
Theoretical and numerical constraint-handling
techniques used with evolutionary algorithms: a survey

of the state of the art

Carlos A. Coello Coello 1

CINVESTAV-IPN, Depto. de Ingenier�ııa El�eectrica, Secci�oon de Computaci�oon, Av. Instituto Polit�eecnico Nacional No. 2508,

Col. San Pedro Zacatenco, M�eexico D.F. 07300, Mexico

Received 20 March 2000; received in revised form 19 June 2001

Abstract

This paper provides a comprehensive survey of the most popular constraint-handling techniques currently used with evolutionary

algorithms. We review approaches that go from simple variations of a penalty function, to others, more sophisticated, that are bio-

logically inspired on emulations of the immune system, culture or ant colonies. Besides describing briefly each of these approaches (or

groups of techniques), we provide some criticism regarding their highlights and drawbacks. A small comparative study is also con-

ducted, in order to assess the performance of several penalty-based approaches with respect to a dominance-based technique proposed

by the author, and with respect to some mathematical programming approaches. Finally, we provide some guidelines regarding how to

select the most appropriate constraint-handling technique for a certain application, and we conclude with some of the most promising

paths of future research in this area. � 2002 Elsevier Science B.V. All rights reserved.

Keywords: Evolutionary algorithms; Constraint handling; Evolutionary optimization

1. Introduction

The famous naturalist Charles Darwin defined Natural Selection or Survival of the Fittest as the pres-
ervation of favorable individual differences and variations, and the destruction of those that are injurious [33].
In nature, individuals have to adapt to their environment in order to survive in a process called evolution, in
which those features that make an individual more suited to compete are preserved when it reproduces, and
those features that make it weaker are eliminated. Such features are controlled by units called genes which
form sets called chromosomes. Over subsequent generations not only the fittest individuals survive, but also
their fittest genes which are transmitted to their descendants during the sexual recombination process which
is called crossover.

Early analogies between the mechanism of natural selection and a learning (or optimization) process led
to the development of the so-called ‘‘evolutionary algorithms’’ (EAs) [2], in which the main goal is to
simulate the evolutionary process in a computer. There are three main paradigms within evolutionary
algorithms, whose motivations and origins were independent from each other: evolution strategies [156],
evolutionary programming [58], and genetic algorithms [77]. However, the current trend has been to

Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287
www.elsevier.com/locate/cma

E-mail address: ccoello@cs.cinvestav.mx (C.A. Coello Coello).
1 Present address: P.O. Box 60326-394, Houston, TX 77205, USA. Tel.: +1-011-52-28-181302; fax: +1-011-52-28-181508.

0045-7825/02/$ - see front matter � 2002 Elsevier Science B.V. All rights reserved.

PII: S0045-7825 (01)00323-1

decrease the difference among these three paradigms and refer (in generic terms) simply to evolutionary
algorithms when talking about any of them.

In general, we need the following basic components to implement an EA in order to solve a problem
[104]:
1. A representation of the potential solutions to the problem.
2. A way to create an initial population of potential solutions (this is normally done randomly, but deter-

ministic approaches can also be used).
3. An evaluation function that plays the role of the environment, rating solutions in terms of their ‘‘fit-

ness’’.
4. A selection procedure that chooses the parents that will reproduce.
5. Evolutionary operators that alter the composition of children (normally, crossover and mutation).
6. Values for various parameters that the evolutionary algorithm uses (population size, probabilities of ap-

plying evolutionary operators, etc.).
EAs have been quite successful in a wide range of applications [3,57,64,67,101,111,130,133,157]. How-

ever, an aspect normally disregarded when using them for optimization (a rather common trend) is that
these algorithms are unconstrained optimization procedures, and therefore is necessary to find ways of
incorporating the constraints (normally existing in any real-world application) into the fitness function.

The most common way of incorporating constraints into an EA have been penalty functions (we will be
referring only to exterior penalty functions in this paper) [67,144]. However, due to the well-known diffi-
culties associated with them [144], researchers in evolutionary computing have proposed different ways to
automate the definition of good penalty factors, which remains as the main drawback of using penalty
functions. Additionally, several researchers have developed a considerable amount of alternative ap-
proaches to handle constraints, mainly to deal with specific features of some complex optimization prob-
lems in which it is difficult to estimate good penalty factors or to even generate a single feasible solution.

In this paper, we provide a comprehensive survey of constraint-handling techniques that have been
adopted over the years to handle all sorts of constraints (linear, non-linear, equality and inequality) in EAs.
Each group of approaches is briefly described and discussed, indicating their main advantages and dis-
advantages. At the end, we conclude with some of the most promising paths of future research in this area.

There are several other surveys on constraint-handling techniques available in the specialized literature
(see for example [34,63,103,104,109,161]), but they are either too narrow (i.e., they cover a single group of
constraint-handling techniques) or they focus more on empirical comparisons and on the design of inter-
esting test functions. None of these surveys attempt to focus on the discussion of the different aspects of
each method or to be as comprehensive as we intend in this paper.

Our main goal is to provide enough (mainly descriptive) information as to allow newcomers in this area
to get a very complete picture of the research that has been done and that is currently under way. Since
trying to be exhaustive is as fruitless as it is ambitious, we have focused on papers in which the main
emphasis is the way in which constraints are handled, and from this subset, we have selected the most
representative work available (particularly, when dealing with very prolific authors).

We are interested in the general non-linear programming problem in which we want to:

Find ~xx which optimizes f ð~xxÞ ð1Þ

subject to

gið~xxÞ6 0; i ¼ 1; . . . ; n; ð2Þ

hjð~xxÞ ¼ 0; j ¼ 1; . . . ; p; ð3Þ

where~xx is the vector of solutions~xx ¼ ½x1; x2; . . . ; xr�T, n is the number of inequality constraints and p is the
number of equality constraints (in both cases, constraints could be linear or non-linear).

If we denote with F to the feasible region and with S to the whole search space, then it should be clear
that F � S.

For an inequality constraint that satisfies gið~xxÞ ¼ 0, then we will say that is active at ~xx. All equality
constraints hj (regardless of the value of ~xx used) are considered active at all points of F.

1246 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

The rest of this paper is organized as follows. Section 2 presents penalty functions in several of their
variations that have been used with EAs (i.e., static, dynamic, annealing, adaptive, co-evolutionary, and
death penalties). Penalty functions are the oldest approach used to incorporate constraints into uncon-
strained optimization algorithms (including EAs) and, therefore, they are discussed first. Section 3 discusses
the use of special representations and genetic operators. The use of operators that preserve feasibility at all
times and decoders that transform the shape of the search space are discussed, among other techniques.
Section 4 discusses repair algorithms, which are normally used in combinatorial optimization problems in
which the traditional genetic operators tend to generate infeasible solutions all (or at least most of) the time.
Thus, ‘‘repair’’ refers, in this context, to make valid (or feasible) these individuals through the application
of a certain (normally heuristic) procedure. Section 5 covers techniques that handle objectives and con-
straints separately. From these approaches, the use of multiobjective optimization techniques seems one of
the most promising venues of future research in the area. Section 6 discusses approaches that use hybrids
with other techniques such as Lagrangian multipliers or fuzzy logic. This section also contains some ap-
proaches that constitute very promising paths of future research (e.g., the use of cultural algorithms or the
immune system). Section 7 presents a small comparative study in which several penalty-based techniques
are compared against a technique based on dominance relations (i.e., one of the techniques discussed in
Section 5). As a corollary to the results of this comparative study, Section 8 provides some final suggestions
on the choice of constraint-handling techniques for a certain problem. Finally, Section 9 presents some
conclusions and some possible paths of future research.

The detailed table of contents of the paper is the following:
2. Penalty functions

(a) Static penalty
(b) Dynamic penalty
(c) Annealing penalty
(d) Adaptive penalty
(e) Co-evolutionary penalty
(f) Death penalty

3. Special representations and operators
(a) Davis’ applications
(b) Random keys
(c) GENOCOP
(d) Constraint consistent GAs
(e) Locating the boundary of the feasible region
(f) Decoders

4. Repair algorithms
5. Separation of objectives and constraints

(a) Co-evolution
(b) Superiority of feasible points
(c) Behavioral memory
(d) Multiobjective optimization techniques

6. Hybrid methods
(a) Lagrangian multipliers
(b) Constrained optimization by random evolution
(c) Fuzzy logic
(d) Immune system
(e) Cultural algorithms
(f) Ant colony optimization

7. Some experimental results
(a) Example 1: Himmelblau’s nonlinear optimization problem
(b) Example 2: Welded beam design
(c) Example 3: Design of a pressure vessel

8. Some recommendations
9. Conclusions and future research paths

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1247

2. Penalty functions

The most common approach in the EA community to handle constraints (particularly, inequality
constraints) is to use penalties. Penalty functions were originally proposed by Courant in the 1940s [31] and
later expanded by Carroll [18] and Fiacco and McCormick [55]. The idea of this method is to transform a
constrained-optimization problem into an unconstrained one by adding (or subtracting) a certain value to/
from the objective function based on the amount of constraint violation present in a certain solution.

