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a b s t r a c t

In their original versions, nature-inspired search algorithms such as evolutionary algorithms and those
based on swarm intelligence, lack a mechanism to deal with the constraints of a numerical optimization
problem. Nowadays, however, there exists a considerable amount of research devoted to design
techniques for handling constraints within a nature-inspired algorithm. This paper presents an analysis of
the most relevant types of constraint-handling techniques that have been adopted with nature-inspired
algorithms. From them, the most popular approaches are analyzed in more detail. For each of them, some
representative instantiations are further discussed. In the last part of the paper, some of the future trends
in the area, which have been only scarcely explored, are briefly discussed and then the conclusions of this
paper are presented.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

In spite of the complexity of several real-world optimization
problems, their solution by nature-inspired meta-heuristics such
as evolutionary algorithms (EAs) [1] and swarm intelligence
algorithms (SIAs) [2] is common nowadays. In this paper, these
two types of approaches will be generically called nature-inspired
algorithms (NIAs).

Michalewicz in [3] describes some sources of difficulty found
in real-world optimization problems. Besides huge search spaces,
noise in the objective function(s) and the complexity of the
modeling process, the presence of constraints was pointed out.
Constraints may cause the search to keep away the focus on
optimization to just seeking a feasible (i.e., valid) solution. On
the other hand, in their original versions, NIAs were designed to
deal with unconstrained search spaces [4,5]. This was the main
motivation to add constraint-handling techniques to NIAs aiming
to guide the search to those regions with feasible solutions.

The problem of interest in this paper is the constrained
numerical optimization problem (CNOP), which, without loss of
generality, can be defined as to:
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Find x⃗which minimizes

f (x⃗) (1)

subject to

gi(x⃗) ≤ 0, i = 1, . . . ,m (2)

hj(x⃗) = 0, j = 1, . . . , p (3)

where x⃗ ∈ Rn is the vector of solutions x⃗ = [x1, x2, . . . , xn]T ,m
is the number of inequality constraints, and p is the number of
equality constraints. Each xk, k = 1, . . . , n is bounded by lower
and upper limits Lk ≤ xk ≤ Uk which define the search space S. F
comprises the set of all solutions which satisfy the constraints of
the problems and it is called the feasible region. Both, the objective
function and the constraints can be linear or nonlinear. To handle
equality constraints in NIAs, they are usually transformed into
inequality constraints as follows [6]:

hj(x⃗)
 − ε ≤ 0, where ε is

the tolerance allowed (a very small value).
In the specialized literature there are comprehensive surveys

and edited bookswhich have registered, at different times, the pre-
vious and undergoing research on constrained optimization1[7–9].

1 The second author maintains the repository on constraint-handling techniques
for evolutionary algorithms, which is available at: http://www.cs.cinvestav.mx/
∼constraint/.
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There are also reviews on specific EAs such as evolution strate-
gies (ES) [10] and particle swarm optimization (PSO) [11] designed
to solve CNOPs. In fact, there are reviews focused only on repair
methods [12], which are associatedwith constraint-handling tech-
niques (although repairing solutions is more common in combina-
torial optimization than in a numerical optimization [12]).

This document aims to update the review of the state-of-the-
art with the most significant contributions on constraint-handling
techniques in the recent years, and also with a discussion of
representative NIA-based approaches adopting such techniques
to solve CNOPs (i.e., the present). This analysis is preceded by a
classification of the most representative approaches included in
previous reviews of the specialized literature [7,8] (i.e., the past).
Based on this literature review, a prospective view with some
future trends, which have been only scarcely tackled until now, is
presented (i.e., the future). Due to the considerably high number of
publications available on this topic, this review is not (and does not
attempt to be) exhaustive. However, it presents the current flavor
and tendencies in the resolution of CNOPs using NIAs.

The paper is organized as follows: Section 2 revisits the
constraint-handling techniques proposed in the early days of this
area. In Section 3 a number of novel proposals which have had
high-impact in the area are summarized and discussed. After
that, Section 4 includes a prospective view of the future paths of
research on NIAs to solve CNOPs. Finally, Section 5 draws some
conclusions.

2. The early years

In the previous reviews on nature-inspired algorithms for
searching in constrained spaces, two classifications were pro-
posed: one by Michalewicz and Schoenauer [7] and another one
by Coello Coello [8]. Both taxonomies agreed on penalty functions
and hybrid methods as two separated classes. Whereas the first
one is kept in this paper (based on the permanent interest that
remains on this type of constraint-handling technique), the sec-
ond class is not considered here because it mainly groups com-
binations of NIAs with other types search algorithms (something
which is beyond the scope of this paper). This new classification
for earlier methods is based on constraint-handling mechanisms,
whereas the search algorithm employed is discussed as a separate
issue. The class of ‘‘methods based on preserving feasibility of so-
lutions’’ by Michalewicz and Schoenauer was merged with Coello
Coello’s ‘‘special representation and operators’’ and ‘‘repair algo-
rithms’’ into one single class simply called ‘‘special operators’’ (re-
pair methods are seen in this paper as special operators designed
to move an infeasible solution to the feasible region of the search
space). The ‘‘separation of objective function and constraints’’ class
by Coello Coello is kept in this work and it includes those ap-
proaches classified by Michalewicz and Schoenauer as ‘‘methods
which make a clear distinction between feasible and infeasible so-
lutions’’. This type of techniques, such as penalty functions, are still
very popular among researchers and practitioners. Finally, a par-
ticular category, called ‘decoders’’ was added because it covers the
type of constraint-handling techniquewhose resultswere themost
competitive in the early years of the field. The simplified taxonomy
from the methods included in both surveys [7,8] is the following:

1. Penalty functions
2. Decoders
3. Special Operators
4. Separation of objective function and constraints.

In the following subsections each of them is introduced and
discussed.
2.1. Penalty functions

Based on mathematical programming approaches, where a
CNOP is transformed into an unconstrained numerical optimiza-
tion problem, NIAs have adopted penalty functions [13], whose
general formula is the following:

φ(x⃗) = f (x⃗) + p(x⃗) (4)

whereφ(x⃗) is the expanded objective function to be optimized, and
p(x⃗) is the penalty value that can be calculated as follows:

p(x⃗) =

m−
i=1

ri · max(0, gi(x⃗))2 +

p−
j=1

cj · |hj(x⃗)| (5)

where ri and cj are positive constants called ‘‘penalty factors’’.
As can be noted, the aim is to decrease the fitness of infeasi-

ble solutions in order to favor the selection of feasible solutions. In
Eq. (4), the penalty value is added to the fitness of a solution be-
cause low values are preferred as expected in aminimization prob-
lem (as stated in Section 1). Unlike mathematical programming
approaches, where interior and exterior penalty functions are em-
ployed, NIAs have mainly focused on the second type of approach,
because the normal assumption is that the first generation of an
NIA may contain only infeasible solutions.

Even though their implementation is quite simple, penalty
functions require a careful fine-tuning of their penalty factors in
order to determine the severity of the penalties to be applied, and
these values are highly problem-dependent [6].

The most simple penalty function is known as ‘‘death-
penalty’’. Under this scheme, infeasible solutions are assigned the
worst possible fitness value or are simply eliminated from the
optimization process [14,15].

Based on the fact that a ‘‘death-penalty’’ keeps the search from
using valuable information from the infeasible solutions, there are
penalty-based constraint-handling techniqueswhich candealwith
them, but also focus on defining appropriate penalty factors.

There are penalty functions whose penalty factor values (ci
and cj, i = 1, . . . ,m and j = 1, . . . ,m) remain fixed during all
the process as those proposed by Kuri and Villegas-Quezada [16],
Homaifar et al. [17], Hoffmeister and Sprave [18], and Le Riche
et al. [19]. The main drawback of keeping fixed penalty factor
values is the generalization of such type of approach, i.e., the values
that may be suitable for one problem are normally unsuitable for
another one.

The use of time (usually the generation counter in a NIA) as a
value that affects the penalty factor has also been also explored,
among others, by Joines and Houck [20] Kazarlis and Petridis [21],
and Crossley andWilliams [22]. Even the cooling factor of the sim-
ulated annealing algorithm has been employed to vary the penalty
factors as in the approach proposed byMichalewicz and Attia [23],
called GENOCOP II. Recalling from a previous comment in this sec-
tion about the preference for exterior penalty functions in NIAs, in
a dynamic penalty function, smaller values (i.e. soft penalties) are
defined in the first steps of the optimization process so as to allow
the algorithm to sample the search space and find its feasible re-
gion. In contrast, larger values (i.e., severe penalties) are adopted in
the last part of the search in order to preserve the feasible solutions
previously found and to speed up convergence towards the global
optimum. The main disadvantage of dynamic penalty functions is
that they require parameters for the dynamic tuning of the penalty
factors. Furthermore, the schedule established for the penalty fac-
tors may be as hard to generalize as it is to generalize penalty fac-
tors in a static penalty function.

The information given by the same algorithm has been used
to update the penalty factors in those so-called adaptive penalty
functions. Hadj-Alouane and Bean [24] used the feasibility of the
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Fig. 1. Graphical view of a general decoder. The search performed by a NIA is
carried out in the mapped space.

best solution in a number of generations as a criterion to modify
the penalty factor. The fitness of the best feasible solution so far
was used tomodify the penalty values by Rasheed [25]. Hamda and
Schoenauer [26] and later Hamida and Schoenauer [27] opted for
a balance between feasible and infeasible solution in the current
population as their criterion to modify the penalization values.
Barbosa and Lemonge [28] proposed the use of the average of
the objective function and the level of violation of each constraint
during the evolution as update criteria for the penalty function.
On the other hand, more elaborate ways to ask the algorithm
to compute convenient penalty factors have been based on co-
evolution, as in the approach proposed by Coello [29] and fuzzy
logic, as proposed by Wu and Yu [30]. The main drawback of
adaptive penalty functions is inherent to their design, because the
values that are adapted are based on the current behavior of the
algorithm, and it is unknown if the changes made will be indeed
useful in later cycles of the optimization process.
Discussion

The earliest constraint-handling techniques based on penalty
functions showed a lot of diversity in the way of defining
the penalty factors (static, dynamic, adaptive, co-evolved, fuzzy-
adapted, etc.). However, it was not clear, at that point of time,
which of them could be more competitive. This question is an-
swered in the next section of this paper. In fact, the previously
mentioned approaches introduced,most of the time, additional pa-
rameters to define the penalty factors. The argument was that the
calibration of such parameters was less complicated with respect
to the careful fine-tuning required by a traditional penalty factor.

2.2. Decoders

Decoderswere one of themost competitive constraint-handling
techniques in the early years of this area. They are based on
the idea of mapping the feasible region F of the search space S
onto an easier-to-sample space where a NIA can provide a better
performance [31] (see Fig. 1).

The mapping process of a decoder must guarantee that each
feasible solution in the search space is included in the decoded
space and that a decoded solution corresponds to a feasible
solution in the search space. Moreover, the transformation process
must be fast and it is highly desirable that small changes in
the search space of the original problem cause small changes
in the decoded space as well. Koziel and Michalewicz proposed
the homomorphous maps (HM), where the feasible region is
mapped into an n-dimensional cube [31,32]. HM was the most
competitive constraint-handling approach during some years,
before the advent of stochastic ranking and other modern
approaches discussed in the next section. Kim and Husbands
reported another (less known) decoder-based approach based on
Riemann mappings [33–35].
Discussion

Although decoders are an interesting constraint-handling tech-
nique from a theoretical perspective, their actual implementation
is far from trivial and involves a high computational cost which
was normally not evaluated when assessing their performance
(e.g., when assessing the performance of HM [32], only the actual
fitness function evaluations performed by the evolutionary algo-
rithm were considered). These shortcomings have made decoders
such as HM a relatively rare approach nowadays.

