirically analyze the contribution of each
tradeoff scheme proposed in each phase. The average number
of generations each tradeoff scheme uses is summarized in
Table III. As can be seen, for only six problems (g01, g05, g06,
g07, g10, and g11), phase one can play its role, and for only
four problems (g02, g08, g11, and g12), phase three can play its
role. In addition, all problems will experience phase two. This
phenomenon suggests that the tradeoff scheme in the second
phase is the most important and dominant selection scheme for
most problems during the evolutionary process. For problems
g08 and g12, phase three is the main evolutionary stage. It
is important to emphasize that these two problems share the
following feature: the global optimum lying within the feasible
region. Note that if the process of evolution does not undergo
the first phase, the algorithm will be very efficient, since in this
case the complexity of the algorithm is .

We have demonstrated the effectiveness of the hierar-
chical nondominated individual selection scheme proposed in
Section III-A. We conduct our optimization run using a 2-D test
function g06. In this run, the population can contain feasible
solutions after seven iterations. Contour plots at generations
1, 3, and 7 are shown in Fig. 5. From Fig. 5, it is clear that
the hierarchical nondominated individual selection scheme can
motivate the population to approach the feasible region of the
search space from different directions promptly.

C. Comparison With Stochastic Ranking (SR) and Simple
Multimembered Evolutionary Strategy (SMES)

We compare our approach against two state-of-the-art ap-
proaches: the SR [4] and the SMES [5]. SR has been discussed
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TABLE II
STATISTICAL RESULTS OBTAINED BY ATMES FOR 13 BENCHMARK TEST FUNCTIONS OVER 30 INDEPENDENT RUNS.

A RESULT IN BOLDFACE INDICATES THAT THE GLOBAL OPTIMUM WAS REACHED

TABLE III
THE AVERAGE NUMBER OF GENERATIONS EACH TRADEOFF SCHEME USES

in Section II. Note that SR has been further improved by the
same authors [27]. The improved SR (ISR) is one of the most
competitive algorithms known to date. In addition to the adapta-
tion mechanism of an ES and three simple comparison criteria,
SMES also introduces three key components: a diversity mech-
anism that is intended to add some infeasible solutions into the
next population, the combined recombination, and the reduction
of the initial stepsize of the ES. It is important to emphasize that
ES is adopted as the search algorithm by the three methods in
comparison and the number of runs provided by them is 30.

As shown in Table IV, the performance of ATMES is
compared in detail with SR and SMES using the selected
performance metrics. For test functions g01, g03, g04, g08, and
g11, the optimal solutions are consistently found by these three
methods.

With respect to SR, our approach finds better “best” solutions
in three test functions (g07, g10, and g13) and similar “best” re-
sults in nine test functions (g01, g03, g04, g05, g06, g08, g09,
g11, and g12). A better “best” result is found by SR in test func-
tion g02. Also, our technique reaches better “mean” and “worst”

results in seven test functions (g02, g05, g06, g07, g09, g10, and
g13). Similar “mean” and “worst” results are found in five test
functions (g01, g03, g04, g08, and g11). For test function g12,
similar “mean” result is found. However, SR finds a “worst” re-
sult of higher quality.

Compared with SMES, our method finds better “best” solu-
tions in four test functions (g05, g07, g09, and g13) and similar
“best” results in seven test functions (g01, g03, g04, g06, g08,
g11, and g12). Better “best” results are found by SMES in test
functions g02 and g10. Our approach finds better “mean” and
“worst” results in seven functions (g02, g05, g06, g07, g09, g10,
and g13). It also provides similar “mean” and “worst” results in
five test functions (g01, g03, g04, g08, and g11). Again, for test
function g12, similar “mean” results are found, and SMES finds
a better “worst” result.

As far as the computational cost (the number of FFEs) is
concerned, SMES and ATMES have the minimum computa-
tional cost (240 000 FFEs) for all the test functions, while SR
has a higher computational cost (350 000 FFEs) for all the test
functions.