In classical optimization, two kinds of penalty functions are considered: exterior and interior. In the case
of exterior methods, we start with an infeasible solution and from there we move towards the feasible
region. In the case of interior methods, the penalty term is chosen such that its value will be small at points
away from the constraint boundaries and will tend to infinity as the constraint boundaries are approached.
Then, if we start from a feasible point, the subsequent points generated will always lie within the feasible
region since the constraint boundaries act as barriers during the optimization process [138].

The most common method used in EAs is the exterior penalty approach and therefore, we will con-
centrate our discussion only on such technique. The main reason why most researchers in the EA com-
munity tend to choose exterior penalties is because they do not require an initial feasible solution. This sort
of requirement (an initial feasible solution) is precisely the main drawback of interior penalties. This is an
important drawback, since in many of the applications for which EAs are intended the problem of finding a
feasible solution is itself NP-hard [161].

The general formulation of the exterior penalty function is

/ð~xxÞ ¼ f ð~xxÞ �
Xn
i¼1

ri

"
� Gi þ

Xp
j¼1

cj � Lj

#
; ð4Þ

where /ð~xxÞ is the new (expanded) objective function to be optimized, Gi and Lj are functions of the con-
straints gið~xxÞ and hjð~xxÞ, respectively, and ri and cj are positive constants normally called ‘‘penalty factors’’.

The most common form of Gi and Lj is

Gi ¼ max½0; g1ð~xxÞ�b; ð5Þ

Lj ¼ jhjð~xxÞjc; ð6Þ

where b and c are normally 1 or 2.
Ideally, the penalty should be kept as low as possible, just above the limit below which infeasible so-

lutions are optimal (this is called, the minimum penalty rule [39,145,162]). This is due to the fact that if the
penalty is too high or too low, then the problem might become very difficult for an EA [39,145,147]. If the
penalty is too high and the optimum lies at the boundary of the feasible region, the EA will be pushed inside
the feasible region very quickly, and will not be able to move back towards the boundary with the infeasible
region. A large penalty discourages the exploration of the infeasible region since the very beginning of the
search process. If, for example there are several disjointed feasible regions in the search space, the EA would
tend to move to one of them, and would not be able to move to a different feasible region unless they are
very close to each other.

On the other hand, if the penalty is too low, a lot of the search time will be spent exploring the infeasible
region because the penalty will be negligible with respect to the objective function [161]. These issues are
very important in EAs, because many of the problems in which they are used have their optimum lying on
the boundary of the feasible region [159,162].

The minimum penalty rule is conceptually simple, but it is not necessarily easy to implement. The reason
is that the exact location of the boundary between the feasible and infeasible regions is unknown in many of
the problems for which EAs are intended (e.g., in many cases the constraints are not given in algebraic
form, but are the outcome generated by a simulator [27]).

It is known that the relationship between an infeasible individual and the feasible region of the search
space plays a significant role in penalizing such an individual [144]. However, it is not clear how to exploit
this relationship to guide the search in the most desirable direction.

1248 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

There are at least three main choices to define a relationship between an infeasible individual and the
feasible region of the search space [34]:
1. an individual might be penalized just for being infeasible regardless of its amount of constraint violation

(i.e., we do not use any information about how close it is from the feasible region),
2. the ‘amount’ of its infeasibility can be measured and used to determine its corresponding penalty, or
3. the effort of ‘repairing’ the individual (i.e., the cost of making it feasible) might be taken into account.

Several researchers have studied heuristics on the design of penalty functions. Probably the most well-
known of these studies is the one conducted by Richardson et al. [144] from which the following guidelines
were derived:
1. Penalties which are functions of the distance from feasibility are better performers than those which are

only functions of the number of violated constraints.
2. For a problem having few constraints, and few feasible solutions, penalties which are solely functions of

the number of violated constraints are not likely to produce any solutions.
3. Good penalty functions can be constructed from two quantities: the maximum completion cost and the

expected completion cost. The completion cost refers to the distance to feasibility.
4. Penalties should be close to the expected completion cost, but should not frequently fall below it. The

more accurate the penalty, the better will be the solution found. When a penalty often underestimates
the completion cost, then the search may fail to find a solution.
Based mainly on these guidelines, several researchers have attempted to derive good techniques to build

penalty functions. The most important will be analyzed next. It should be kept in mind, however, that these
guidelines are difficult to follow in some cases. For example, the expected completion cost sometimes has to
be estimated using alternative methods (e.g., doing a relative scaling of the distance metrics of multiple
constraints, estimating the degree of constraint violation, etc. [161]). Also, it is not clear how to combine the
two quantities indicated by Richardson et al. [144] and how to design a fitness function that uses accurate
penalties.

Penalty functions can deal both with equality and inequality constraints, and the normal approach is to
transform an equality to an inequality of the form

jhjð~xxÞj � �6 0; ð7Þ

where � is the tolerance allowed (a very small value).
Most of the approaches analyzed in this paper attempt to avoid this hand-tuning of the penalty factors

and some even make unnecessary at all the use of a penalty function.

2.1. Static penalties

Under this category, we consider approaches in which the penalty factors do not depend on the current
generation number in any way, and therefore, remain constant during the entire evolutionary process.

Homaifar et al. [78] proposed an approach in which the user defines several levels of violation, and a
penalty coefficient is chosen for each in such a way that the penalty coefficient increases as we reach
higher levels of violation. This approach starts with a random population of individuals (feasible or
infeasible).

An individual is evaluated using [104]

fitnessð~xxÞ ¼ f ð~xxÞ þ
Xm
i¼1

ðRk;i � max½0; gið~xxÞ�2Þ; ð8Þ

where Rk;i are the penalty coefficients used, m is the total number of constraints (Homaifar et al. [78]
transformed equality constraints into inequality constraints), f ð~xxÞ is the unpenalized objective function and
k ¼ 1; 2; . . . ; l, where l is the number of levels of violation defined by the user. The idea of this approach is
to balance individual constraints separately by defining a different set of factors for each of them through
the application of a set of deterministic rules.

An interesting static penalty approach has been used by Kuri Morales [114]. Fitness of an individual is
determined using

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1249

fitnessð~xxÞ ¼ f ð~xxÞ if the solution is feasible;

K �
Ps
i¼1

K
m

� �
otherwise;

�
ð9Þ

where s is the number of constraints satisfied, m is the total number of (equality and inequality) constraints
and K is a large constant (it was set to 1 � 109 [113] in the experiments reported in [114]). Notice that when
an individual is infeasible, its fitness is not computed and all the individuals that violate the same number of
constraints receive the same penalty regardless of how close they are from the feasible region.

Finally, Hoffmeister and Sprave [76] have proposed to use the following penalty function:

fitnessð~xxÞ ¼ f ð~xxÞ �
ffiXm
i¼0

Hð�gið~xxÞÞgið~xxÞ2

s
; ð10Þ

where H : R ! f0; 1g is the Heaviside function

HðyÞ ¼ 1; y > 0;
0; y6 0:

�
ð11Þ

This is equivalent to a partial penalty approach and was successfully used in some real-world problems
[155].

2.1.1. Advantages and disadvantages
The main drawback of the approach of Homaifar et al. is the high number of parameters required. For

m constraints, this approach requires mð2lþ 1Þ parameters in total [102]. So, if we have, for example, six
constraints and two levels, we would need 30 parameters, which is a very high number considering the small
size of the proposed problem. Also, this method requires prior knowledge of the degree of constraint vi-
olation present in a problem (to define the levels of violation), which might not be always given (or easy to
obtain) in real-world applications.

Kuri’s approach does not use information about the amount of constraint violation, but only about the
number of constraints that were violated. Although this contradicts one of the basic rules stated by
Richardson et al. [144] about the definition of good penalty functions, apparently the self-adaptive EA used
by Kuri (called Eclectic Genetic Algorithm or EGA for short) could cope with this problem and was able to
optimize several difficult nonlinear optimization problems. In one of the functions reported in [114],
however, it was necessary to initialize the population with another EGA because no feasible solutions were
present in the first generation. This problem was obviously produced by the lack of diversity in the pop-
ulation (not having a single feasible individual in the population, they all had a very similar or equal fit-
ness), which seriously limits its applicability in highly constrained search spaces.