2.3. Special operators

When solving a CNOP, a special operator is conceived as a
way of either preserving the feasibility of a solution [36] or
moving within a specific region of interest within the search
space, i.e., the boundaries of the feasible region [37]. Michalewicz
proposed GENOCOP [36], which only works with linear constraints
and requires an initial feasible solution and also a pre-processing
process to eliminate equality constraints and some variables
of the problem. GENOCOP uses a variation operator which
constructs linear combinations of feasible solutions to preserve
their feasibility. Michalewicz and Nazhiyath proposed GENOCOP
III [38], which uses GENOCOP in one of its two populations which
interact each other. The other population stores feasible solutions.
Special operators are designed to convert solutions from the first
population, which only satisfy linear constraints, into fully feasible
solutions. Kowalczyk [39] proposed a constraint-consistent GA
where a feasible, or at least partially feasible, initial population
is required. Moreover, in this approach, special operators assign
values to the decision variables aiming to keep the feasibility of
the solution. On the other hand, Schoenauer and Michalewicz
in [37,40], after an ad-hoc initialization process, employed special
operators for two specific problems to sample the boundaries of
their feasible regions. Finally, the same authors in [41], presented
an interesting transition from their special operators to a decoder.
Discussion

Some authors have reported highly competitive results when
adopting special operators. The main drawback of this sort of
approach is their limited applicability. Additionally, most of them
require an ad-hoc initialization process or at least one feasible or
partially-feasible solution in the initial population, and this may
be quite difficult and/or computationally expensive when dealing
with highly-constrained optimization problems.

2.4. Separation of objective function and constraints

Unlike the idea of combining the objective function and the
values of the constraints into a single value as done in a penalty
function (see Eq. (4)), there exist constraint-handling techniques
which work with the opposite idea, i.e. keeping those two values
apart in the NIA’s selection process. Powell and Skolnick in [42]
proposed an approach based on Eq. (6).

fitness(x⃗) =


f (x⃗) if feasible

1 + r


m−
i=1

gi(x⃗) +

p−
j=1

hj(x⃗)


otherwise (6)

where a feasible solution has always a better fitness value with
respect to that of an infeasible solution, whose fitness is based only
on their accumulated constraint violation.

The idea of dividing the search in two phases was explored
by Hinterding and Michalewicz in [43]. The first phase aims to
find feasible solutions, regardless of the objective function value.
After an appropriate number of feasible solutions has been found,
the second phase starts with the goal of optimizing the objective
function.

The use of lexicographic ordering to satisfy constraints (one
at a time) was studied by Schoenauer and Xanthakis in [44].
This approach, called behavioral memory, sequentially satisfies the
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constraints of a problem. When a certain number of solutions in
the population satisfy the first constraint, an attempt to satisfy
the second one is made (but the first constraint must continue to
be satisfied). All the solutions that violate any of the constraints
that had been previously considered for satisfaction are eliminated
from the population.

One of the most popular and effective constraint-handling
techniques in current use belongs to this category and was
originally proposed by Deb [45]. In this approach, a set of three
feasibility criteria are added to a binary tournament selection in
a GA as follows:

1. When comparing two feasible solutions, the one with the best
objective function is chosen.

2. When comparing a feasible and an infeasible solution, the
feasible one is chosen.

3. When comparing two infeasible solutions, the one with the
lowest sum of constraint violation is chosen.

The sum of constraint violation can be calculated as follows:

φ(x⃗) =

m−
i=1

max(0, gi(x⃗))2 +

p−
j=1

|hj(x⃗)| (7)

where the values of each inequality constraint gi(x⃗), i = 1, 2,
. . . ,m and also each equality constraint hj(x⃗), j = 1, 2, . . . , p are
normalized.

The lack of user-defined parameters is one of its main advan-
tages. However, it may also lead to premature convergence [46].

Based on the idea proposed by Coello [47], where in a
multi-population scheme each sub-population tries to satisfy one
constraint of a CNOP and another one optimizes the objective
function, Liang and Suganthan proposed a dynamic assignment of
sub-swarms to constraints [48] in PSO. Furthermore, sequential
quadratic programming was used as a local search operator. The
approach provided highly competitive results in a set of 24 test
problems. The approach was further improved in [49], where only
two sub-swarms, one of them with a tolerance for inequality
constraints, were used. Each particle, and not a sub-swarm, was
dynamically assigned an objective (either the original objective
function or a constraint) in such away thatmore difficult objectives
to optimize (satisfy) were assigned more frequently. The approach
was tested on eighteen scalable test problems and the results were
highly competitive. However, several parameters values must be
defined by the user. Li et al. [50] adopted a similar approach but
using DE as a search algorithm. Three DE variants were used in the
algorithm and were chosen at random. The results were better in
the same set of scalable test problems where improved the PSO-
based approach was tested.

Following the same scheme adopted by Hinterding and
Michalewicz [43], Venkatraman and Yen [51] solved a CNOP in
two-steps: The first one focused only on satisfying the constraints
of the problem, i.e.,. a CNOP is transformed into a constraint-
satisfaction problem. Once a feasible solution was generated, the
second part of the approach started with the goal of optimizing
the objective function value. The approach presented premature
convergence in some test problems because the approach to the
feasible region was biased by the minimization of the sum of
constraint violation but ignoring the objective function value.

Liu et al. [52] proposed a separation scheme based on a co-
evolutionary approach in which two populations are adopted. The
first one optimized the objective function without considering
the constraints, while the second population aimed to satisfy the
constraints of the problem. Each population couldmigrate solution
to the other. Finally, a Gaussian mutation was applied as a local
search mechanism to the best individuals. However, this approach
was tested on a small set of test problems and different parameter
values were required for solving some of them.
Several authors have adopted multi-objective optimization
concepts to solve constrained optimization problems. In this case,
the objective functions and the constraints are also handled
separately. These approaches are reviewed in [53] and can be
divided in the following groups:

1. Techniques which transform a CNOP into a bi-objective
problem (the original objective function and the sum of
constraint violation as indicated in Eq. (7)).

2. Techniques which transform a CNOP into a multi-objective
optimization problem (the original objective function and each
constraint are handled, each, as a single objective function).

Multi-objective concepts such as Pareto dominance, Pareto
ranking and population-based selection have been adopted by
these constraint-handling approaches [53]. Such approaches have
been relatively popular in the specialized literature in spite of
their shortcomings (mainly related to the lack of bias provided
by Pareto ranking when used in a straightforward manner [54],
and the difficulties of these approaches to preserve diversity in the
population [53]).

Additionally, other mechanisms such as Pareto ranking in
different search spaces [55–58], the shrinking of the search
space [59] and the use of non-dominated sorting and clustering
techniques to generate collaboration among sub-populations [60],
have been proposed to tackle the disadvantages of this type of
constraint-handling technique.
Discussion

The separation of constraints and the objective function has
been found to generate an important diversity loss. Therefore,
it is important to design appropriate diversity maintenance
mechanisms when designing such approaches. However, this has
not prevented the use of these techniques which are among the
most popular in the two of the most popular constraint-handling
techniques discussed in the following section, are based on the
idea of using the objective function and the constraints as different
criteria in the selection or replacement mechanismwithin a NIA to
solve CNOPs.

2.5. General comments

In a similar way of a typical search made by a NIA,
the first attempts to generate constraint-handling techniques
are similar to an exploration phase, in which a variety of
approaches are proposed. Issues such as premature convergence
by unsuitable bias (Section 2.4), need of a careful fine-tuning of
parameters (Section 2.1), non-generalization (Section 2.3), high
computational cost and difficult implementations (Section 2.2)
are among the main limitations of early constraint-handling
techniques. As will be seen in the following section, the second
generation of constraint-handling techniques is characterized for
having features that overcome most of the previously indicated
limitations. Additionally, these modern approaches also share
similarities which seems to suggest the possibility of adopting
generic schemes in the near future. However, this may have
also limited the variety of approaches possible, which is clearly
reflected by a much lower number of publications on this topic in
recent years.

3. Current constraint-handling techniques

This section presents a set of recent constraint-handling
techniques which have had a relatively high impact in the area.
Unlike the techniques presented in the previous section, the
number of approaches reviewed in this case is lower. This is due
to the fact that the differences among approaches are, in this
case, more focused on modifications to the elements of the NIA
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adopted, and not on the constraint-handling technique itself. From
the list presented below the first three and the seventh approach
are all new constraint-handling techniques, while the fourth and
the fifth are updated versions of constraint-handling techniques
previously discussed. The use of multi-objective concepts is now
considered as a separate class due to its popularity in recent years.
The approaches considered here are:

1. Feasibility rules
2. Stochastic ranking
3. ε-constrained method
4. Novel penalty functions
5. Novel special operators
6. Multi-objective concepts
7. Ensemble of constraint-handling techniques.

Next, we will provide a detailed discussion of each of them.

3.1. Feasibility rules

The three feasibility rules proposed for binary tournaments
in [45]2 and detailed in Section 2.4 constitute an example of a
constraint-handling technique that was proposed several years
ago, butwhose impact is still present in the literature. The popular-
ity of this simple constraint-handling scheme lies on its ability to
be coupled to a variety of algorithms, without introducing new pa-
rameters. Mezura-Montes and Coello Coello [62] emphasized the
importance of combining these feasibility rules with other mecha-
nisms (e.g., retaining infeasible solutionswhich are close to the fea-
sible region) in order to produce a constraint-handling technique
that is able to deal with problems having active constraints. How-
ever, such approach required a dynamic decreasingmechanism for
the tolerance value (ε) for equality constraints.

Mezura-Montes et al. [46,63,64] later extended these feasibility
rules to the selection process between target and trial vectors
in differential evolution (DE). Although the resulting approaches
were easy to implement, premature convergence was observed
for some test problems and two additional modifications to the
search algorithm (DE in this case) were required: (1) each target
vector generated more than one trial vector (a user-defined
parameter was added for this sake) [63] and (2) a new DE
variant was designed [64]. Lampinen used a similar DE-based
approach in [65]. However, the third criterion was based on Pareto
dominance in constraints space instead of the sum of constraint
violation. Lampinen’s approach was later adopted by Kukkonen
and Lampinen in their Generalized Differential Evolution (GDE)
algorithm [66] which showed promising results in a set of 24
benchmark problems. However, GDE had difficulties when facing
more than three constraints. This seems to be the same limitation
faced when attempting to use Pareto dominance in problems
having four or more objective functions (the so-called many-
objective optimization problems) [67].

Feasibility rules have also been used for designing parameter
control mechanisms in DE-based constrained numerical optimiza-
tion [68]. However, if self-adaptation mechanisms are incorpo-
rated as well (as in [68]), the computational cost of the approach
may considerably increase, since more iterations will be required
to collect enough information about the search as to make these
self-adaptation mechanisms work in a proper manner.

Zielinski and Laur [69] coupled DE with the feasibility rules
in a greedy selection scheme between target and trial vectors.
Their approach, which is indeed very simple to implement,
presented some difficulties in high-dimensionality problems with

2 Apparently, this sort of scheme was originally proposed in [61] using an
evolution strategy as the search engine.
equality constraints. They also analyzed, in a further work,
different termination conditions (e.g., improvement-based criteria,
movement-based criteria, distribution-based criteria) for their
algorithm [70]. They determined that the last criterion from the list
indicated before was themost competitive. Zielinski et al. [71] also
used the feasibility rules in a study to adapt two DE parameters (F
and CR) when solving CNOPs. They concluded that the adaptation
mechanism was not as significant as expected in the performance
of the algorithm. Furthermore, Zielinski et al. [72] studied the effect
of the tolerance utilized in the equality constraints, where values
between ϵ = 1 × 10−7 and ϵ = 1 × 10−15 allowed the algorithm,
coupled with the feasibility rules, to reach competitive results.

The feasibility rules have also been adopted by DE-based
approaches which use self-adaptive mechanisms to choose among
their variants, such as SaDE [73]. In this approach, sequential
quadratic programming (SQP) is applied during some iterations to
a subset of solutions in the population. Although this approach is
very competitive, it heavily relies on the use of SQP, which may
limit its applicability.