In summary, we can conclude that ATMES outperforms or
performs similarly to SR and SMES in terms of the quality of
the resulting solutions. In addition, SMES and ATMES are dom-
inant in their efficiency. Another good property of ATMES is
that it requires no problem dependent parameter. In contrast, SR
is sensitive to its parameter , and SMES needs to adapt the tol-
erance value of the equality constraints and the initial stepsize of
the ES for different test functions. Furthermore, the parameter

in ATMES is set to 5E-06, which is remarkably less than that
used by SR and SMES, and makes the problems more difficult
to solve.

D. Finding the Strength of ATM

One may be interested in the influence of ATM on the be-
havior of our algorithm, in other words, whether ATM really
has the ability in balancing the objective function and the con-
straint violations as expected. Indeed, the direct consequence of
the tradeoff between the objective function and the constraint
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Fig. 5. Contour plots of problem 6. (a) Search space at generation 1. (b) Search space at generation 3. (c) Search space at generation 7. (d) A zooming of (c).

TABLE IV
COMPARING OUR ALGORITHM (INDICATED BY ATMES) WITH RESPECT TO SR [4] AND SMES [5] ON 13 BENCHMARK FUNCTIONS. A RESULT IN

BOLDFACE INDICATES THE BEST RESULT AMONG THE THREE COMPARED ALGORITHMS OR THAT THE GLOBAL OPTIMUM WAS REACHED

Fig. 6. Typical feasibility proportion versus generation for test function g06.

violations is the change of the feasibility proportion in the pop-
ulation during the evolution. Hence, we choose three test func-
tions g06, g09, and g12, whose typical feasibility proportion is
memorized at each generation by running once and shown in
Figs. 6–8, to answer this question.

Fig. 7. Typical feasibility proportion versus generation for test function g09.

For test function g06 (see Fig. 6), at the initial stage, the pro-
portion of feasible solutions in the population is 0 due to its
relatively small feasible region. Then, the feasibility proportion
quickly increases because of the hierarchical nondominated in-
dividual selection scheme applied. Furthermore, the feasibility
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Fig. 8. Typical feasibility proportion versus generation for test function g12.

proportion bounds once it reaches a higher or lower value as the
evolution proceeds. This phenomenon is reasonable, since if the
feasibility proportion is too large or too small, ATM will play its
role to adapt the feasibility proportion constantly by the conver-
sion of fitness function. As shown in Figs. 7 and 8, the popula-
tion can contain feasible solutions for problems g09 and g12 at
the initial stage. Afterward, a relatively stable feasibility propor-
tion will be attained gradually as the iteration increases. More
specifically, for test function g09, the feasibility proportion will
slightly bound but within a very small range at the later stage;
for test function g12, the feasibility proportion converges to 1
in the end. This is because a large number of feasible solutions
dominate infeasible solutions in both the objective function and
the constraint violations. Such behaviors also suggest that, for
some test functions, the population can reach a relatively steady
feasibility proportion after the feasibility proportion is adjusted
by ATM during some generations.

From the observations above, it can be seen that the feasibility
proportion in the population either attains a relatively stable
value (see Fig. 8) or region (see Fig. 7), or bounds within a range
(see Fig. 6) over the course of the evolution. Furthermore, we
can conclude that the proposed ATM turns out to have a remark-
able potential in adaptively balancing the objective function and
the constraint violations.

V. DISCUSSION

In this section, the effect of algorithm parameters on the per-
formance will be discussed through various experiments.

A. Effect of the Selection Scheme in Phase One

For examining the effect of the hierarchical nondominated
individual selection scheme (HNISS) on the search ability of our
ATMES, we perform computational experiments using various
selection schemes. The original algorithm is denoted as HNISS.
The algorithm selecting all nondominated individuals (instead
of half) to the next population at each generation is denoted as
HNISS+. The algorithm using an ordering scheme where only
constraint violation is considered is denoted as HNISS-. Since
phase one only plays its role in six problems (g01, g05, g06,
g07, g10, and g11), we perform HNISS+ and HNISS- on these
problems over 30 trials. Table V summarizes the experimental
results.

As shown in Table V, with respect to problems g01, g05, and
g10, HNISS+ cannot consistently find feasible solutions in the
final populations, while HNISS+ performs similarly to HNISS

for problems g06, g07 and g11. This may be because there
is no search bias in this selection scheme and the search may
wander deeply into an infeasible region with tempting objective
function values and constraint violations. Thus, the population
cannot approach the feasible region over time.