The problem with Hoffmeister and Sprave’s approach is that it is based on the assumption that infeasible
points will always be valuated worse than feasible ones, and that is not always the case [103].

Other researchers have used different distance-based static penalty functions [5,17,68,79,124,144,172],
but in all cases these metrics rely on some extra parameter (namely one or more penalty factors) which are
difficult to generalize and normally remain problem-dependent.

2.2. Dynamic penalties

Within this category, we will consider any penalty function in which the current generation number is
involved in the computation of the corresponding penalty factors (normally the penalty function is defined
in such a way that it increases over time – i.e., generations). Notice that although the two approaches
described in the following sections (Sections 2.3 and 2.4) are also dynamic penalty approaches, they were
considered separately for the sake of clarity.

Joines and Houck [83] proposed a technique in which individuals are evaluated (at generation t) using
(we assume minimization)

fitnessð~xxÞ ¼ f ð~xxÞ þ ðC � tÞa � SVCðb;~xxÞ; ð12Þ

1250 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

where C, a and b are constants defined by the user (the authors used C ¼ 0:5, a ¼ 1 or 2 and b ¼ 1 or 2) and
SVCðb;~xxÞ is defined as [83]

SVCðb;~xxÞ ¼
Xn
i¼1

Db
i ð~xxÞ þ

Xp
j¼1

Djð~xxÞ ð13Þ

and

Dið~xxÞ ¼
0; gið~xxÞ6 0;
jgið~xxÞj; otherwise;

�
16 i6 n: ð14Þ

Djð~xxÞ ¼
0; ��6 hjð~xxÞ6 �;
jhjð~xxÞj; otherwise;

�
16 j6 p: ð15Þ

This dynamic function increases the penalty as we progress through generations.
Kazarlis and Petridis [85] performed a detailed study of the behavior of a dynamic penalty function of

the form

fitnessð~xxÞ ¼ f ð~xxÞ þ V ðgÞ � A
Xm
i¼1

di � wi � UðdiðSÞÞð Þ

þ B
!

� ds; ð16Þ

where A is a ‘‘severity’’ factor, m is the total number of constraints, di is 1 if the constraint i is violated and 0
otherwise, wi is a weight factor for constraint i, diðSÞ is a measure of the degree of violation of constraint i
introduced by solution S, Uið�Þ is a function of this measure, B is a penalty threshold factor, ds is a binary
factor (ds ¼ 1 if S is infeasible and 0 otherwise), and V ðgÞ is an increasing function of g (the current
generation) in the range ð0; . . . ; 1Þ.

Using as test functions the cutting stock problem and the unit commitment problem, Kazarlis and
Petridis experimented with different forms of V ðgÞ (linear, quadratic, cubic, quartic, exponential and 5-
step), and found that the best overall performance was provided by a function of the form

V ðgÞ ¼ g
G

� 2

; ð17Þ

where G is the total number of generations.

2.2.1. Advantages and disadvantages
Some researchers have argued that dynamic penalties work better than static penalties. However, it is

difficult to derive good dynamic penalty functions in practice as it is difficult to produce good penalty
factors for static functions [159]. For example, in the approach proposed by Joines and Houck [83], the
quality of the solution found was very sensitive to changes in the values of a and b and there were no clear
guidelines regarding the sensitivity of the approach to different values of C. Even when the values indicated
above were found by the authors of this method to be a reasonable choice, Michalewicz [102,108] reported
that these parameters produced premature convergence most of the time in other examples. Also, it was
found that the technique normally either converged to an infeasible solution or to a feasible one that was
far away from the global optimum [34,102]. Apparently, this technique provides very good results only
when the objective function is quadratic [109].

The dynamic penalty function proposed by Kazarlis and Petridis [85] (called by them Varying Fitness
Function Technique or VFF for short) requires several parameters that depend on the problem and whose
definition is not at all clear (for example, A ¼ 1000 and B ¼ 0 in the experiments reported in [85], but no
further explanation is provided about why these values were chosen). Also, their tests (although exhaustive
for the two problems considered in their work) need to be extended to other functions before being able to
make more general claims about this technique.

In general, the problems associated with static penalty functions are also present with dynamic penalties:
if a bad penalty factor is chosen, the EA may converge to either non-optimal feasible solutions (if the
penalty is too high) or to infeasible solutions (if the penalty is too low) [161].

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1251

2.3. Annealing penalties

Michalewicz and Attia [105] considered a method based on the idea of simulated annealing [89]: the
penalty coefficients are changed once in many generations (after the algorithm has been trapped in a local
optima). Only active constraints are considered at each iteration, and the penalty is increased over time (i.e.,
the temperature decreases over time) so that infeasible individuals are heavily penalized in the last gener-
ations.

The method of Michalewicz and Attia [105] requires that constraints are divided into four groups: linear
equalities, linear inequalities, nonlinear equalities and nonlinear inequalities. Also, a set of active con-
straints A has to be created, and all nonlinear equalities together with all violated nonlinear inequalities
have to be included there. The population is evolved using [102]

fitnessð~xxÞ ¼ f ð~xxÞ þ 1

2s

X
i2A

/2
i ð~xxÞ; ð18Þ

where s is the cooling schedule [89],

/ið~xxÞ ¼
max½0; gið~xxÞ� if 16 i6 n;

jhið~xxÞj if nþ 16 i6m

(
ð19Þ

and m is the total number of constraints.
An interesting aspect of this approach is that the initial population is not really diverse, but con-

sists of multiple copies of a single individual that satisfies all the linear constraints (a single instance of
this feasible individual is really enough [109]). At each iteration, the temperature s is decreased and
the new population is created using the best solution found in the previous iteration as the starting
point for the next iteration. The process stops when a pre-defined final ‘freezing’ temperature sf is
reached.

A similar proposal was made by Carlson Skalak et al. [160]. In this case, the fitness function of an in-
dividual is computed using

fitnessð~xxÞ ¼ A � f ð~xxÞ; ð20Þ

where A depends on two parameters: M, which measures the amount by which a constraint is violated (it
takes a zero value when no constraint is violated) and T, which is a function of the running time of the
algorithm. T tends to zero as evolution progresses. Using the basic principle of simulated annealing,
Carlson et al. [160] defined A as

A ¼ e�M=T ð21Þ

so that the initial penalty factor is small and it increases over time. This will discard infeasible solutions in
the last generations.

To define T (the cooling schedule), Carlson et al. [160] use

T ¼ 1ffiffi
t

p ; ð22Þ

where t refers to the temperature used in the previous iteration.
Finally, it should be mentioned that Joines and Houck [83] also experimented with a penalty function

based on simulated annealing

fitnessð~xxÞ ¼ f ð~xxÞ þ eðC�tÞ
a�SVCðb;~xxÞ; ð23Þ

where t is the generation number, SVCðb;~xxÞ is defined by Eq. (13), C ¼ 0:05, and a ¼ b ¼ 1.
This fitness function was proposed as another form of handling constraints in an EA, but their success

was relative, mainly because they used unnormalized constraints.

1252 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

2.3.1. Advantages and disadvantages
One of the main drawbacks of Michalewicz and Attia’s approach is its extreme sensitivity to the values

of its parameters (particularly the cooling schedule s), and it is also well known that it is normally difficult
to choose an appropriate cooling schedule when solving a problem with simulated annealing [89]. Mich-
alewicz and Attia [105] used s0 ¼ 1 and sf ¼ 0:000001 in their experiments, with increments siþ1 ¼ 0:1si.
Carlson et al. [160] decided to use the mean constraint violation (�MM) as the starting temperature value. For
the final temperature, they decided to use one hundredth of the mean constraint violation at the last
generation. However, these values are empirically derived and although proved to be useful in some en-
gineering problems by Carlson et al. [160], their definition remains as the most critical issue when using this
approach.

The approach used to handle linear constraints in Michalewicz and Attia’s technique (treated separately
by them) is very efficient, but it requires that the user provides an initial feasible point to the algorithm. The
implementation of this technique might require the use of another program to generate a feasible starting
point that satisfies all linear constraints (equalities and inequalities) and also requires special operators that
produce always feasible offspring from feasible parents.

Regarding the approach of Joines and Houck [83], their main problems to make this approach work
were due to the overflows produced by the fact that they did not normalize their constraints. Therefore, the
exponential function would sometimes fall out of the valid numerical range of the computer. Furthermore,
the definition of the constant C was not justified, and the authors admitted that further experimentation
regarding its effect was necessary. On the other hand, the implementation of this technique is easier because
it does not distinguish between linear and nonlinear constraints and its authors leave to the EA itself the
task of generating feasible solutions from an initial set of random values.