Brest [74] used the feasibility rules in his self-adaptive approach
called jDE-2, which also combines different DE variants into a
single approach to solve CNOPs. A replacementmechanism to keep
diversity in the population was implemented to eliminate those k
worst vectors at every l generationswith new randomly-generated
vectors. This mechanism reflects the premature convergence that
the feasibility rules may cause in some test problems despite
providing competitive results in others mainly related with
inequality constraints.

Landa and Coello [75] also adopted the feasibility rules in an
approach inwhich a cultural DE-basedmechanismwas developed,
with the aim of incorporating knowledge from the problem into
the search process when solving CNOPs. This approach adopts
a belief space with four types of knowledge generated and
stored during the search. Such knowledge is used to speed up
convergence. The approachwas able to provide competitive results
in a set of benchmark problems. However, there are two main
shortcomings of the approach: (1) it requires the use of spatial data
structures for knowledge handling and (2) it also needs several
parameters which must be defined by the user. Furthermore,
spacial data structures are not trivial to implement.

Menchaca-Mendez and Coello Coello [76] proposed a hybrid
approach which combines DE and the Nelder–Mead method.
The authors extended a variant of the Nelder–Mead method
called Low Dimensional Simplex Evolution [77] and used it to
solve CNOPs. The set of feasibility rules are used in this case
to deal with the constraints of the problems in both, the DE
algorithm and the m-simplex-operator. However, a fourth rule
which considers a tie between the sum of the constraint values,
is also incorporated. The objective function value is used in this
case to break this tie. This approach also adds some concepts from
stochastic ranking, which will be discussed later on. The approach
was tested in some benchmark problems and the results obtained
were highly competitive, while requiring a lower number of fitness
function evaluations than state-of-the-art algorithms. However,
the approach added a significant set of parameters which must
be fine-tuned by the user, such as those related to the m-simplex-
operator.

Barkat Ullah [78] reported the use of feasibility rules coupled
with a mechanism to force infeasible individuals to move to the
feasible region through the application of search space reduction
and diversity checking mechanisms designed to avoid premature
convergence. This approach, which adopts an evolutionary agent
system as its search engine, requires several parameters to be
defined by the user and it was not compared against state-of-the-
art NIAs to solve CNOPs. However, in the testbed reported by the
authors the results were competitive.
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The feasibility rules have been a popular constraint-handling
mechanism in PSO-based approaches, too. Zielinski and Laur [79]
added feasibility rules into a local best PSO. The approach
presented premature convergence in test problems with a high
number of equality constraints due to the lack of a diversity
maintenance mechanism. In a similar approach, but focused on
mixed-variable optimization problems, Sun et al. [80,81] added
feasibility rules to a global-best PSO. This approachwas tested only
in two engineering design problems.

He andWang [82] used feasibility rules to select the global best
(gbest) and for updating the personal best (pbest) of each particle
in a PSO-based approach designed to solve CNOPs. They used
simulated annealing (SA) as a local search operator and applied it
to the gbest particle at each generation. The approach was tested
on a small set of benchmark problems as well as on a set of
engineering design problems. The usage of SA improved the PSO
performance. However, the main shortcoming of the approach is
that it requires several user-defined parameter for both the PSO
and the SA algorithms.

Toscano-Pulido and Coello Coello [83] combined feasibility
rules with a global-best PSO but required a mutation operator to
avoid converging to local optimum solutions. This same problem
(premature convergence) was tackled by using two mutation
operators by Muñoz-Zavala et al. [84,85]. Additionally, they also
tackled this problem employing different topologies in local-best
PSO algorithms [86,87]. The evident need of a mutation operator
showed that the feasibility rules combined with PSO may cause
premature convergence [5].

Cagnina et al. [88] tackled the premature convergence of
PSO combined with feasibility rules by using a global–local best
PSO. However, the use of a dynamic mutation operator was also
required. The results obtained by this approach showed evident
signs of stagnation in some test problems. In a further version of
this approach [89], a bi-population scheme and a ‘‘shake’’ operator
were added. This approach showed a significant improvement in
performance with respect to its previous version.

In [11], feasibility rules were used as a constraint-handling
mechanism in an empirical study aimed to determine which
PSO variant was the most competitive when solving CNOPs. The
authors found that the version adopting a constriction factor
performed better than the (popular) version that uses inertia
weight. Furthermore, local-bestwas found to be better than global-
best PSO.

The use of feasibility rules motivated the definition of the
relative feasibility degree in [90], which is a measure of constraint
violation in pairwise comparisons. The aim of this work was to
compare pairs of solutions but with a feasibility value based only
on the values of their constraints and on the ratio of the feasible
region of a given constraint with respect to the entire feasible
region of the search space. The approach was coupled to DE and
tested in some benchmark problems. The convergence rate was
better with respect to the original feasibility rules but the final
resultswere not considerable betterwith respect to those obtained
by other state-of-art algorithms.

Karaboga and Basturk [91] and Karaboga andAkay [92] changed
a greedy selection based only on the objective function values by
the use of feasibility rules with the aim of adapting an artificial bee
colony algorithm (ABC) to solve CNOPs. The authors also modified
the probability assignment for their roulette wheel selection
employed to focus the search on the most promising solutions.
The approach was tested on a well-known set of 13 test problems
and the results obtained were comparable with those obtained by
the homomorphous maps [32], stochastic ranking [6] and other
approaches based on penalty functions. However, the approach
modified one ABC operator adding a new parameter to be fine-
tuned by the user.
Mezura-Montes and Cetina-Domíngez extended Karabogas’
approach by using feasibility rules as a constraint-handling
technique butwith an special operator designed to locate solutions
close to the best feasible solution [93]. This approachwas tested on
13 test problems and the results that they obtained were shown
to be better than those reported by Karaboga and Basturk in [91].
However, this approach added extra parameters related to the
tolerance used to handle equality constraints. An improved version
was proposed in [94], where two operators were improved and
a direct-search local operator was added to the algorithm. The
approach provided competitive results in a set of eighteen scalable
test problems but its main disadvantage was the definition of the
schedule to apply the local search method.

Mezura-Montes and Hernández-Ocaña [95] used feasibility
rules with the Bacterial Foraging Optimization Algorithm [96], to
solve CNOPs. The feasibility ruleswere used in the greedy selection
mechanism within the chemotactic loop, which considers the
generation of a new solution (swim) based on the random
search direction (tumble). This approach, called Modified Bacterial
Foraging Optimization Algorithm (MBFOA), considered a swarming
mechanism that uses the best solution in the population as an
attractor for the other solutions. The approach was used to solve
engineering design problems.

Mezura-Montes et al. [97] used feasibility rules as a constraint-
handling mechanism in an in-depth empirical study of the use of
DE as an optimizer in constrained search spaces. A set of well-
known test problems and performance measures were used to
analyze the behavior of different DE variants and their sensitivity
to two user-defined parameters. From such analysis, the simple
combination of two of them (DE/rand/1/bin and DE/best/1/bin)
called Differential Evolution Combined Variants (DECV) was
proposed by the authors. This approach is able to switch from
one variant to the other based on a certain percentage of feasible
solutions present in the population. The results obtained in a set of
24 test problemswere competitive with respect to state-of-the-art
algorithms. However, the performance of this approach strongly
depends on the percentage used to perform the switch from one
variant to the other and this value is problem-dependent.

Elsayed et al. [98] proposed two multi-operator NIAs to solve
CNOPs. A four sub-population scheme is handled by one of two
options: (1) a static approach where each sub-population with a
fixed size evolves by using a particular crossover and mutation
operator and, at some periods of time, the sub-populations
migrate the best solutions that they had found to another sub-
population, and (2) an adaptive approach in which the size of
each subpopulation varies based on the feasibility of the best
solution in the population in two contiguous generations. This
approach was tested in two versions: with a real-coded GA using
four crossover–mutation combinations and also with DE adopting
four DE mutation variants, all of them with binomial crossover.
The latter version outperformed the former after being extensively
tested in 60 benchmark problems. The approach requires the
definition of some additional parameters related to the minimum
size that a sub-population can have, as well as to the generational
interval for migrating solutions among sub-populations.

Elsayed et al. [99] proposed a modified GA where a novel
crossover operator called multi-parent crossover and also a
randomized operator were added to a real-coded GA to solve
CNOPs. The feasibility rules were adopted as the constraint-
handlingmechanism. The approachwas tested on a set of eighteen
recently proposed test problems in 10D and 30D showing very
competitive results. However, some disadvantages were found in
separable test problems with a high dimensionality. The approach
provided better results with respect to other approaches based on
DE and PSO.
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Elsayed et al. [100] compared ten different GA variants to solve
CNOPs by using, in all cases, the feasibility rules as the constraint-
handling technique. The crossover operators employed were
triangular crossover, Simulated binary crossover, parent-centric
crossover, simplex crossover, and blend crossover. The mutation
operators adopted were non-uniform mutation and polynomial
crossover. Statistical tests were applied to the samples of runs to
provide confidence on the performances showed. An interesting
conclusion of the comparison was that no GA was clearly superior
with respect to the others GAs compared. Nonetheless, non-
uniformmutation and polynomial mutation provided competitive
results in 10D and 30D test problems.

Hamza et al. [101] proposed a DE algorithm to solve CNOPs
where the feasibility rules were used as the constraint-handling
mechanism and the population was divided in feasible and
infeasible vectors. A constraint-consensus operator was applied
to infeasible vectors so as to become them feasible. Even the
approach showed competitive results in a set of thirteen well-
known test problems, the constraint-consensus operator requires
gradient calculations, which were made by numerical methods.

In an interesting adaptation of the feasibility rules combined
with the idea of focusing first on decreasing the sum of constraint
violation [43,51], Tvrdík and Poláková [102] adapted DE to solve
CNOPs. If feasible solutions were present in the population, in
a single cycle of the algorithm two generations were carried
out, the first one based only on the sum of constraint violation
and the second one based on the feasibility rules with a simple
modification on the third rule, where between two infeasible
solutions the one with the lowest sum of constraint violation was
preferred if it also had a better value of the objective function. The
approach was tested on eighteen scalable test problems in 10D
and 30D. Even some competitive results were obtained, premature
convergence was generally observed in the approach because the
isolated usage of the sumof constraint violation kept the algorithm
for sampling, in a more convenient way, the feasible region of the
search space.

The feasibility rules were used in a real-coded GA with
simulated binary crossover and adaptive polynomial mutation by
Saha et al. [103]. Furthermore, a special operator based on gradient
information was employed to favor the generation of feasible
solutions in presence of equality constraints. Even the results
improved by the approach in such test problems, the parameter
which mainly controls the special operator required a careful fine-
tuning based on the difficulty of the test problem.

The feasibility rules were added by Tseng and Chen to the
multiple trajectory search (MTS) algorithm to solve CNOPs [104].
Those rules worked as the criteria to choose solutions in three
region searches which allowed MTS to generate new solutions.
The approach was able to provide feasible solutions in most of
eighteen scalable test problems. However, it presented premature
convergence.

Wang et al. [105] implicitly used feasibility rules to rank
the particles in a hybrid multi-swarm PSO (HMPSO). They took
inspiration from two papers: (1) the way Liang and Suganthan [48]
constructed sub-swarms to promote more exploration of the
search space and (2) the way Muñoz-Zavala et al. [85] used a
differential mutation operator to update the local-best particle.
The results agree with those found by Mezura-Montes and Flores-
Mendoza, inwhich local-best PSO performs better than global-best
PSO when solving CNOPs. The main shortcoming of the approach
relies in its implementation due to the mechanisms added to PSO.

HMPSO was improved by Lui et al. in [106], where the DE
mutation operator was extended by using two other operators.
The number of evaluations required by the improved approach,
whichwas called PSO-DE, decreasedwith respect to those required
by HMPSO in almost 50%. This approach was validated using
some engineering design problems but was not further tested on
benchmark problems with higher dimensionalities.