Additionally, the results of HNISS- for problems g05 and g10
are clearly dominated by those of HNISS, while the capability
of HNISS- is similar to HNISS for the other four problems. As
analyzed, this is because the diversity of the population in these
cases is not good.

These results suggest that only selecting the first half of non-
dominated individuals in phase one is reasonable.

B. Effect of the Parameter in Phase Two

The parameter is effective for adjusting the tradeoff be-
tween the objective function and the constraint violations in
phase two. For examining the effect of the parameter on the
performance of our ATMES, we test phase two with five dif-
ferent : 0.0, 0.3, 0.5, 0.7, and 1.0. We summarize the mean of
the objective function values in Table VI. It is worth noting that,
when this parameter is specified as , any feasible solu-
tion is preferred to any infeasible solution; when this parameter
is specified as , equation (7) in phase two only influ-
ences the infeasible individuals with objective function values
less than that of the best feasible solution. Our original algo-
rithm is referred to as “adaptation” in Table VI.

From Table VI, we observe a clear negative effect when the
parameter is fixed to different values. The following is a sum-
mary of the comparison between the algorithms with fixed
and the original algorithm.

1) : In this case, compared with the original al-
gorithm, premature convergence arises for problem g04.
Moreover, we can see the performance deterioration for
problems g02, g05, g07, g09, g10, g12, and g13. Similar
results are obtained for problems g01, g03, g06, g08, and
g11.

2) : This case performs similarly to the algorithm
with . The only exception is that feasible solutions
can only be found for 18 out of 30 trials for problem g10.

3) : Although this case provides a better quality result
for problem g02, it degrades its performance for problems
g04, g07, g09, and g13. More importantly, feasible solu-
tions cannot be found consistently for problems g05 and
g10. Similar results are obtained for problems g01, g03,
g06, g08, g11, and g12.

4) : The performance of this case is similar to that of
the algorithm with . Note that it obtains a worse
result than the original algorithm for problem g02.

5) : This case is unable to consistently reach the fea-
sible region for problems g05, g06, and g10. Particularly,
for problem g10, the feasible solutions can only be found
for 1 out of 30 trials. In addition, it provides results of a
worse quality for problems g07, g09, and g13, it gives a
better result for problem g02, and has similar capability
for problems g01, g03, g04, g08, g11, and g12.

Based on the comparison above, we can see that the adaptive
adjusting of the parameter has more stable and better perfor-
mance than the fixed settings for this parameter.
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TABLE V
EXPERIMENT RESULTS WITH 30 INDEPENDENT RUNS ON SIX BENCHMARK FUNCTIONS USING ALGORITHMS

HNISS, HNISS+, AND HNISS-; (#) DENOTES THE NUMBER OF TRIALS IN WHICH FEASIBLE SOLUTIONS

ARE FOUND IN THE FINAL POPULATIONS OVER 30 TRIALS

TABLE VI
EXPERIMENTAL RESULTS ON 13 BENCHMARK FUNCTIONS WITH VARYING '; 30 INDEPENDENT RUNS

ARE PERFORMED; A RESULT IN BOLDFACE INDICATES A BETTER RESULT OR THAT THE GLOBAL

OPTIMUM (OR BEST KNOWN SOLUTION) IS REACHED; (#) DENOTES THE NUMBER OF TRIALS

IN WHICH FEASIBLE SOLUTIONS ARE FOUND IN THE FINAL POPULATIONS OVER 30 TRIALS

C. Effect of the Initial Stepsize Reduction of the ES

Since the number of iterations used in this paper is nearly
half of that used in SR, the initial stepsize of the ES in this paper
should be readjusted to meet competitive results. Table VII sum-
marizes the mean of the objective function values in the case of
the initial stepsize reduction (i.e., ) being set to 0.2, 0.4, 0.6,
0.8, and 1.0.

In case of , while the algorithm can obtain the best
result for problem g10, the results for problems g01 and g02 are
much worse than other results. Furthermore, for problem g03,
the algorithm is unable to reach the feasible region consistently.
In the case of , the results for problems g02 and g10 are
worse than those of , 0.8 and 1.0. In the case of ,
premature convergence tends to occur for problem g12. On the
average, the difference in the results is marginal when
and 0.8.