2.4. Adaptive penalties

Bean and Hadj-Alouane [10,69] developed a method that uses a penalty function which takes a feedback
from the search process. Each individual is evaluated by the formula

fitnessð~xxÞ ¼ f ð~xxÞ þ kðtÞ
Xn
i¼1

g2
i ð~xxÞ

"
þ
Xp
j¼1

jhjð~xxÞj
#
; ð24Þ

where kðtÞ is updated at every generation t in the following way:

kðt þ 1Þ ¼
ð1=b1Þ � kðtÞ if case #1;

b2 � kðtÞ if case #2;

kðtÞ otherwise;

8><
>: ð25Þ

where cases #1 and #2 denote situations where the best individual in the last k generations was always (case
#1) or was never (case #2) feasible, b1; b2 > 1, b1 > b2, and b1 6¼ b2 (to avoid cycling). In other words, the
penalty component kðt þ 1Þ for the generation t þ 1 is decreased if all the best individuals in the last k
generations were feasible or is increased if they were all infeasible. If there are some feasible and infeasible
individuals tied as best in the population, then the penalty does not change.

Smith and Tate [162] proposed an approach later refined by Coit and Smith [28] and Coit et al. [29] in
which the magnitude of the penalty is dynamically modified according to the fitness of the best solution
found so far. An individual is evaluated using the formula (only inequality constraints were considered in
this work)

fitnessð~xxÞ ¼ f ð~xxÞ þ ðBfeasible � BallÞ
Xn
i¼1

gið~xxÞ
NFTðtÞ

 !k
; ð26Þ

where Bfeasible is the best-known objective function at generation t, Ball is the best (unpenalized) overall
objective function at generation t, gið~xxÞ is the amount by which the constraint i is violated, k is a constant
that adjusts the severity of the penalty (a value of k ¼ 2 has been previously suggested by Coit and Smith

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1253

[28]), and NFT is the so-called Near Feasibility Threshold, which is defined as the threshold distance from
the feasible region at which the user would consider that the search is ‘‘reasonably’’ close to the feasible
region [63,109].

Norman and Smith [123] further applied Coit and Smith’s approach to facility layout problems, and
apparently the technique has been used only in combinatorial optimization problems.

Gen and Cheng [63] indicate that Yokota et al. [177] proposed a variant of Smith, Tate and Coit’s
approach in which they use a multiplicative form of the fitness function (instead of an addition as in [162])

fitnessð~xxÞ ¼ f ð~xxÞ � Pð~xxÞ; ð27Þ

where P ð~xxÞ is defined as

P ð~xxÞ ¼ 1 � 1

n

Xn
i¼1

Dbið~xxÞ
bi

 !k
ð28Þ

and

Dbið~xxÞ ¼ max½0; gið~xxÞ � bi�: ð29Þ

In this case, Dbið~xxÞ refers to the violation of constraint i. Notice that this approach is really a special case
of Smith et al.’s approach in which NFT ¼ bi, assuming that gið~xxÞ6 bi is required to consider a solution as
feasible.

Gen and Cheng [62] later refined their approach introducing a more severe penalty for infeasible so-
lutions. In the new version of their algorithm,

P ð~xxÞ ¼ 1 � 1

n

Xn
i¼1

Dbið~xxÞ
Dbmax

i

 !k
; ð30Þ

Dbið~xxÞ ¼ max½0; gið~xxÞ � bi�; ð31Þ

Dbmax
i ¼ max½�;Dbið~xxÞ;~xx 2 P ðtÞ�; ð32Þ

where Dbið~xxÞ is the value by which the constraint i is violated in the nth chromosome. Dbmax
i is the maximum

violation of constraint i in the whole (current) population, and � is a small positive number used to avoid
dividing by zero [63]. The motivation of this technique was to preserve diversity in the population, avoiding
at the same time overpenalizing infeasible solutions which will constitute most of the population at early
generations in highly constrained optimization problems [63].

Eiben and van der Hauw [52], Eiben et al. [53] and Eiben and Ruttkay [51] proposed an adaptive penalty
function that was successfully applied to the graph 3-coloring problem. They used a fitness function of the
form

fitnessð~xxÞ ¼
Xn
i¼1

wi � vð~xx; iÞ; ð33Þ

where wi is a weight (or penalty) assigned to node i of a graph, and

vð~xx; iÞ ¼
1 if node xi is left uncolored because of a constraint violation;

0 otherwise:

(
ð34Þ

In this approach, originally introduced by Eiben et al. [50], the weights used in the fitness function are
changed during the evolutionary process such that the search focuses on satisfying those constraints that
are considered ‘‘harder’’ by giving higher rewards to the fitness function in those cases. This technique
proved to be superior to a powerful (traditional) graph coloring technique called DSatur [15] and to a
Grouping Genetic Algorithm [54].

Rasheed [139] proposed an approach in which the penalty factor would be small at the beginning of the
evolutionary process, and it would be increased whenever the search gave too little attention to feasibility

1254 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

(i.e., when the point with highest fitness in the population was infeasible). Conversely, the penalty factor
would be decreased if the search gave too much attention to feasibility (i.e., if all individuals in the pop-
ulation were feasible). The rationale behind the approach was to insure proper search of the regions ad-
jacent to constraint boundaries, since in many cases the optimum lies precisely there. This approach was
successfully applied to several engineering optimization problems (e.g., supersonic transport aircraft de-
sign).

Crossley and Williams [32] experimented with several adaptive penalty coefficients based on the current
generation number (this would really be a dynamic penalty function) and the standard deviation and
variance of the population’s fitness values. They tested their six different penalty coefficients (including a
constant value) on four engineering problems. Their results showed superiority of the adaptive approaches
over the use of a constant penalty coefficient. A coefficient whose variation was linear with respect to the
current generation number was found to provide the best results overall. However, they concluded that the
best adaptive penalty is really problem-dependent if we are concerned of finding the best result in the
minimum number of generations.

2.4.1. Advantages and disadvantages
The obvious drawback of the approach of Bean and Hadj-Alouane [10,69] is how to choose the gen-

erational gap (i.e., the appropriate value of k) that provides reasonable information to guide the search.
More important yet is how do we define the values of b1 and b2 to penalize fairly a given solution.

The most obvious drawback of the approach of Smith and Tate [162] is how to choose NFT, since this
parameter will be problem-dependent. Coit and Smith [28] have proposed to define NFT as

NFT ¼ NFT0

1 þ kt
; ð35Þ

where NFT0 is an upper bound for NFT, t is the generation number, and k is a constant that assures that
the entire region between NFT0 and zero (feasible region) is searched. Care should be taken that NFT does
not approach zero either too quickly or too slowly [28]. Although Coit and Smith [28] have provided some
alternatives for defining NFT, its value remains as an additional parameter to be determined by the user.

Additionally, the factor Bfeasible � Ball has some potential dangers: First, if Bfeasible is much greater than
Ball, then the penalty would be quite large for all individuals in the population. Coit and Smith [28] claim
that this does not seem to happen too often in practice because they use selection strategies that preclude
the possibility of selecting solution vectors sufficiently far from the feasible region for this to happen, but in
any case, they propose changing the values of Bfeasible and Ball for the initial generations.

The second potential danger is that if Bfeasible and Ball are identical, then the penalty would be zero, which
means that all infeasible individuals would go unpenalized in that generation. The underlying assumption
here is that the best unpenalized individual in fact lies on the feasible region, but that might not be the case,
and it could introduce a strong bias towards infeasible solutions.

The approach proposed by Gen and Cheng [63] assigns a relatively mild penalty with respect to Coit et
al. [29], but the authors of this method argue that their approach is problem-independent [63]. However, no
information is provided by Gen and Cheng [63] regarding the sort of problems used to test this technique,
and apparently the approach was used only in one combinatorial optimization problem, which does not
constitute enough evidence of this statement.

Similarly, the approach of Eiben and van der Hauw [52] also requires the definition of additional pa-
rameters (the weights wi assigned to each node of the graph), and it has been applied only to combinatorial
optimization problems.

The approach of Rasheed [139] was inspired by Smith and Tate [162], and it seems to be the first attempt
to use adaptive penalties in numerical optimization. This approach is interesting, but it requires the defi-
nition of an initial value for the penalty factor. Rasheed provides a way of computing such a default value.
However, his formula is based on the assumption that the numerical magnitude of the constraints is
comparable to what he calls the ‘‘measure of merit’’ (i.e., the objective function). If this is not true, then a
scaling function will be required. Also, certain limits have to be defined for the increments and decrements
of the penalty factor, in order to avoid abrupt changes.