The use of feasibility rules has been particularly popular in
approaches based on artificial immune systems (AISs) as described
in [107]. The first attempts to solve CNOPs with an AIS were based
on hybrid GA-AIS approaches, in which the constraint-handling
technique was the main task performed by the AIS embedded
within aGA [108–110]. TheAISwas evolvedwith the aimofmaking
an infeasible solution (the antibody) as similar as possible (at a
binary string level) as a feasible solution used as a reference (the
antigen). After increasing the number of feasible solutions in the
population, the outer GA continued with the optimization process.
The main advantage of this technique is its simplicity. In further
AIS-based approaches [111,112] in which the clonal selection
principle was adopted [113], feasibility rules were incorporated
as a way to rank antibodies (i.e., solutions) based on their affinity
(objective function values and sum of constraint violation). In
another approach based on a T-cell model, in which three types
of cells (solutions) are adopted [114], the replacement mechanism
uses feasibility rules as the criteria to select the survivors for the
next iteration.

Liu et al. [115] proposed the organizational evolutionary
algorithm (OEA) to solve numerical optimization problems. When
extending this approach to constrained problems, a static penalty
function and feasibility rules are compared as constraint-handling
techniques. As expected, the static penalty function required
specific values for each test problem solved. Although the use of
the static penalty function allowed OEA to provide slightly better
results than the use of feasibility rules, such results were only
comparable with respect to state-of-the-art algorithms used to
solve CNOPs.

Sun and Garibaldi [116] proposed amemetic algorithm to solve
CNOPs. In this approach, the search engine is an estimation of
distribution algorithm (EDA) while the local search operator is
based on SQP. Some knowledge, called history, is extracted from
the application of the local search and is given to the EDA with
the aim of improving its performance. This knowledge consists
in the application of a variation operator which uses the location
of the best solution found so far to influence the generation of
new solutions. Feasibility rules are used as the constraint-handling
mechanism in the selection process. In fact, a comparison against
a version of this approach but using stochastic ranking as the
mechanism to deal with the constraints showed that the feasibility
rules weremore suitable for this approach. The approach provided
competitive results with respect to state-of-the-art algorithms.
However, the local search adopted requires gradient information.

Ullah et al. [117,118] adopted feasibility rules in their agent-
based memetic algorithm to solve CNOPs. This approach is
similar to a GA, and adopts the SBX operator to generate
offspring which are subjected to a learning process that lasts
up to four life spans. This actually works as a mutation
operator whose use is based on a proper selection being made
by each individual (agent). The measures used to select an
operator are based on the success of each of them to generate
competitive offspring. The communication among agents in the
population is restricted to the current population. This approach
seems to be sensitive to the value of the parameter associated
with the communication mechanism. The results obtained were
comparable with previously proposed approaches.

Ma and Simon [119] proposed an improved version of the
biogeography-based optimization (BBO) algorithm. The idea is
to add a migration operator inspired on the blend crossover
operator used in real-coded GAs. BBO is inspired on the study of
distributions of species over time and space and it adopts two
variation operators: migration (or emigration) and mutation. A
habitat (solution) has a habitat suitability index, HSI (i.e., the
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fitness function). High-HSI solutions have a higher probability
to share their features with low-HSI solutions by emigrating
features to other habitats. Low-HSI solutions accept a lot of
new features from high-HSI solutions by immigration from other
habitats. Feasibility rules are used in this approach as the
constraint-handling mechanism. The approach was found to be
competitive with respect to PSO-based approaches and one GA-
based algorithm. However, no further comparisons against state-
of-the-art were reported.

Ali and Kajee-Bagdadi [120] compared feasibility rules with re-
spect to the superiority of feasible points proposed by Powell and
Skolnick [42] in a DE-based approach, in which a modified version
of the pattern search method was used as a local search operator.
They also compared their approach with respect to another based
on a GA and found the former to be more competitive. The pro-
posed DE-based approach presented a comparable performance
with respect to other DE-based algorithms.
Discussion

As should be evident from the previous review, the feasibility
rules have been very popular in constrained optimization using
NIAs. This is due to their simplicity and flexibility, which makes
them very suitable to be coupled to any sort of selection
mechanism relatively easily. Their main drawback is that they are
prone to cause premature convergence. This is due to the fact that
this sort of scheme strongly favors feasible solutions. Thus, if no
furthermechanisms are adopted to preserve diversity (particularly
paying attention to the need to keep infeasible solutions in the
population), this approach will significantly increase the selection
pressure [62].

Some approaches use special operators [78,93] but their role
can be considered as secondary, because feasibility rules provide
the main bias during the search. The use of feasibility rules
has favored the development of approaches with self-adaptive
variation operator selection mechanisms in DE [73,74,98], PSO
[88,89] and GAs [98–100].

There are several empirical studies involving different NIAs
in which feasibility rules were adopted as the constraint-
handlingmechanism. There are also studies centered on parameter
control of DE when solving CNOPs, either exclusively related
to DE parameters [71] or also coupled to parameters required
by diversity mechanisms [68]. Furthermore, there is empirical
evidence of the importance of defining the tolerance adopted
for equality constraints [72], and the definition of termination
criteria [70] when using feasibility rules. Additionally, there are
empirical studies on PSO variants to solve CNOPs [11,79,83] and
also on Differential Evolution variants [121] in which feasibility
rules have been adopted.

Feasibility rules have been the most preferred constraint-
handling mechanism in recent NIAs such as those based on
AISs [107–114], BBO [119], OEA [115], ABC [91–94], BFOA [95],
cultural algorithms [75], and hybrid approaches such as DE-
PSO [85,105,106] and SA-PSO [82]. Memetic approaches have also
adopted feasibility rules as theway to dealwith CNOPs in a number
of proposals [76,94,101,116–118,120,122].

Finally, there have been recent proposals to improve the
traditional feasibility rules [90].

3.2. Stochastic ranking

Stochastic ranking (SR) was originally proposed by Runarsson
and Yao [6,54]. SR was designed to deal with the inherent
shortcomings of a penalty function (over and under penalization
due to unsuitable values for the penalty factors) [6]. In SR, instead
of the definition of those factors, a user-defined parameter called Pf
controls the criterion used for comparison of infeasible solutions:
(1) based on their sum of constraint violation or (2) based only on
Fig. 2. Stochastic ranking sort algorithm [6]. I is an individual of the population.
φ(Ij) is the sum of constraint violation of individual Ij . f (Ij) is the objective function
value of individual Ij .

their objective function value. SR uses a bubble-sort-like process
to rank the solutions in the population as shown in Fig. 2.

SR was originally proposed to work with an ES [6] in its
replacement mechanismwhich indeed requires a ranking process.
However, it has been used with other NIAs where the replacement
mechanism is quite different as in the approach reported by Zhang
et al. [123]. In this case, the authors used SR with a DE variant
proposed by Mezura-Montes et al. [63], in which more than one
trial vector is generated per each target vector. Moreover, the
parameter Pf was manipulated by a dynamic parameter control
mechanism in order to conveniently decrease it, aiming to favor
diversity during the initial generations of the search (infeasible
solutions close to the feasible region are maintained) whereas
only feasible solutions are kept during the final part of the search.
The approach was compared against state-of-the-art algorithms
and the results obtained were very competitive while requiring
a low number of fitness function evaluations. However, the main
disadvantage of this approach is that it requires the definition of
the number of trial vectors generated by each target vector.

There are other approaches which combine DE with SR such as
the proposal of Liu et al. [124] in which the diversity promoted
by SR is exploited in a traditional DE variant. In a further paper,
Liu et al. [125] used the concept of directional information
related to the choice of the most convenient search direction
based on the DE mutation operator and an adaptive population
partitioning scheme. This approach was incorporated into a DE-
based algorithm with SR, in order to deal with the constraints of a
problem. These two algorithms were assessed with a fairly limited
set of test problems.

SR has also been combinedwith ant colony optimization (ACO).
Leguizamón and Coello Coello in [126] added SR to an ACO
version for dealing with CNOPs. A comparison against traditional
penalty functions showed that SR provided better andmore robust
results in a set of well-known benchmark problems. However, the
approach presented some difficulties to find feasible solutions for
some test problems.

SR has been further developed by Runarsson and Yao [127]
in one of the earliest approaches focused on using fitness
approximation for constrained numerical optimization. In this
approach k-nearest-neighbors (NN) regression is coupled to SR.
The authors found that the simplest NN version (using k = 1)
provided the most competitive performance in a set of benchmark
problems.

In a further paper, Runarsson and Yao [54] improved their ES
by adding a differential mutation similar to that used in DE. The
authors concluded that a good constraint-handling mechanism
needs to be coupled to an appropriate search engine.
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Zhang et al. [128] improved SR by giving the best feasible so-
lutions a higher probability of being chosen, in an attempt to de-
termine the search direction in the differential mutation added
in [54]. However, the approach performed better with larger pop-
ulations and more generations, which may be impractical in the
solution of real-world problems with a high computational cost.

Mallipeddi et al. [129] proposed a two-population evolutionary
programming (EP) approach with an external memory to store
solutions based on an Euclidean distance measure that aimed to
promote diversity. SR was used as a constraint-handling technique
and it was compared with respect to the use of feasibility rules.
Although the importance of the diversity mechanism based on
the external memory was evident in the solution of some CNOPs,
there was no clear evidence of the superiority of SR over the use of
feasibility rules in this algorithm.

The simplicity of SR has made it suitable for being used in
different domains. Fan et al. [130] solved robust layout synthesis of
MEMS components by a DE-SR algorithm in which the vectors are
ranked with SR before the DE operators are applied. After that, the
population is split into two sets based on SR. The first set contains
the vectors with the highest ranks while the second set includes
the remaining vectors. The base vector and the vector which
determines the search direction are chosen at random from the
first set. The other vector is chosen at random from the second set.
The number of vectors in each set is determined by a user-defined
parameter. Although this approach obtained competitive results
in the aforementioned problem, its use has not been extended
to other problems to the authors’ best knowledge. Huan-Tong
et al. [131] used SR with its original search algorithm (an ES)
for solving reactive power optimization problems. The authors
reported a decrease of about 4% of the initial loss reported for
such problems. Fonseca et al. [132] used ACOwith SR with the aim
of avoiding the careful fine-tuning of the penalty factors required
for the solution of discrete structural optimization problems. The
results of the proposed approach outperformed those obtained
with traditional penalty functions. However, this approach has not
been extended to other optimization problems to the authors’ best
knowledge.
Discussion

SR, in its original version whose search algorithm is an ES [6],
has been applied to different domains [131]. Furthermore, in a
similar way to the behavior found for the feasibility rules, SR has
been combined with DE [123,124,130], although no actual ranking
process is considered in the original DE algorithm. Nevertheless,
this induced ranking mechanism in DE has motivated the use
of special differential mutation variants specifically designed to
solve CNOPs [123,124]. Also, SR has been coupled to other NIAs
such as EP (in which the replacement mechanism uses a ranking
process [129]), and ACO [126,132]. SR has also been improved by
its authors by combining ESwith themutation operator adopted in
DE [54]. Finally, SR has also been employed in one of the fewknown
efforts to apply fitness approximation techniques to CNOPs [127].

3.3. ε-constrained method

One of the most recent constraint-handling techniques re-
ported in the specialized literature is the ε-constrained method
proposed by Takahama and Sakai [133]. This mechanism trans-
forms a CNOP into an unconstrained numerical optimization prob-
lem and it has two main components: (1) a relaxation of the limit
to consider a solution as feasible, based on its sum of constraint vi-
olation, with the aim of using its objective function value as a com-
parison criterion, and (2) a lexicographical ordering mechanism in
which theminimization of the sumof constraint violation precedes
the minimization of the objective function of a given problem. The
value of ε, satisfying ε > 0, determines the so-called ε-level com-
parisons between a pair of solutions x⃗1 and x⃗2 with objective func-
tion values f (x⃗1) and f (x⃗2) and sums of constraint violation φ(x⃗1)
andφ(x⃗2) (which can be calculated as stated in Eq. (7)) as indicated
in Eqs. (8) and (9).