Based on the analyses above, we conclude that a value be-
tween 0.6 and 0.8 is suitable for the parameter .

D. Effect of the Tolerance Value With Equality Constraints

In order to illustrate the effect of the tolerance value with
equality constraints on the performance of our ATMES, a set
of experiments have been performed on problems g03, g05,
g11, and g13.5 Table VIII summarizes the mean of the objec-
tive function values in the case of the parameter being set to
1.0101, 1.0129, 1.0159, 1.0168, and 1.0188, where the corre-
sponding tolerance values when the procedure halts are 1E-03,
1E-04, 1E-05, 5E-06, and 1E-06 (i.e., , 1E-04,
1E-05, 5E-06, and 1E-06).

From Table VIII, we can argue that there is no significant
effect when decreasing the parameter from 1.0168 to 1.0101.
Nevertheless, a lower value of also indicates a higher value of
, thus, for some problems the “best” results obtained may be

better than the “known” optima. However, this type of behaviors
does not mean the “new” optima are really found. Based on
our observations, the “best” results provided by ,

5Note that only these problems have equality constraints.
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TABLE VII
EXPERIMENTAL RESULTS ON 13 BENCHMARK FUNCTIONS WITH VARYING ��; 30 INDEPENDENT

RUNS ARE PERFORMED; A RESULT IN BOLDFACE INDICATES A BETTER RESULT OR THAT

THE GLOBAL OPTIMUM (OR BEST KNOWN SOLUTION) IS REACHED; (#) DENOTES THE

NUMBER OF TRIALS IN WHICH FEASIBLE SOLUTIONS ARE FOUND

IN THE FINAL POPULATIONS OVER 30 TRIALS

TABLE VIII
EXPERIMENTAL RESULTS ON FOUR BENCHMARK FUNCTIONS (g03, g05,
g11, AND, g13) WITH VARYING TOLERANCE VALUE WITH EQUALITY

CONSTRAINTS; 30 INDEPENDENT RUNS ARE PERFORMED; (#) DENOTES

THE NUMBER OF TRIALS IN WHICH FEASIBLE SOLUTIONS ARE FOUND

IN THE FINAL POPULATIONS OVER 30 TRIALS

1E-04, and 1E-05 are better than the “known” optima for the
four tested problems in different degrees. In these cases, the
“best” results provided by are very close to the
“known” optimal solutions. On the other hand, the performance
degradation occurs for problem g03 when , where
feasible solutions can be found in the final populations for 23
out of the 30 runs. This negative impact on performance occurs
because the tolerance value with equality constraints is too small
to be satisfied for the algorithm.

The above observations validate that the setting of
is an appropriate choice for equality constraints.

VI. CONCLUSION

We have analyzed some existing methods from the tradeoff
point-of-view. Based on our analyses, the adaptive tradeoff be-
tween the objective function and the constraint violations has
often been ignored by previous work. In this paper, we present
an ATM which adopts a variety of tradeoff schemes in different
search stages. Furthermore, we combine ATM with a simple ES
and obtain a generic COEA, namely, ATMES. The experimental
results suggest that ATMES gives results that are better or com-
parable to those of two other state-of-the-art techniques (SR and
SMES). Apart from finding very competitive results, the pro-
posed algorithm also finds feasible solutions in every run.

ISR [27], CW [28], and HCOEA [29] are the most competi-
tive algorithms in constrained optimization so far. The strength

of ISR is that it can reach very competitive results with no need
to adapt parameters for different problems. However, based
on the experimental results, it seems to be difficult for ISR
to improve the performance on multimodal problems, such
as g02. The highlight of CW is that it can reach competitive
results without the transformation of equality constraints into
inequality constraints. With respect to HCOEA, the strength is
its efficiency. In general, CW and HCOEA are quite effective
when solving COPs with equality constraints. However, both
of them have a problem-dependent parameter for crossover
operator, which limits the real-world application of the algo-
rithms. The main advantages of ATMES are its simplicity and
adaptation; however, compared with ISR, CW, and HCOEA,
ATMES leaves plenty of room for improvement. So, the future
work of this study includes the application of ATM to other
types of search engines, such as genetic algorithms, differential
evolution, and particle swarm optimizer.
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