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1255

Crossley and Williams’ study was inconclusive. For example, adaptive penalties based on the standard
deviation and variance of the population’s fitness values were found to be too expensive (computationally
speaking). A penalty factor that increased quadratically with respect to the number of generations was also
found to provide poor results. However, from the remaining approaches, none of them was found to
provide the best possible results with the lowest number of fitness function evaluations for all test problems.
Obviously, more studies of this sort are required.

2.5. Co-evolutionary penalties

Coello [25] proposed the use of a penalty function of the form

fitnessð~xxÞ ¼ f ð~xxÞ � ðcoef � w1 þ viol � w2Þ; ð36Þ

where f ð~xxÞ is the value of the objective function for the given set of variable values encoded in a chro-
mosome; w1 and w2 are two penalty factors (considered as integers); coef is the sum of all the amounts by
which the constraints are violated (only inequality constraints were considered):

coef ¼
Xn
i¼1

gið~xxÞ 8gið~xxÞ > 0; ð37Þ

where viol is an integer factor, initialized to zero and incremented by one for each constraint of the problem
that is violated, regardless of the amount of violation (i.e., only the number of constraints violated is
counted with this variable, but not the magnitude in which each constraint is violated).

In Coello’s approach, the penalty is actually split into two values (coef and viol) so that the EA has
enough information not only about how many constraints were violated, but also about the corresponding
amounts of violation. This follows the suggestion of Richardson [144] about using penalties that are guided
by the distance to feasibility.

Coello [25] used two different populations P1 and P2 with corresponding sizes M1 and M2. The second
of these populations (P2) encoded the set of weight combinations (w1 and w2) that would be used to
compute the fitness value of the individuals in P1 (i.e., P2 contained the penalty factors that would be used
in the fitness function). The idea of Coello’s approach is to use one population to evolve solutions (as in a
conventional EA), and another to evolve the penalty factors w1 and w2. For each individual Aj in P2 there is
an instance of P1. However, the population P1 is reused for each new element Aj processed from P2.

Each individual Aj (16 j6M2) in P2 is decoded and the weight combination produced (i.e., the penalty
factors) is used to evolve P1 during a certain number (Gmax1) of generations. The fitness of each individual
Bk (16 k6M1) is computed using Eq. (36), keeping the penalty factors constant for every individual in the
instance of P1 corresponding to the individual Aj being processed.

After evolving each P1 corresponding to every Aj in P2 (there is only one instance of P1 for each in-
dividual in P2), the best average fitness produced is computed using

average fitnessj ¼
XM1

i¼1

fitnessð~xxÞ
count feasible

 !
þ count feasible 8~xx 2 F: ð38Þ

In Eq. (38), the fitnesses of all feasible solutions in P1 are added, and an average of them is computed
(the integer variable count feasible is a counter that indicates how many feasible solutions were found in the
population). The reason for considering only feasible individuals is that if infeasible solutions are not
excluded from this computation, the selection mechanism of the EA may bias the population towards
regions of the search space where there are solutions with a very low weight combination. Such solutions
may have good fitness values, and still be infeasible. The reason for that is that low values of w1 and w2 may
produce penalties that are not big enough to outweight the value of the objective function.

Notice also the use of count feasible to avoid stagnation (i.e., loss of diversity in the population) at
certain regions in which only very few individuals will have a good fitness or will be even feasible. By adding
this quantity to the average fitness of the feasible individuals in the population, the EA is encouraged to
move towards regions in which lie not only feasible solutions with good fitness values, but there are also lots

1256 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

of them. In practice, it may be necessary to apply a scaling factor to the average of the fitness before adding
(count_feasible), to avoid that the EA gets trapped in local optima. However, such scaling factor is not very
difficult to compute because Coello [25] assumes populations of constant size (such size must be defined
before running the EA). The range of the fitness values can be also easily obtained at each generation,
because the maximum and minimum fitness values in the population are known at each generation.

The process indicated above is repeated until all individuals in P2 have a fitness value (the best aver-
age_fitness of their corresponding P1). Then, P2 is evolved one generation using conventional genetic
operators (i.e., crossover and mutation) and the new P2 produced is used to start the same process all over
again. It is important to notice that the interaction between P1 and P2 introduces diversity in both pop-
ulations, which keeps the EA from easily converging to a local optimum.

2.5.1. Advantages and disadvantages
The problem with this approach is that it introduces the definition of four additional parameters: Gmax1,

Gmax2, M1 and M2. Coello [22,25] argues that those parameters have to be (empirically) determined for an
EA in any particular application, and showed that the approach was really more sensitive to changes in the
parameters of P1 than to changes in the parameters of P2. However, the definition of these parameters
remains as an additional issue to be settled. Furthermore, if these parameters are not carefully chosen, a lot
of fitness function evaluations might be required due to the nested loops involved in the optimization
process. A parallel algorithm may be a viable solution to this problem, but such an alternative has not been
implemented yet.

2.6. Segregated genetic algorithm

Le Riche et al. [147] designed a (segregated) genetic algorithm which uses two penalty parameters (for
each constraint) instead of one; these two values aim at achieving a balance between heavy and moderate
penalties by maintaining two subpopulations of individuals instead of one. Even when individuals of the
two populations interbreed (i.e., they are merged), they are ‘‘segregated’’ in terms of satisfaction of a certain
constraint.

The procedure is the following [147]: a population of size 2 � m is generated. Each individual is evaluated
according to two penalty functions (one with heavy and one with moderate penalties). Two ranked lists are
generated and then merged. Only m individuals are chosen from the new list to apply the genetic operators
(crossover and mutation): the best individuals from the two original ranked lists are chosen to become
parents for the next generation. This aims to combine feasible and infeasible individuals, and to help the
genetic algorithm to stay out of local minima.

Another important difference of this approach with respect to a traditional genetic algorithm is that if
the two penalties have the same value, the m children produced after applying the genetic operators are
mixed with their m parents. Then the best m individuals from this merged list are chosen for further
processing. This replacement strategy (called ‘‘super elitism’’ by Le Riche et al. [147]) was taken from
evolution strategies [156] and allows to balance the influence of the two penalty factors used.

Linear ranking was used to decrease the high selection pressure that could cause premature convergence.
This approach was used to solve a laminated design problem, providing excellent results [147].

2.6.1. Advantages and disadvantages
The problem with this approach is again the way of choosing the penalties for each of the two sub-

populations. Even when some guidelines have been provided by the authors of this method to define such
penalties [147], they also admit that it is difficult to produce generic values that can be used in any problem
for which no previous information is available.

2.7. Death penalty

The rejection of infeasible individuals (also called ‘‘death penalty’’) is probably the easiest way to handle
constraints and it is also computationally efficient, because when a certain solution violates a constraint, it
is assigned a fitness of zero. Therefore, no further calculations are necessary to estimate the degree of

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1257

infeasibility of such a solution. The normal approach taken is to iterate recursively, generating a new point
at each recursive call, until a feasible solution is found [76]. This might be a rather lengthy process in
problems in which is very difficult to approach the feasible region.

2.7.1. Advantages and disadvantages
Death penalty is very popular within the evolution strategies community [4,156], but it is limited to

problems in which the feasible search space is convex and constitutes a reasonably large portion of the
whole search space. This approach has the drawback of not exploiting any information from the infeasible
points that might be generated by the EA to guide the search.

One potential problem of this approach is that if there are no feasible solutions in the initial population
(which is normally generated at random) then the evolutionary process will ‘‘stagnate’’ because all the
individuals will have the same fitness (i.e., zero).

There are well-documented experiments in which the use of death penalty with EAs is not a good choice.
For example, Coit and Smith [28] compared this approach against an adaptive penalty in a reliability design
optimization problem (a problem with highly constrained search spaces), finding that the adaptive penalty
was superior in terms of both the quality of the final solutions found and the convergence of the EA to the
best solution found. Michalewicz [102,108,109] has also shown that the use of death penalty is inferior to
the use of penalties that are defined in terms of the distance to the feasible region.

3. Special representations and operators

Some researchers have decided to develop special representation schemes to tackle a certain (particularly
difficult) problem for which a generic representation scheme (e.g., the binary representation used in the
traditional genetic algorithm) might not be appropriate. Due to the change of representation, it is necessary
to design special genetic operators that work in a similar way than the traditional operators used with a
binary representation.

A change of representation is aimed at simplifying the shape of the search space and the special oper-
ators are normally used to preserve the feasibility of solutions at all times. The main application of this
approach is naturally in problems in which it is extremely difficult to locate at least a single feasible so-
lution.