(f (x⃗1), φ(x⃗1)) <ε (f (x⃗2), φ(x⃗2))

⇔

f (x⃗1) < f (x⃗2), if φ(x⃗1), φ(x⃗2) ≤ ε
f (x⃗1) < f (x⃗2), if φ(x⃗1) = φ(x⃗2)
φ(x⃗1) < φ(x⃗2), otherwise

(8)

(f (x⃗1), φ(x⃗1)) ≤ε (f (x⃗2), φ(x⃗2))

⇔

f (x⃗1) ≤ f (x⃗2), if φ(x⃗1), φ(x⃗2) ≤ ε
f (x⃗1) ≤ f (x⃗2), if φ(x⃗1) = φ(x⃗2)
φ(x⃗1) < φ(x⃗2), otherwise.

(9)

As can be seen, if both solutions in the pairwise comparison
are feasible, slightly infeasible (as determined by the ε value) or
even if they have the same sum of constraint violation, they are
compared using their objective function values. If both solutions
are infeasible, they are compared based on their sum of constraint
violation. Therefore, if ε = ∞, the ε-level comparison works by
using only the objective function values as the comparison criteria.
On the other hand, if ε = 0, then the ε-level comparisons <0
and ≤0 are equivalent to a lexicographical ordering in which the
minimization of the sum of constraint violation φ(x⃗) precedes the
minimization of the objective function f (x⃗), as promoted by the use
of feasibility rules [45].

Takahama and Sakai [134] have an earlier approach called
the α-constrained method. In this case, the authors perform
α-level comparisons which work in a similar way as those of the
ε-constrained method. However, unlike the ε value which
represents a tolerance related to the sum of constraint violation,
the α value is related to the satisfaction level of the constraints for
a given solution. Therefore, the condition to consider the objective
function as a criterion in a pairwise comparison is based on the
aforementioned satisfaction level of both solutions. If both levels
are higher than an 0 ≤ α ≤ 1 value, the comparison can
be made by using the objective function value, regardless of the
full feasibility of the solutions. The main drawback of the α-
constrained method with respect to the ε-constrained method is
that the first may require user-defined parameters to compute the
satisfaction level [134],while the seconduses the sumof constraint
violation which requires no additional parameters (see Eq. (7)).
Nonetheless, in both mechanisms, the careful fine-tuning of α and
ε remains as the main shortcoming. The authors have proposed
dynamic mechanisms [135,136] which have allowed these two
algorithms to provide competitive results.

The α-constrained method was coupled to a GA in [134], while
the use of the Nelder–Mead method was reported by the same
authors in [135]. The results obtained by using multiple simplexes
allowed the approach to obtain competitive results with respect
to those found by SR [6]. Wang and Li adopted the α-constrained
method in [137], using DE as their search engine, and improved
the results reported in [135]. Also, the ε-constrained method was
combined with a hybrid PSO–GA algorithm by Takahama et al.
in [133]. The approach considered the reproduction for particles
as in a GA with the goal to tackle the premature convergence
observed in a previous version in which the α-constrainedmethod
was coupled only to PSO [138]. The hybrid approach was tested
only in one benchmark function and two engineering design
problems [133].

A successful attempt to find a more suitable search algorithm
for the ε-constrained method was reported in [136], where a DE
variant (DE/rand/1/exp) and a gradient-based mutation operator
(acting as a local search engine) were employed. This version
obtained the best overall results in a competition on constrained
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real-parameter optimization in 2006, in which a set of 24 test
problemswere solved [139]. Gradient-basedmutationwas applied
to newly infeasible generated trial vectors in order to make them
feasible. Evidently, the main limitation of this sort of approach
is that gradient information must be computed. Also, additional
parameters must be fine-tuned by the user in this approach.
Finally, it is worth remarking that there seem to be no studies that
analyze the role of adopting gradient-based information in an EA
used for constrained optimization.

Further improvements have beenproposed to the ε-constrained
method. In [140], Takahama and Sakai improved the dynamic con-
trol for the ε value by using an adaptive approach which allowed a
faster decrease in its value if the sum of constraint violation was
reduced quickly enough during the search process. This mecha-
nism produced improved results when dealing with CNOPs having
equality constraints. However, in this case, there is also an addi-
tional user-defined parameter, which is related to the adaptation
process. Additionally, the authors did not analyze the performance
of this variant in CNOPs that have only inequality constraints.

In [141], Takahama and Sakai improved their approach by
adding a decreasing probability on the use of the gradient-based
mutation. They also introduced two newmechanisms to deal with
boundary constraints: (1) one based on a reflecting back process
for variable values lying outside the valid limits when DEmutation
was applied, and (2) another one that consisted in assigning
the limit value to a variable lying outside a boundary when the
gradient-basedmutationwas computed.With the aforementioned
changes, the authors could obtain feasible solutions for one highly
difficult problem known as g22 [139]. The main drawback of this
improved version was the addition of user-defined parameters
for the dynamic mechanism used by the gradient-based mutation
operator. A further improved version of the aforementioned
algorithm was proposed by Takahama and Sakai in [142], where
an archive to store solutions and the ability of a vector to generate
more than one trial vector [143] were added. The approach
has provided one of the most (if not the most) competitive
performance in different sets of test problems. However, the
algorithm still depends on the gradient-based mutation to provide
such competitive results.

Motivated by its competitive performance, the ε-constrained
method has been adopted as a constraint-handling technique in
other proposals. This is the case of the jDE algorithm proposed
by Brest et al. [144], in which the authors propose to self-adapt
the parameters of DE using stochastic values. In a version called
ε-jDE [145], the ε-constrained method was one of the improve-
ments proposed, besides the use of additional DE variants and a
reduction scheme of the population size. Brest [145] also added
a novel way to adapt the ε value, but additional user-defined
parameters were introduced. However, the results obtained by
ε-jDE were highly competitive in a set of 24 well-known bench-
mark problems. An improved version called jDEsocowas proposed
in [146], where an aging mechanism to replace those solutions
stagnated in a local optimum was added. Moreover, only the 60%
of the population was compared by the ε-constrained method and
the remaining 40%was compared by only using the objective func-
tion value. The results were improved but two parameters, the
population ratio and an aging probability were added to the algo-
rithm.

Zeng et al. [147] employed the ε-constrained method with a
ε variation process based on the dynamic decrease mechanism
originally proposed in [27]. A crossover operator biased by the
barycenter of the parents, plus a uniform mutation were used as
variation operators. The approach was tested in 24 test problems
and the results were found to be competitive with respect to the
ε-constrained DE [136]. An improved version of this approach was
proposed by Zhang et al. in [148], where a gradient-basedmutation
similar to the one proposed by Takahama and Sakai [136] was
added. The results obtained by this approach were compared with
respect to those obtained by the ε-constrained DE. The approach
added parameters related with the variation of the ε value as well
as those required by the gradient-based mutation.

Mezura-Montes et al. used the ε-constrained method within
the ABC algorithm [121]. Additionally, a dynamic mechanism
to decrease the tolerance for equality constraints was consid-
ered. The results obtained outperformed those reported by a
previous ABC version in which feasibility rules were used as
the constraint-handling technique [93]. However, this approach
showedpremature convergence in some test problemshaving high
dimensionality.
Discussion

The ε-constrained method and its predecessor, the α-
constrained method, have been applied to different NIAs such as
GAs [134], PSO [138], hybrid PSO–GA [133] and (mainly) to DE
[136,137]. Even mathematical programming methods have been
used with this approach [135].

The improvements on the ε-constrained method rely on the
use of the gradient-based local search operator [141], the way the
ε value is fine-tuned [135,136,140], and the usage of an archive
to store solutions [142]. On the other hand, there are approaches
whose constraint-handling mechanism was originally based on
feasibility rules but then switched to the ε-constrained method:
for example, the approach reported in [145] which is based on DE,
and the approach reported in [121], which is based on ABC.

Finally, the ε-constrained method has been coupled to other
NIAs with different variation operators [147], but the need of the
gradient-basedmutation to provide highly competitive results has
been emphasized in them [148].

3.4. Novel penalty functions

In spite of the fact that the two previous types of constraint-
handling techniques discussed avoid the use of a penalty function,
there are proposals based on such penalty functionswhich provide
very competitive results. Here, we will briefly review the most
representative work in this direction.

Xiao et al. [149] used the so-called KS function in a static penalty
function to solve CNOPs. However, even when the approach was
competitive in some test problems, it was clearly outperformed in
others.

Deb and Datta [150] revisited the static penalty function by
proposing a method to compute a suitable value for a single
penalty factor, assuming the normalization of the constraints.
As a first step a bi-objective problem was solved by a multi-
objective evolutionary algorithm (MOEA) (e.g., NSGA-II [151]).
The first objective was the original objective function while the
second was the sum of constraint violation φ = 0. Furthermore,
φ was restricted by a tolerance value (in a similar way as the
ε-constrained method [136] but with a fixed value in this case).
The tolerance value was determined by a user-defined parameter
based on the number of constraints of the problem. After a certain
number of generations (also defined by the user), a cubic curve to
approximate the current obtained Pareto front was generated by
using four pointswhoseφ valueswere belowa small tolerance. The
penalty factor was then defined by calculating the corresponding
slope at φ = 0. After that, a traditional static penalty function was
used to solve the original CNOP by using a local search algorithm
(Matlab’s fmincon() procedure was used by the authors) using
the solution with the lowest φ value from the population of
the MOEA as the starting point for the search. The termination
criterion for the local search algorithm was the feasibility of the
final solution combined with a small tolerance for the difference
between objective function values of the starting point and the
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final one. The approach was tested on a set of six benchmark
problems in which it obtained competitive results, while requiring
a significant lower number of evaluations with respect to those
reported by other state-of-the-art NIAs. The approach, however,
requires the calibration of the MOEA as well as a tolerance value
for the constraint related to the sum of constraint violation.
Additionally, it also requires the number of generations to define
the interval of use for the local search and, finally, the tolerance
for the termination criterion of the local search. It is worth noting
that this approach considered only inequality constraints. In [152],
Datta and Deb extended their approach to deal with equality
constraints, too. The extension consisted in two main changes:
(1) the punishment provided by the penalty value obtained
by the bi-objective problem was increased if the local search
failed to generate a feasible solution and (2) the small tolerance
used for choosing the four points employed to approximate the
cubic curve was relaxed. Both changes were motivated by the
difficulties to generate feasible solutions caused by the presence
of equality constraints. The results obtained in eight well-known
test problems were highly competitive with respect to two state-
of-the-art approaches based on PSO and DE.

Tasgetiren and Suganthan [153] proposed the use of a dynamic
penalty function coupled with a multi-population differential
evolution algorithm. In this approach, the authors allowed a
user-defined number of sub-populations to evolve independently.
However, the selection of the solutions to compute the differential
mutation could be made by considering all sub-populations.
Furthermore, a regrouping process, similar to a recombination
operator among best solutions in each sub-population, was carried
out after a number of generations, defined by the user. The
approachwas tested on 24 test problems, and the authors reported
a high sensitivity of their approach to the parameters related with
the severity of the penalty.

Farmani and Wright [154] proposed a two-parts adaptive
penalty function in which no penalty factors need to be defined
by the user. The first part increases the fitness of the infeasible
solutions with a better value of the objective function with respect
to the best solution in the current population. The best solution
can be the feasible solution with the best objective function value.
However, if no feasible solutions are present in the population,
the best solution is the infeasible solution with the lowest sum
of constraint violation. This first part of the penalization focuses
on promoting diversity in promising regions of the search space,
regardless of their feasibility. The second part modifies the fitness
values of the worst infeasible solutions (those with the highest
sum of constraint violation and a poor objective function value)
aiming to make them similar to the fitness of the solution with
the worst value of the objective function. The aim is to generate
more solutions in the boundaries of the feasible region but with
better values of the objective function. In spite of its lack of
user-defined penalty factors, the approach was computationally
expensive, since it required more than one million evaluations to
provide competitive results in a set of 11 test problems.

Puzzi and Carpinteri [155] explored a dynamic penalty function
based on multiplications instead of summations in a GA-based
approach. However, this approach performed well in problems
having only inequality constraints.

Tessema and Yen [156] used the number of feasible solutions
in the current population to determine the penalty value assigned
to infeasible solutions in a two-penalty based approach. This
parameterless penalty function allows, based on the feasibility of
solutions in the population, to favor slightly infeasible solutions
having a good objective function value, as promoted in [62]. This
is done in the selection process by assigning such solutions a
higher fitness value. The approach obtained competitive results in
22 test problems. However, the number of evaluations required
was higher (500,000) than that required by other state-of-
the-art approaches (they require around 250,000 evaluations).
Furthermore, three mutation operators (which require three
mutation probabilities defined by the user) are required to
maintain the explorative capabilities of the approach.

Mani and Patvardhan [157] explored the use of an adaptive
penalty function in a two-population-GA-like-based approach in
which the first population evolves by using a parameter-free
adaptive penalty function based on the objective function and
the constraint violation of the best solution available so far in
the population. The other population evolves based on feasibility
rules. Then, both populations exchange their best solutions plus an
additional percentage of randomly chosen solutions. The approach
was tested on a set of test problems. However, the approach
required parameters related to themigration process aswell as the
variation operators, as well as a local search mechanism based on
gradient information.

In an analogous way as Coello [29] used co-evolution to
optimize penalty factors to solve CNOPs by using two-nested GAs,
He et al. [158] used two PSO algorithms instead. Their approach
was used to solve a set of engineering design problems and the
results were encouraging. However, as in the approach using GAs,
this one requires the definition of parameter values for the two PSO
algorithms.

Wu [159] proposed an AIS which combines the metaphor of
clonal selection with idiotypic network theories. To deal with
CNOPs, an adaptive penalty function was defined to assign its
affinity to each antibody. Different operators based on the clonal
selection principle, affinity maturation and the bone marrow
operator were applied to generate new solutions. The approach
was tested on four benchmark nonlinear programming problems
and four generalized polynomial programming (GPP) problems.
Discussion

In spite of their well-documented shortcomings, penalty
functions are still being used and improved in the specialized
literature, as has been made evident in the previously discussed
approaches. The open question stated in Section 2.1 about which
penalty function is the most competitive might find an answer
here, because the most frequent are approaches based on adaptive
penalty functions [154,156–159], in which (interestingly enough)
a GA is used, in most cases, as the search engine [154,156–158].
Dynamic penalty functions, which adopt the current generation
number to control the decrement of the penalty factor are
still popular [153,155]. Finally, even traditional static penalty
functions have been scarcely proposed as new constraint-handling
methods [149]. Additionally, there are other approaches in which
more elaboratemethods are used to define the appropriate penalty
factors andwhich have obtained highly competitive results (see for
example [150,152]).

3.5. Novel specialized operators

Leguizamón and Coello Coello [160] proposed a boundary
operator based on conducting a binary search between a feasible
and an infeasible solution. Furthermore, three strategies to select
which constraint (if more than one is present in a CNOP) is
analyzed. The search algorithmwas an ACO variant for continuous
search spaces. The approach provided highly competitive results,
mostly, as expected, in problems having active constraints.
However, it was outperformed in others. The main disadvantage
of the approach is the need of an additional constraint-handling
technique (a penalty function was used in this case) to deal with
solutions which are on the boundary of the constraint treated but
violate other constraints. Furthermore, no other search algorithms
which aremore popular in the solution of CNOPs (e.g., DE, ES) have
been coupled to this proposed boundary operator.
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Huang et al. [161] proposed a boundary operator in a two-
population approach. The first population evolves by using DE
as the search engine, based only on the objective function
value (regardless of feasibility). The second population stores
only feasible solutions and the boundary operator uses solutions
from both populations to generate new solutions, through the
application of the bisection method in the boundaries of the
feasible region. Furthermore, the Nelder–Mead simplex method
was used as a local search operator applied to the best feasible
solutions. Unlike Leguizamón and Coello’s proposal, this approach
does not require an additional constraint-handling technique, but
a feasible solutions is needed at the beginning of the process. The
approachwas tested only in a few problems having only inequality
constraints and it required different parameter values for each test
problem, showing some sensitivity to them.

Wanner et al. [162] proposed the Constraint Quadratic Approx-
imation (CQA), which is a special operator designed to restrict an
evolutionary algorithm (a GA in this case) to sample solutions in-
side an object with the same dimensions of the feasible region of
the search space. This is achieved by a second-order approxima-
tion of the objective function and an equality constraint, which is
updated at each generation. A subset of solutions from the pop-
ulation was used to build the quadratic approximations. The op-
erator was applied based on a number of generations defined by
the user. Moreover, a static penalty function was used to guide
the GA search and the equality constraint was transformed into
two inequality constraints by using a small ϵ tolerance. The ap-
proach was tested on a small set of problems but it could only
dealwith onequadratic equality constraint.With the aimof solving
CNOPswithmore than one equality constraint, Peconick et al. [163]
proposed the Constraint Quadratic Approximation for Multiple
Equality Constraints (CQA-MEC). This was achieved by an iterative
projection algorithm which is able to find points satisfying the ap-
proximated quadratic constraints with a low computational over-
head. However, CQA-MEC still requires the static penalty function
to work as its predecessor (CQA). Araujo et al. [164] extended the
previous approaches to deal with multiple inequality constraints
by using an special operator in which the locally convex inequality
constraints are approximated by quadratic functions, while the lo-
cally non-convex inequality constraints are approximatedby linear
functions. The dependence of the static penalty function remains in
this last approach.

Ullah et al. [165] proposed an agent-based memetic algorithm
to solve CNOPs, in which the authors adopt a special local operator
for equality constraints, which is one of five life span learning
processes. After a selection process in which pairs of agents
(i.e., solutions) are chosen based on their fitness and location
in the search space, the SBX operator is applied. Thereafter,
the special operator for equality constraints is applied to some
individuals in the population as follows: the satisfaction of a
randomly chosen equality constraint is verified for a given solution.
If it is not satisfied, a decision variable, also chosen at random,
is updated with the aim to satisfy it. If the constraint is indeed
satisfied, two other variables are satisfied in such a way that the
constraint is still satisfied (i.e., the constraint is sampled). This
special operator is only applied during the early stages of the search
because it reduces the diversity in the population. The four other
learning processes were taken from a previous version discussed
in an earlier paper [118]. These processes are applied based on
their success. The approach was tested on a set of benchmark
problemswith equality constraints and the resultswere promising.
However, the approach requires additional parameters to be
defined by the user (e.g., the number of generations during which
the operator must be applied, the number of decision variables
to be updated in the equality constraint). In fact, the authors
do not provide any guidelines regarding the way in which these
parameters must be tuned.
Lu and Chen [166] proposed an approach called self-adaptive
velocity particle swarm optimization (SAVPSO) to solve CNOPs.
This approach relies on an analysis based on three elements: (1) the
position of the feasible region with respect to the whole search
space, (2) the connectivity and the shape of the feasible region,
and (3) the ratio of the feasible region with respect to the search
space. As a result of this analysis, the velocity update formula
was modified in such a way that each particle has the ability to
self-adjust its velocity according to the aforementioned features of
the feasible region. The fitness of a solution is assigned based on
its feasibility: feasible solutions are evaluated by their objective
function value, while infeasible solutions are evaluated by their
sum of constraint violation. The approach was tested on a set of
13 benchmark problems. The approach, however, showed some
sensitivity to some of its parameters.

Spadoni and Stefanini [167] transformed a CNOP into an
unconstrained search problem by sampling feasible directions
instead of solutions of a CNOP. Thereafter, three special operators,
related to feasible directions for box constraints, linear inequality
constraints, and quadratic inequality constraints, are utilized to
generate new solutions by using DE as the search engine. The
main contribution of the approach is that it transforms a CNOP
into an unconstrained search problem without using a penalty
function. However, it cannot deal with nonlinear (either equality
or inequality) constraints.

Wu et al. [168] and Li and Li [169] modified variation operators
in NIAs in such a way that the recombination of feasible and
infeasible solutions led to the generation ofmore feasible solutions.
An adaptivemechanism tomaintain infeasible solutionswas added
to the approach. This latter version was specifically based on DE’s
variation operators [169].
Discussion

The recent proposals based on the use of special operators that
have been revised here emphasize the current focus on generating
proposals which are easier to generalize. Such is the case of
the definition of boundary operators in ACO [160] and DE [161].
Moreover, there are operators to approximate equality [162,163,
165] and inequality [164] constraints. Finally, there have also
been attempts to modify variation operators of some NIAs aiming
to tailor them to a certain (desirable) behavior when solving
CNOPs [166,168,169].

3.6. Use of multi-objective concepts

In spite of the fact that empirical evidence has suggested that
multi-objective concepts are not well-suited to solve CNOPs, there
are highly competitive constraint-handling techniques based on
such concepts.

Motivated by the idea of keeping suitable infeasible solu-
tions [27,43,62,170] Ray et al. [171] proposed the Infeasibility
Driven Evolutionary Algorithm (IDEA) whose replacement process
requires the definition of a proportion of infeasible solutions to re-
main in the population for the next generation. IDEA works in a
similar way as NSGA-II [151]. Nonetheless, an additional objective,
besides the original objective function, is added. This objective con-
sists on the constraint violationmeasure, whose value is computed
as follows: each individual in the population has a rank for each
constraint of the CNOP being solved and each rank value depends
on the constraint violation value for such solution (lower values are
ranked higher because they represent a smaller violation for a con-
straint). If a solution satisfies the constraint, a zero rank is assigned
to it. After each solution is ranked for each constraint, the viola-
tion measure is computed as the sum of ranks per solution. After
the offspring are generated, the union of parents and offspring is
split in two sets, one with the feasible solutions and the other with
the infeasible ones. Non-dominated sorting is used to rank both
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sets separately and, based on the proportion of desired feasible so-
lutions, they are chosen first from the infeasible set and later on,
the best ranked feasible solutions are chosen. IDEA is able to work
with CNOPs and also with constrained numerical multi-objective
optimization problems (CNMOPs). However, its performance has
been more competitive when solving CNMOPs. The usage of local
search, sequential quadratic programming in this case, was added
to IDEA in the so-called Infeasibility Empowered Memetic Algo-
rithm (IMEA) [172]. The approach was tested in eighteen scalable
test problems and its performance improved with respect to the
original IDEAwhen solving CNOPs. However, the local search algo-
rithm adopted requires gradient calculation.

Reynoso-Meza et al. [173] proposed the spherical-pruning
multi-objective optimization differential evolution (sp-MODE)
to solve CNOPs, which were transformed into three-objective
optimization problems, where the first objective was the original
objective function, the second objective was the sum of constraint
violation for inequality constraints and the third objective was the
sum of constraint violation for equality constraints. An external
archive was used to store non-dominated solutions. The sphere-
pruning operator aims to find the best trade-off between feasibility
and the optimization of the objective function. The approach
required the definition for some parameter values depending of
the number of constraints. However, the sphere-pruning operator
might be an interesting operator to be applied in some parts of the
search.

Wang et al. [174] proposed the use of Pareto dominance in
a Hybrid Constrained EA (HCOEA) to solve a CNOP which was
transformed into a bi-objective optimization problem. In this case,
the first objective is the original objective function while the
second one is the sum of constraint violation. A global search
carried out by an EA is coupled to a local search operator based on
a population division scheme and on the use of the SPX operator.
In both cases, Pareto dominance is the criterion adopted to select
solutions. The approach was tested in 13 benchmark problems
and the results were found to be competitive with respect to four
state-of-the-art algorithms. However, the approach requires the
definition of two crossover probabilities (one for the global search
and another for the local search) as well as the number of subsets
in which the population will be divided. HCOEA showed some
sensitivity to this last parameter.