3.1. Davis’ applications

Lawrence Davis’ Handbook of Genetic Algorithms [40] contains several examples of EAs that use special
representations and operators to solve complex real-world problems. For example, Davidor [37] (see also
[36]) used a varying-length genetic algorithm to generate robot trajectories, and defined a special crossover
operator called analogous crossover [35], which uses phenotypic similarities to define crossover points in the
parent strings. Davidor also used Lamarckian probabilities for crossover and mutation. This means that
the crossover and mutation points were chosen according to the error distribution along the string, which
was relatively easy to estimate in this particular application.

Other applications included in Davis’ book are: schedule optimization [170], synthesis of neural net-
works architecture [73], and conformational analysis of DNA [98], among others.

3.1.1. Advantages and disadvantages
The use of special representations and operators is, with no doubt, quite useful for the intended ap-

plication for which they were designed, but their generalization to other (even similar) problems is by no
means obvious.

3.2. Random keys

Bean [8,9] proposed a special representation called ‘‘random keys encoding’’ which (in contrast with the
approaches reported in Davis’ book) is used to eliminate the need of special crossover and mutation

1258 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

operators in certain sequencing and optimization problems (e.g., job shop scheduling, parallel machine tool
scheduling, and facility layout), because it maintains the feasibility of the permutations used in these do-
mains at all times. It also adds no computational overhead to the search.

The idea is to encode a solution with random numbers. Such random numbers are used as sort keys to
decode the solution. For example, to represent an n-job m-machine scheduling problem using this ap-
proach, each allele is a real number in which the integer part belongs to the set f1; 2; . . . ;mg, whereas the
decimal fraction is randomly generated within the interval ð0; 1Þ. The integer part of the number is then
interpreted as the machine assignment for that job, whereas the sorted fractional parts provide the job
sequence on each machine [121,122].

3.2.1. Advantages and disadvantages
This approach is with no doubt interesting, although some researchers have reported poor performance

of the technique in some applications. For example, Parsons et al. [131,132] found that the random keys
genetic algorithm did not perform as well as a standard permutation representation with special-purpose
operators (transposition and a form of inversion) in a DNA fragment-assembly problem (a TSP problem
with noise, errors, and some other complications).

3.3. GENOCOP

Another example of this approach is GEnetic algorithm for Numerical Optimization for COnstrained
Problems (GENOCOP), developed by Michalewicz [101]. GENOCOP eliminates equality constraints to-
gether with an equal number of problem variables. This removes part of the space to be searched and
simplifies the problem for the EA. The remaining constraints are linear inequalities, which form a convex
set that must be searched by the EA. GENOCOP tries to locate an initial (feasible) solution by sampling the
feasible region. If it does not succeed after a certain number of trials, the user is asked to provide such a
starting point. The initial population will then consist of identical copies of this starting point. The genetic
operators adopted perform linear combinations of individuals to ensure that their offspring will also be
feasible (these operators rely on properties of convex sets).

3.3.1. Advantages and disadvantages
GENOCOP assumes a feasible starting point (or feasible initial population), which implies that

the user or the EA must have a way of generating (in a reasonable time) such starting point. Also,
the fact that GENOCOP only allows linear constraints, limits its applications to convex search spaces
[34].

3.4. Constraint consistent GAs

Kowalczyk [90] proposed the use of constraint consistency [93] to prune the search space by preventing
variable instantiations that are not consistent with the constraints of the problem (i.e., making sure that
variables produce only feasible solutions).

Kowalczyk used real-numbers representation and defined special genetic operators and a special ini-
tialization procedure that incorporated the concept of constraint consistency. He indicated that his ap-
proach can be used in combination with any other constraint-handling technique, and was aware that in
many cases partially feasible solutions may be preferred because they can guide the search in a more ap-
propriate way or because they are much easier to find.

3.4.1. Advantages and disadvantages
The main drawback of this approach is the extra computational cost required to propagate constraints,

which may become a process more expensive than the optimization itself. In any case, the approach de-
serves some attention and more experimentation is required, since Kowalczyk illustrated its performance
with only two optimization problems.

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1259

3.5. Locating the boundary of the feasible region

The main idea of this technique is to search areas close to the boundary of the feasible region. Since in
many nonlinear optimization problems at least some constraints are active at the global optimum, it is
perfectly justified to focus the search to the boundary between the feasible and infeasible regions.

The idea was originally proposed in an Operations Research technique known as strategic oscillation [65]
and has been used in combinatorial and nonlinear optimization problems [66]. The basic approach is to use
adaptive penalties or other similar mechanism (e.g., gradients) to cross the feasibility boundary back and
forth by relaxing or tightening a certain factor that determines the direction of movement [109].

The two basic components of this approach are: (a) an initialization procedure that can generate feasible
points, and (b) genetic operators that explore the feasible region.

Additionally, the genetic operators must satisfy the following conditions [101,136]: (1) crossover should
be able to generate all points ‘‘between’’ the parents, (2) small mutations must result in small changes in the
fitness function.

In the work done by Schoenauer and Michalewicz [152], several examples are presented and special
genetic operators are designed for each using geodesical curves and plane-based operators. In a further
paper, Schoenauer and Michalewicz [153] analyze in more detail the use of sphere operators in convex
feasible search spaces.

3.5.1. Advantages and disadvantages
The main drawback of this approach is that the operators designed are either highly dependent on the

chosen parameterization [152], or more complex calculations are required to perform crossover and mu-
tation. Also, many problems have disjoint feasible regions and the use of operators of this sort would not be
of much help in those cases since they would explore only one of those feasible regions.

Finally, the use of these operators is limited to a single problem, although some of the concepts involved
can be generalized. Whenever applicable, however, the approach is quite efficient and produces very good
results.

3.6. Decoders

In this case, a chromosome ‘‘gives instructions’’ on how to build a feasible solution. Each decoder
imposes a relationship T between a feasible solution and a decoded solution [34]. When using decoders,
however, it is important that several conditions are satisfied [127]: (1) for each feasible solution s there must
be a decoded solution d, (2) each decoded solution d must correspond to a feasible solution s and (3) all
feasible solutions should be represented by the same number of decodings d. Additionally, it is reasonable
to request that (4) the transformation T is computationally fast and (5) it has locality feature in the sense
that small changes in the decoded solution result in small changes in the solution itself [34].

Koziel and Michalewicz [91,92] have recently proposed a homomorphous mapping between an n-di-
mensional cube and a feasible search space (either convex or non-convex). The main idea of this approach is
to transform the original problem into another (topologically equivalent) function that is easier to optimize
by the EA.

Kim and Husbands [86,87] had an earlier proposal of a similar approach that used Riemann mappings
to transform the feasible region into a shape that facilitated the search for the EA.

3.6.1. Advantages and disadvantages
Despite the several advantages of the approach of Koziel and Michalewicz [92], it also has some dis-

advantages:
• It uses an extra parameter v which has to be found empirically, performing a set of runs.
• Requires extra computational effort because of the binary search required to find the intersection of a line

with the boundary of the feasible region (which is the core of the technique).
• It violates the locality feature mentioned before when used in non-convex search spaces: small changes in

the encoded solution may result in huge changes in the decoded value (e.g., when dealing with disjoint
search spaces).

1260 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

However, in the experiments reported by Koziel and Michalewicz [92], this technique provided much
better results than those reported with any other constraint-handling method, and seems a very promising
area of research.

Kim and Husbands’ approach [86,87] could only be used with problems of low dimensionality (no more
than four variables) and required the objective function to be given in algebraic form. The mapping pro-
posed by Koziel and Michalewicz [91,92], however, can be used with problems of any dimensionality and
does not require that the objective function is given in algebraic form.

4. Repair algorithms

In many combinatorial optimization problems (e.g., traveling salesman problem, knapsack problem, set
covering problem, etc.) is relatively easy to ‘repair’ an infeasible individual (i.e., to make feasible an in-
feasible individual). Such a repaired version can be used either for evaluation only, or it can also replace
(with some probability) the original individual in the population.

Liepins and co-workers [96,97] have shown, through an empirical test of EA performance on a diverse
set of constrained-combinatorial optimization problems, that a repair algorithm is able to surpass other
approaches in both speed and performance.

GENOCOP III [108] also uses repair algorithms. The idea is to incorporate the original GENOCOP
system [107] (which handles only linear constraints) and extend it by maintaining two separate populations,
where results in one population influence evaluations of individuals in the other population. The first
population consists of the so-called search points which satisfy linear constraints of the problem; the
feasibility (in the sense of linear constraints) of these points is maintained by specialized operators. The
second population consists of feasible reference points. Since these reference points are already feasible,
they are evaluated directly by the objective function, whereas search points are ‘‘repaired’’ for evaluation.