Wang et al. [175] proposed an steady state EA to solve a CNOP
which was also transformed into a bi-objective problem. At each
generation, a set of offspring solutions are generated by applying
orthogonal crossover to a randomly chosen set of solutions in
the current population. After that, the non-dominated solutions
obtained from the set of offspring are chosen. If there are no
feasible offspring, two randomly chosen solutions from the set of
parents will be replaced by the offspring which dominate them.
Alternative, solutions can also be chosen if they have a lower sum
of constraint violation. Furthermore, the individualwith the lowest
sum of constraint violation will replace the worst parent in the
population. If there are feasible offspring, based on a user-defined
probability, two randomly chosen parents will be replaced by
two offspring which dominate them. Otherwise, the worst parent,
based on feasibility rules [45], will be replaced by one offspring.
After the steady state replacement, all solutions are affected by an
improved version of the BGA mutation operator [176] based on a
user-defined probability. The approach was tested in a set of 11
test problems and showed competitive results in some of them,
but premature convergence was observed in others. Furthermore,
some additional parameters need to be defined by the user.

Wang et al. [177], in their adaptive trade-off model (ATM)
evolution strategy (ATMES), divided the search in three phases
based on the feasibility of solutions in the population: (1) only
infeasible solutions, (2) feasible and infeasible solutions, and
(3) only feasible solutions. Owing to the fact that the CNOP was
transformed into a bi-objective problem, the selection in the first
phase was based on Pareto dominance. From the Pareto front
obtained, the solutions were ranked in ascending order based on
the sum of constraint violation and the first half was chosen to
survive for the next generation and was deleted from the set.
The process was repeated until the desirable number of solutions
was achieved. The second phase was biased by a fitness value
which is adapted based on the percentage of feasible solutions in
the population. The last stage was biased only by the objective
function value. The approach provided competitive results in 13
test problems. However, ATMES required some parameters related
to the tolerance for equality constraints and the stepsize employed
by the ES used as the search engine. This same ATM was coupled
by Wang et al. [178] with a NIA in which the offspring generation
was as follows: An offspring was generated by one of two variation
operator: (1) simplex crossover or (2) one of two mutations
(uniform mutation or improved BGA mutation). The approach,
besides being tested on a set of 13 benchmark problems, was used
to solve some engineering design problems. The results obtained
by the authors were found to be very competitive, but some cases
of premature convergence were reported. Another improvement
to the ATM, which is based on a shrinkingmechanism proposed by
Hernández-Aguirre et al. [59], was proposed by Wang et al. [179].
This approach, called Accelerated ATM (AATM), outperformed
both the original ATM and the approach proposed by Hernández-
Aguirre et al. However, additional parameters (which are required
by the shrinking mechanism) were introduced by the authors. The
ATM was coupled with DE in a recent approach [180], showing
an improvement in the results with respect to previous versions
of the same algorithm. Liu et al. [115] used the ATM in an EA but
with two main differences: (1) good point set crossover was used
to generate offspring and (2) feasibility rules were the criteria to
select solutions in the second stage of the ATM (at which there
are feasible and infeasible solutions in the current population). The
approach was tested in some benchmark problems. However, the
performance of the proposed crossover operator was not found
to be clearly better with respect to the previous version of this
approach reported by Wang et al. (in which an ES is adopted as
the search engine) [177].

Gong and Cai [181] used Pareto dominance in the many-
objective space defined by the constraints of a problem as a
constraint-handling mechanism in a DE-based approach. An or-
thogonal process was employed for both, generating the ini-
tial population and for applying crossover. Furthermore, the
ϵ-dominance concept [182] was adopted to update an external
archive in which the non-dominated solutions found during the
search were stored. Orthogonal crossover was applied after DE
generated the offspring population. In fact, an intermediate child
population was designed to store the offspring which were non-
dominated with respect to their parents. The aim is to perform a
non-dominance checking on the union of the parent population
and the offspring population as a replacement mechanism at the
end of each generation of the algorithm. Although the approach
provided competitive results in a set of 13 test problems, the con-
tribution of each of the additionalmechanisms adopted is not clear.
Additionally, no information is provided regarding the fine-tuning
required for the parameters required by this approach.

Li et al. [183] solved a CNOP which was also transformed into
a bi-objective optimization problem by using a PSO algorithm
in which Pareto dominance was used as a criterion in the pbest
update process and in the selection of the local-best leaders in
a neighborhood. In case of ties, the sum of constraint violation
worked as a tie-breaker. A mutation operator was also added to
keep the approach from converging prematurely. Additionally, a
small tolerance was used to consider as feasible to solutions that
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were slightly infeasible (this is similar to the ε-constrainedmethod
but with a fixed value instead of a dynamic one). The approachwas
tested only on three engineering design problems.

Venter and Haftka [184] also transformed a CNOP into a bi-
objective optimization problem and used PSO as their search
engine. However, the leader selection was based most of the
time on the sum of constraint violation, while the rest of the
time the criterion was one of the three following choices: (1) the
original objective function, (2) the crowding distance or (3) Pareto
dominance. The approach was tested on several benchmark
problems and some engineering design problems.

Wang et al. [185] used a hybrid selection mechanism based
on Pareto dominance and tournament selection into a Adaptive
Bacterial Foraging Algorithm (ABFA) to solve CNOPs. The approach
uses the so-called good nodes set method to initialize the
population, to perform crossover and to spread similar individuals
throughout the search space. The approach was tested in a set of
benchmark problems and in some engineering design problems,
providing competitive results in both cases.
Discussion

Based on the taxonomy proposed by Mezura-Montes and
Coello Coello in [53] and described in Section 2.4, both CNOP’s
transformations (both into a bi-objective problem and into a
general multi-objective problem, i.e., having more than two
objectives), have been popular in the literature. However, in
recent years, and perhaps motivated by the current challenges in
many-objective optimization [186], the use of transformation of a
CNOP into a bi-objective optimization problem has been preferred
[115,174,175,177–180,183–185], with respect to considering each
constraint as an independent objective [49,50,181]. Furthermore,
inmost cases, the use ofmulti-objective concepts is complemented
with other mechanisms (e.g., feasibility rules [175], ranking based
on the sum of constraint violation [115], ϵ-dominance [181]). This
aims to produce approaches that are competitive with respect to
state-of-the-art algorithms.

On the other hand, from the type of multi-objective concepts
adopted, both Pareto ranking [115,177–180] and Pareto domi-
nance [173–175,181,183–185] have been popular in recent ap-
proaches. Finally, the use of non-dominated sorting coupled to a
diversity mechanism which keeps good infeasible solutions has
also been reported [171], although this sort of scheme has been
less popular in the literature.

3.7. Ensemble of constraint-handling techniques

Motivated by the no free lunch theorems [187], Mallipeddi
and Suganthan [188] proposed an ensemble of four constraint
techniques: feasibility rules, stochastic ranking, a self-adaptive
penalty function and the ε-constrained method in a four sub-
population scheme designed to solve CNOPs. Two versions
were presented, one based on a modified version of a classical
evolutionary programming (EP) algorithm [129], and another
based on DE which was initially tested on eighteen scalable test
problems in [189] and further tested in [188]. Each constraint-
handling technique was used to evolve an specific sub-population.
Unlike typical island models in parallel NIAs, in which sub-
populations evolve separately, in the ECHT there is a close
communication among them since these sub-populations share
all of their offspring, i.e., an individual disregarded by its sub-
population may survive in another population. Based on their
experiments, the authors concluded that the ECHT performs better
than any of the constraint-handling techniques that it contains. The
approach was extensively tested on a set of 37 test problems. The
results obtained by both ECHT versions were highly competitive.
However, the main drawback of the approach is the calibration
required (from the user) for each of the constraint-handling
techniques adopted.
Elsayed et al. [122] proposed a DE-based algorithm where
the combination of four DE-mutations, two DE recombinations
and two constraint-handling techniques (feasibility rules and
ε-constrained method) generated sixteen variants which were
assigned to each individual in a single-population algorithm. The
rate of usage for each variant was based on its improvement
ability measured by its ability to improve solutions. Moreover,
a local search algorithm was applied to a random solution at
some generations. The approach was tested on a set of 18 test
problems with 10 and 30 dimensions, showing a very competitive
performance. Its main drawback, as in the previous approach
mentioned in this section, is the number of parameters to be tuned
by the user.

A similar idea was presented in a combination of two DE vari-
ants and a variable neighborhood search with three constraint-
handling techniques (feasibility rules, ε-constrained method, and
an adaptive penalty function) by Tasgetiren et al. [190]. The ap-
proach was tested on eighteen test scalable test problems in 10D
and 30D. No comparisons nor discussion were included in the pa-
per but it is clear that the constraint-handling mechanisms (with
the exception of the feasibility rules) must be fine-tuned by the
user.
Discussion

The ECHT opens a new paradigm in constraint-handling
techniques: the design ofmechanisms that allows the combination
of approaches that can be seen as complementary (in terms of the
way in which they operate). Furthermore, the study of different
search algorithms (EP and DE in this case) also generates a new
research trend in which the aim is to understand better the
behavior of different NIAs when coupled to constraint-handling
techniques (some studies in this direction already exist, but
they have focused only on one particular type of constraint-
handling technique [11,97]). However, as the combination of
several techniques considerably enhances the capabilities of an
approach, it is also required to define parameter values for each
of these techniques in such a way that a proper balance is
maintained. In other words, parameter control [191] becomes an
important issue when designing ensemble approaches. It is also
worth noting the similarities between ensemble approaches and
hyper-heuristics as discussed later in this paper.

A summary of the main features of each constraint-handling
technique is provided in Table 1.

3.8. The importance of the search algorithm

Based on the ever increasing number of NIAs that have been
developed to solve optimization problems in the last few years
(e.g., PSO [5], DE [192], BFOA [96], ABC [193], ACO in its versions
for numerical search spaces [194], AIS [107]), plus the more
traditional approaches (i.e., GAs, EE, and EP [1]), how to decide
which algorithm to use for a particular application has become
an important issue. From the novel and popular constraint-
handling techniques previously discussed and the different search
algorithms employed, a few trends can be inferred, as briefly
discussed next.

The review presented in this paper suggests a preference for DE
over other NIAs [46,50,64–66,69,70,72,76,90,97,98,101,102,120,
122–125,128,130,136,140–142,144–146,153,161,169,173,180,181,
188–190]. Regarding DE-based approaches to solve CNOPs,most of
them use feasibility rules as their constraint-handling mechanism
[46,64–66,69,70,72,76,90,97,98,101,102,120,144,161,190].

SR [123–125,128,130], and the ε-constrained method [136,
140–142,145,146] have both been coupled to DE. Some recent
multi-objective-based constraint-handling techniques such as the
one that considers each constraint as an objective [50,181] and
the ATM [180] have both been coupled to DE as well. In this,
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Table 1
Summary of main features of the recent constraint-handling techniques: FR: feasibility rules, SR: stochastic ranking, ε-CM: ε-constrained method, NPF : novel penalty
functions, NSO: novel special operators,MOC: multi-objective concepts, ECHT : ensemble of constraint-handling techniques.

Technique Core concept Pros Cons

FR Three criteria for pairwise selection Simple to add into a NIA no extra parameters. May cause premature convergence.
SR Ranking process Easy to implement Not all NIAs have ordering in their processes

one extra parameter
ε-CM Transforms a CNOP into an unconstrained

problem
Very competitive performance Extra parameters required. Local search for

high performance
NPF Focus on adaptive and dynamic approaches Well-known transformation process. Some of them add extra parameters.
NSO Focus on boundary operators and equality

constraints
Tendency to design ‘‘easy to generalize’’ operators Still limited usage

MOC Focused on bi-objective transformation of a
CNOP

Both, Pareto ranking and dominance still popular May require an additional constraint-handling
technique

ECHT Combination of two or more
constraint-handling techniques

Very competitive performance Requires the definition of several parameter
values
it is particularly interesting to note that the ATM was originally
proposed with an ES [177]. However, the authors have reported
better results with the DE-based version [180]. Finally, adaptive
penalty functions [153] and the most recent version of the
ECHT [188,189], use both DE as their search engine.