Xiao and co-workers [110,175,176] used a repair algorithm to transform an infeasible path of a robot
trying to move between two points in the presence of obstacles, so that the path would become feasible (i.e.,
collision-free). The repair algorithm was implemented through a set of carefully designed genetic operators
that used knowledge about the domain to bring infeasible solutions into the feasible region in an efficient way.

Other authors that have used repair algorithms are Orvosh and Davis [126], M€uuhlenbein [115], Le Riche
and Haftka [146], and Tate and Smith [171].

There are no standard heuristics for the design of repair algorithms: normally, it is possible to use a
greedy algorithm (i.e., an optimization algorithm that proceeds through a series of alternatives by making
the best decision, as computed locally, at each point in the series), a random algorithm or any other
heuristic which would guide the repair process. However, the success of this approach relies mainly on the
ability of the user to come up with such a heuristic.

Another interesting aspect of this technique is that normally an infeasible solution that is repaired is only
used to compute its fitness, but the repaired version is returned to the population only in certain cases (using
a certain probability). The question of replacing repaired individuals is related to the so-called Lamarckian
evolution, which assumes that an individual improves during its lifetime and that the resulting improve-
ments are coded back into the chromosome [166]. Some researchers like Liepins and co-workers [96,97]
have taken the never replacing approach (that is, the repaired version is never returned to the population),
while other authors such as Nakano [119] have taken the always replacing approach.

Orvosh and Davis [125,126] reported a so-called 5% rule for combinatorial optimization problems,
which means that EAs (applied to combinatorial optimization problems) with a repairing procedure
provide the best result when 5% of the repaired chromosomes replace their infeasible originals. Michalewicz
[104] have reported, however, that a 15% replacement rule seems to be the best choice for numerical op-
timization problems with nonlinear constraints.

4.1. Advantages and disadvantages

When an infeasible solution can be easily (or at least at a low computational cost) transformed into a
feasible solution, repair algorithms are a good choice. However this is not always possible and in some cases

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1261

repair operators may introduce a strong bias in the search, harming the evolutionary process itself [161].
Furthermore, this approach is problem-dependent, since a specific repair algorithm has to be designed for
each particular problem.

5. Separation of constraints and objectives

There are several approaches that handle constraints and objectives separately (i.e., without combining
the amount of constraint violation and the objective function value). In this section we will review some of
the most representative proposals.

5.1. Co-evolution

Paredis [128] proposed a technique based on a co-evolutionary model in which there are two popula-
tions: the first contains the constraints to be satisfied (in fact, this is not a population in the general sense of
the term, since its contents does not change over time) and the second contains potential (and possibly
invalid) solutions to the problem to be solved. Using an analogy with a predator–prey model, the selection
pressure on members of one population depends on the fitness of the members of the other population
[128].

An individual with high fitness in the second population represents a solution that satisfies a lot of
constraints whereas an individual with high fitness in the first population represents a constraint that is
violated by a lot of solutions.

Solutions and constraints have encounters in which individuals belonging to both populations are
evaluated. Each individual keeps a history of its encounters, and its fitness is computed according to the
sum of the last n encounters ([128] used n ¼ 25). The idea of the approach is to increase the fitness of those
constraints that are harder to satisfy so that the evolutionary search concentrates on them. In fact, the
relevance of a certain constraint can be changed over time using this approach.

5.1.1. Advantages and disadvantages
Paredis [128] indicated that his approach was similar to a self-adaptive penalty function in which the

relevance of a certain constraint can be changed over time, according to its difficulty. The results reported
by Paredis [128] are very impressive, and the approach seems very efficient because not all constraints have
to be checked at all times. One problem with this approach is that the use of a historical record to compute
fitness of an individual might introduce ‘‘stagnation’’ (i.e., the search may not progress anymore) if all the
constraints (or at least most of them) are equally difficult to satisfy. Also, there is no further evidence of the
effectiveness of the approach in other combinatorial optimization problems, and apparently, it has not been
extended to numerical optimization problems either.

5.2. Superiority of feasible points

Powell and Skolnick [134] incorporated a heuristic rule (suggested by Richardson et al. [144]) for pro-
cessing infeasible solutions: evaluations of feasible solutions are mapped into the interval ð�1; 1Þ, and
infeasible solutions into the interval ð1;1Þ. Individuals are evaluated using [134]:

fitnessð~xxÞ ¼
f ð~xxÞ if feasible;

1 þ r
Pn
i¼1 gið~xxÞ þ

Pp
j¼1 hjð~xxÞ

�
otherwise:

8<
: ð39Þ

f ð~xxÞ is scaled into the interval ð�1; 1Þ, gið~xxÞ and hjð~xxÞ are scaled into the interval ð1;1Þ, and r is a
constant. Notice that in this approach the objective function and the amount of constraint violation are not
combined when an individual is infeasible (as when using penalty functions).

1262 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

Powell and Skolnick [134] used linear ranking selection [6,7,40] in such a way that at early generations
there would be slow convergence, and later on convergence could be forced by increasing the number of
copies of the highest ranked individuals.

Deb [44] proposed more recently a similar approach in which an individual is evaluated using:

fitnessð~xxÞ ¼
f ð~xxÞ if gið~xxÞP 0 8i ¼ 1; 2; . . . ; n;

fworst þ
Pn
i¼1 gið~xxÞ otherwise;

(
ð40Þ

where fworst is the objective function value of the worst feasible solution in the population, and gið~xxÞ refers
only to inequality constraints (Deb transformed equality constraints to inequality constraints using Eq. (7)).
If there are no feasible solutions in the population, then fworst is set to zero.

Using binary tournament selection, Deb applies the following rules to compare two individuals [44]:
1. A feasible solution is always preferred over an infeasible one.
2. Between two feasible solutions, the one having a better objective function value is preferred.
3. Between two infeasible solutions, the one having smaller constraint violation is preferred.

No penalty factor is required, since the selection procedure only performs pairwise comparisons.
Therefore, feasible solutions have a fitness equal to their objective function value, and the use of constraint
violation in the comparisons aims to push infeasible solutions towards the feasible region. Due to the fact
that constraints are normally non-commensurable (i.e., they are expressed in different units), Deb nor-
malized them to avoid any sort of bias toward any of them.

The main difference between these two approaches (Powell and Skolnick’s and Deb’s) is that the second
does not require a penalty factor r, because of the pairwise comparisons performed during the selection
process. However, the apprach of Deb [100] requires niching to maintain diversity in the population. This
means that in this approach the search is focused initially on finding feasible solutions and then uses
techniques to maintain diversity to approach the optimum.

Another similar approach called COnstraint based Numeric Genetic Algorithm (CONGA) was pro-
posed by Hinterding and Michalewicz [75]. The idea is to perform the search in two phases, as Schoenauer
and Xanthakis’ behavioral memory algorithm [154]. In the first phase, the search concentrates on finding
feasible individuals (assuming that there is none in the initial population) and the objective function value is
not used (only the information about constraint violation of each individual). As the amount of feasible
individuals increases, the search focuses on fine-tuning the best of them. Hinterding and Michalewicz [75]
use two selection functions: one that selects an individual for mutation or the first parent for crossover (only
one operator can be applied) using the same criteria as Deb [44] (an individual is randomly chosen when
there is a tie). The second selection function finds a mate for a parent selected with the first function. This
second selection function chooses the individual with the least number of satisfied constraints in common
with the parent already selected. The idea is to select the mate who best ‘‘complements’’ the parent pre-
viously selected. This mate should satisfy the constraints than the first selected parent does not satisfy.
Therefore, the aim is that crossover will create new individuals who satisfy more constraints than any of
their parents. The idea of complementary matching was borrowed from Ronald [148], only that in his case,
the selection of the second parent did not depend on the first one but on a different global criterion.

5.2.1. Advantages and disadvantages
Although some might think that the definition of r in Powell and Skolnick’s approach introduces the

traditional problems of using a penalty function, this is not true, since the linear ranking selection scheme
used makes irrelevant the value of this constant. The approach has, however, other problems.

The key concept of this approach is the assumption of the superiority of feasible solutions over infeasible
ones, and as long as such assumption holds, the technique is expected to behave well [134]. However, in
cases where the ratio between the feasible region and the whole search space is too small (for example, when
there are constraints very difficult to satisfy), this technique will fail unless a feasible point is introduced in
the initial population [104].

The results of Deb [44] are very encouraging, but his technique seems to have problems to maintain
diversity in the population, and the use of niching methods [45] combined with higher than usual mutation
rates is apparently necessary to avoid stagnation. Sharing is an expensive process (Oðn2Þ), and its use

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1263

introduces an extra parameter (rshare), whose definition is normally determined using an empirical proce-
dure similar to the one used with the other parameters of an EA (e.g., crossover and mutation rates,
population size, etc.).