GAs have remained as a popular choice of several researchers
and practitioners [98–100,103,115,134,147–150,152,154,156,157,
162,163,165,171,174,175,178]. From the GA-based approaches
revised in this paper, most of them are based on penalty
functions [149,150,152,154,156,157] followed by those based
on multi-objective optimization concepts [115,171,174,175,178].
Some others are based on the ε-constrained method [98,134,
147] and special operators [162,163,165]. It is worth noticing,
however, that some GA-based approaches [98,178] have also
been implemented using DE instead. In such cases, the authors
reported better results when using DE [98,180]. However, highly
competitive results were found with a GA in [99], where a
multiparent crossover seems to contribute to such performance.

PSO has been popular to solve CNOPs as well [11,49,79–
89,105,106,133,138,158,166,183]. The use of feasibility rules to
handle constraints has been the most popular choice in PSO-
based approaches [11,79–89,105,106]. Additionally, there are a
few approaches based on the ε-constrained method [133,138], on
penalty functions [158], on the use of special operators [166] and
on multi-objective optimization concepts [49,183].

ES have been chosen less often than any of the previous NIAs to
solve CNOPs [6,27,54,59,61,63,127,131,177] and they are mainly
associated with SR [6,54,127,131]. However, ES has also been
coupled with feasibility rules [59,61,62], with the ATM [177] and
with adaptive penalty functions [27].

Although ES and EP share characteristics in their original
versions, when dealing with CNOPs, the latter is clearly less
popular than the former. There is, for example, an approach
based on EP which adopts SR [129] and another one that was
coupled to the ECHT [188]. However, this last approachwas slightly
outperformed by the ECHT that uses DE instead [188].

In spite of the fact that ACO versions for continuous optimiza-
tion are relatively rare, some of them have been used to solve
CNOPs adopting, for example, SR [126,132] and special opera-
tors [160].

Regarding themost recent NIAs based on cooperative behaviors
of simple living organisms such as ABC and BFOA, the most
preferred constraint-handling mechanism has been the feasibility
rules for ABC [91–94] and BFOA [95]. There is also an attempt of
using the ε-constrained method coupled to ABC [121] and one of
using Pareto dominance in BFOA [185].

Regarding AIS-based approaches for CNOPs, although in their
early days it was common to adopt measures of similarity at bit-
string level as their constraint-handling mechanism [108–110],
today there is a trend to use feasibility rules [111–114]. There are
also attempts to use adaptive penalty functions with AIS-based
approach [159].

Finally, there are other NIAs, such as the OEA, in which static
penalty functions have been considered, although the use of
feasibility rules has provided a more stable performance [115].

It can also be observed from some of the most recent
approaches that the combination of global and local search
engines (i.e., memetic algorithms), has also become popular for
solving CNOPs. There are, for example, local search engines
based on gradient information which have been coupled to
NIAs for solving CNOPs [48–50,73,94,103,116,122,136,140–142,
148,157,172]. Additionally, there are also approaches in which
direct search methods (i.e., not requiring derivatives) such as
Nelder–Mead [76,135,161] or pattern search (also known as
Hooke–Jeeves) [120] have been adopted. Furthermore there are
proposals which combine different local search operators, some of
which are based on gradient information,while others are based on
direct search methods [117,118,165]. Variation operators such as
Gaussianmutation [52,122] and simplex crossover [174] have been
used as local search operators, too. In fact, other meta-heuristics
such as SA has been used [82] to search locally in a CNOP. Even
simple local search algorithms like Matlab’s fmincon() function
have been adopted [150,152].

The use of special operators to deal with equality constraints
can also be seen as some form of local search operators, as
suggested in [162–164].

On the other hand, there are hybrid approaches which combine
two meta-heuristics (e.g., the PSO-DE hybrid [85] and the AIS-
GA [195]).

4. Future trends

From the literature review reported in this paper, it is clear
that there currently exist several well-established constraint-
handling techniques available for solving CNOPs. However, there
still are several research topicswhich have attracted little attention
from researchers. A list of such topics which constitute, from
the authors’ perspective, promising paths for future research, is
provided next.

4.1. Constraint-handling for multi-objective optimization

As stated by Yen [196] and by Ray et al. [171], the develop-
ment of constraint-handling techniques for multi-objective opti-
mization problems has received relatively little attention in the
specialized literature. This may be due to the fact that most re-
searchers assume that any constraint-handling technique devel-
oped for single-objective optimization can be easily coupled to
a multi-objective algorithm. For example, death-penalties [197],
adaptive penalty functions [198,199], use of constraints as objec-
tives [200], stochastic ranking [201], feasibility rules [151,202,203]
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(with a modification in the first rule, in which two feasible solu-
tions are compared, since in this case non-dominance is checked
instead of comparing objective function values), and special oper-
ators based on gradient information [204] have all been coupled to
multi-objective evolutionary algorithms.

There are, however, constraint-handling techniques that were
specifically designed for multi-objective problems. Such tech-
niques mostly rely on the use of Pareto dominance or Pareto
ranking. For example, Ray et al. [55] proposed the use of Pareto
ranking in objective function space, constraints space, or both.
Young [205] proposed the use of a combined value obtained from
blending rankings from the objective and constraint spaces. Isaacs
et al. [170] and Ray et al. [171] proposed the use of non-dominated
sorting for feasible and infeasible solutions, separately, and Singh
et al. [206] proposed the use of non-dominance checking com-
bined with a special operator to favor constraints satisfaction in
simulated annealing. Finally, Qu and Suganthan [207] reported
the usage of the ensemble of three constraint-handling techniques
(superiority of feasible points, ε-constrained method and an adap-
tive penalty function) to solve a set of well-known constrained
multi-objective optimization problems.

There are other topics within this area that remain almost un-
explored. For example, performancemeasures that are appropriate
for constraint-handling techniques used in multi-objective opti-
mization, diversity mechanisms specially designed for constrained
search spaces, boundary operators for multi-objective problems,
among others.

An interesting topic that has attracted a lot of attention in
the evolutionary multi-objective optimization literature is the so-
called many-objective optimization, in which many (i.e., four or
more) objectives are considered. Many-objective optimization is
strongly related to constraint-handling techniques, particularly
when defining constraints as objectives. In this regard, there is
some work from Saxena and Deb [208] in which the use of dimen-
sionality reduction approaches has been explored to evaluate the
importance of the constraints of a CNOP. The approach was later
extended to constrained multi-objective optimization problems
in [209]. Additionally, Saxena et al. [210] have explored the so-
lution of constrained many-objective optimization problems, but
there is practically no work done in this area yet.

4.2. Constraint approximation

In spite of the fact that fitness approximation methods
have been extensively applied to unconstrained optimization
problems [211,212], their use in CNOPs remains scarce. There are
a few papers that report the use of approximation methods for
equality and inequality constraints [162–164] as well as the use
of fitness inheritance to solve CNOPs [213]. However, the use of
approximation techniques for dealing with CNOPs is still relatively
rare, opening the possibility for new developments that could
be very valuable for real-world applications (when dealing with
expensive constrained objective functions).

4.3. Dynamic constraints

Nowadays, there is a considerable amount of research devoted
to deal with dynamic optimization problems. However, most
of this work is focused on unconstrained search spaces [214]
and very few efforts have focused on constrained problems. For
example, Nguyen and Yao [215] adopted a penalty function and
a special operator to transform infeasible solutions into feasible
ones. An interesting conclusion in this preliminary study was
the convenience of using special operators instead of keeping
or maintaining diversity in the population, as normally done in
unconstrained dynamic optimization problems. Singh et al. [216]
used their IDEA algorithm (based on multi-objective concepts
to handle constraints) as a sub-evolve mechanism within a
framework to solve dynamic CNOPs (DCNOPs). Clearly, more
work in this direction is still required. Furthermore, more test
problems and appropriate performance measures are required in
this area [215].

4.4. Hyper-heuristics

Hyper-heuristics, are approaches in which several metaheuris-
tics act at different stages during the search, as determined by a
centralized control mechanism [217]. Hyper-heuristics have been
popular in combinatorial optimization, but their use in constrained
problems is almost unexistent. The authors are aware of only one
work in this direction, which remains unpublished (see [218]).
It is evidently expected that hyper-heuristics become more pop-
ular in this area in the years to come. In fact, hyper-heuristics
share clear similarities with the ensemble of constraint-handling
techniques [122,188,190], and with approaches that adopt differ-
ent variation operators in the same NIA [98]. However, no spe-
cific hyper-heuristic mechanisms were defined in any of those
approaches.

4.5. Theory

Theoretical studies on constrained optimization using NIAs
are also very scarce. There is some work on runtime analysis in
constrained search spaceswith EAs [219] and also in the usefulness
of infeasible solutions in the search process [220]. Other theoretical
studies have focused on some ES variants, such as the (1 + 1)-
ES [221] and more recently the (1, λ)-ES [222], in both cases
focused on the solution of a simple CNOP. However, more research
in this area is required. It would be interesting, for example, to
analyze convergence and fitness landscapes in the presence of
constraints.

5. Conclusions

This paper has presented a literature review of techniques to
adapt NIAs to the solution of CNOPs. Based on an updated and
relatively brief taxonomy of approaches that has been introduced
in previous surveys on this topic, the most representative
constraint-handling techniques currently available were briefly
discussed and analyzed. From the review presented here, the
following conclusions can be drawn:

1. Although in the early days of this area, a wide variety of
approaches were developed, today, there is clear trend to adopt
and further develop a small set of approaches which have been
found to be competitive in a variety of problems. Thus, we can
say that exploitation is now being favored as opposed to the
exploration that characterized the early days of this field.

2. Feasibility rules is the most popular constraint-handling
technique in current use. This is due to its simplicity and
effectiveness and in spite of the fact that it is prone (when it is
not properly coupled to a NIA) to cause premature convergence.
Overall, this approach has been found to provide a stable
behavior for solving constrained optimization problems using
NIAs, as reflected by a number of studies in that direction.
This approach has also been commonly adopted when studying
other topics related to constrained optimization (e.g., design of
variation operators, parameter control, termination conditions,
etc.), also because of its simplicity.

3. DE is the most popular search engine found in constrained
optimization. This is due to its good and consistent performance
and to its simplicity (normally, very few changes are required to
make it work well in a wide variety of CNOPs).
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4. SR remains as a highly competitive and relatively simple
constraint-handling technique, and has been coupled to several
NIAs, from which DE is the most popular choice and PSO is the
less popular.

5. Regarding penalty functions, they still remain popular (par-
ticularly in engineering optimization). The most preferred ap-
proaches are those incorporating adaptive mechanisms to
define the penalty factor values, and the most popular search
engine is the GA. In this regard, the development of specialized
variation operators that are specifically designed to deal with
constraints may be not only interesting, but can also be a good
alternative to reduce the computational cost typically required
by most adaptation mechanisms.

6. Memetic algorithms for solving CNOPs are becomingmore pop-
ular in the literature, even surpassing other hybrid approaches
(i.e., those combining features of two or more different NIAs).
In this regard, the development of new local search strategies
that are specifically designed for constrained search spaces is a
promising research topic.

7. Some special operators have been designed to be easier to
generalize, making them more popular in the literature.

8. Several research topics need to be tackled or revisited. The
design of constraint-handling techniques for dynamic and/or
multi-objective problems, the use of fitness approximation
and surrogate methods, the use of hyper-heuristics, the study
of fitness landscapes in the presence of constraints, the
development of theoretical foundations for the approaches in
current use are only some of the topics that deserve more
research in the years to come.

To finish, it is fair to state that constrained numerical
optimization using NIAs is still an active area of research that
offers lots of opportunities to both newcomers and established
researchers. As such, this area is expected to continue growing in
the following years not only in terms of number of publications but
also in terms of the depth of the work being undertaken.
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