The approach of Hinterding and Michalewicz relies on the same assumption as Powell and Skolnick’s
technique: feasible individuals are always better than infeasible ones. Therefore, it shares its same problems.
The other problem with this approach is how to keep diversity in the population, since the tournament
selection strategy adopted might introduce a high selection pressure (e.g., if there is only one feasible in-
dividual in the population, it will drive the others to a possible local optimum). The authors used a very
high replacement rate (the 97% worst individuals from each generation are replaced by new individuals, and
duplicates are not allowed in the population). This tries to keep a large number of infeasible individuals in
the population when at least one feasible individual has been found, as to decrease the selection pressure.
However, the approach still needs further refinement and validation (it was tested only with five benchmark
functions and compared against GENOCOP II and III).

5.3. Behavioral memory

Schoenauer and Xanthakis [154] proposed to extend a technique called behavioral memory, which was
originally proposed for unconstrained optimization [41]. The main idea of this approach is that constraints
are handled in a particular order. The algorithm is the following [154]:
• Start with a random population of individuals.
• Set j ¼ 1 (j is the constraint counter).
• Evolve this population to minimize the violation of the jth constraint, until a given percentage of the pop-

ulation (this is called the flip threshold U) is feasible for this constraint. In this case

fitnessð~xxÞ ¼ M � g1ð~xxÞ; ð41Þ

where M is a sufficiently large positive number which is dynamically adjusted at each generation.
• j ¼ jþ 1.
• The current population is the starting point for the next phase of the evolution, minimizing the violation

of the jth constraint,

fitnessð~xxÞ ¼ M � gjð~xxÞ: ð42Þ

During this phase, points that do not satisfy at least one of the 1st; 2nd; . . . ; ðj� 1Þth constraints are
eliminated from the population. The condition required to stop this stage of the algorithm is again the
satisfaction of the jth constraint by the flip threshold percentage U of the population.

• If j < m, repeat the last two steps, otherwise (j ¼ m) optimize the objective function f rejecting infeasible
individuals.
The idea of this technique is to satisfy sequentially (one-by-one) the constraints imposed on the problem.

This is similar to an approach called ‘‘lexicographic ordering’’ that is used in multiobjective optimization
[21]. Once a certain percentage of the population (defined by the flip threshold) satisfies the first constraint,
an attempt to satisfy the second constraint (while still satisfying the first) will be made. Notice that in the
last step of the algorithm, Schoenauer and Xanthakis [154] use death penalty, because infeasible individuals
are eliminated from the population.

5.3.1. Advantages and disadvantages
This method requires that there is a linear order of all constraints, and the order in which the constraints

are processed influences the results provided by the algorithm (in terms of total running time and precision
achieved) [104].

Schoenauer and Xanthakis also recommended the use of a sharing scheme (to keep diversity in the
population), which adds to the flip threshold U and the order of the constraints as extra parameters re-
quired by the algorithm.

Furthermore, since this approach violates the minimum penalty rule [145,147], it has a high computa-
tional cost (increased by the use of sharing to keep diversity in the population). As Schoenauer and

1264 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

Xanthakis [154] admit, the extra computational cost of this approach is not justified when the feasible
region is quite large. However, it is particularly suitable for applications in which constraints have a natural
hierarchy of evaluation, like the problem of generating software test data used by the authors of this
technique [154].

5.4. Multiobjective optimization techniques

The main idea is to redefine the single-objective optimization of f ð~xxÞ as a multiobjective optimization
problem in which we will have mþ 1 objectives, where m is the total number of constraints. Then, we can
apply any multiobjective optimization technique [60] to the new vector �vv ¼ ðf ð~xxÞ; f1ð~xxÞ; . . . ; fmð~xxÞÞ, where
f1ð~xxÞ; . . . ; fmð~xxÞ are the original constraints of the problem. An ideal solution~xx would thus have fið~xxÞ¼ 0 for
16 i6m and f ð~xxÞ6 f ð~yyÞ for all feasible ~yy (assuming minimization).

Surry and co-workers [167,168] proposed the use of Pareto ranking [59] and VEGA [151] to handle
constraints using this technique. In their approach, called COMOGA, the population was ranked based on
constraint violations (counting the number of individuals dominated by each solution). Then, one portion
of the population was selected based on constraint ranking, and the rest based on real cost (fitness) of the
individuals.

Parmee and Purchase [129] implemented a version of VEGA [151] that handled the constraints of a gas
turbine problem as objectives to allow an EA to locate a feasible region within the highly constrained search
space of this application. However, VEGA was not used to further explore the feasible region, and instead
Parmee and Purchase [129] opted to use specialized operators that would create a variable-size hypercube
around each feasible point to help the EA to remain within the feasible region at all times.

Camponogara and Talukdar [16] proposed the use of a procedure based on an evolutionary multiob-
jective optimization technique. Their proposal was to restate a single objective optimization problem in
such a way that two objectives would be considered: the first would be to optimize the original objective
function and the second would be to minimize

Uð~xxÞ ¼
Xn
i¼1

max½0; gið~xxÞ�: ð43Þ

Once the problem is redefined, non-dominated solutions with respect to the two new objectives are
generated. The solutions found define a search direction d ¼ ðxi � xjÞ=jxi � xjj, where xi 2 Si, xj 2 Sj and Si
and Sj are Pareto sets. The direction search d is intended to simultaneously minimize all the objectives [16].
Line search is performed in this direction so that a solution x can be found such that x dominates xi and xj
(i.e., x is a better compromise than the two previous solutions found). Line search takes the place of
crossover in this approach, and mutation is essentially the same, where the direction d is projected onto the
axis of one variable j in the solution space [16]. Additionally, a process of eliminating half of the popu-
lation is applied at regular intervals (only the less fitted solutions are replaced by randomly generated
points).

Jim�eenez and Verdegay [81] proposed the use of a min–max approach [19] to handle constraints. The
main idea of this approach is to apply a set of simple rules to decide the selection process:
1. If the two individuals being compared are both feasible, then select based on the minimum value of the

objective function.
2. If one of the two individuals being compared is feasible and the other one is infeasible, then select the

feasible individual.
3. If both individuals are infeasible, then select based on the maximum constraint violation (max gjð~xxÞ for
j ¼ 1; . . . ;m, and m is the total number of constraints). The individual with the lowest maximum viola-
tion wins.
Notice the great similarity between this approach and the technique proposed by Deb [44] that was

described in Section 5.2. The main difference is that in this case, no extra mechanism is used to preserve
diversity in the population.

Coello [24] proposed the use of a population-based multiobjective optimization technique such as VEGA
[151] to handle each of the constraints of a single-objective optimization problem as an objective. At each

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1265

generation, the population is split into mþ 1 sub-populations (m is the number of constraints), so that a
fraction of the population is selected using the (unconstrained) objective function as its fitness and another
fraction uses the first constraint as its fitness and so on.

For the sub-population guided by the objective function, the evaluation of such objective function for a
given vector ~xx is used directly as the fitness function (multiplied by ()1) if it is a minimization problem),
with no penalties of any sort. For all the other sub-populations, the algorithm used is the following [24]:

if gjð~xxÞ < 0:0 then fitness ¼ gjð~xxÞ
else if v 6¼ 0 then fitness ¼ �v
else fitness ¼ f ð~xxÞ

where gjð~xxÞ refers to the constraint corresponding to sub-population jþ 1 (this is assuming that the first
sub-population is assigned to the objective function f ð~xxÞ), and v refers to the number of constraints that are
violated (6m).

There are a few interesting things that can be observed from this procedure. First, each sub-population
associated with a constraint will try to reduce the amount in which that constraint is violated. If the so-
lution evaluated does not violate the constraint corresponding to that sub-population, but it is infeasible,
then the sub-population will try to minimize the total number of violations, joining then the other sub-
populations in the effort of driving the EA to the feasible region. This aims at combining the distance from
feasibility with information about the number of violated constraints, which is the same heuristic normally
used with penalty functions.

Finally, if the solution encoded is feasible, then this individual will be ‘merged’ with the first sub-pop-
ulation, since it will be evaluated with the same fitness function (i.e., the objective function).

It is interesting to notice that the use of the unconstrained objective function in one of the sub-popu-
lations may assign good fitness values to infeasible individuals. However, since the number of constraints
will normally be greater than one, the other sub-populations will drive the EA to the feasible region. In fact,
the sub-population evaluated with the objective function will be useful to keep diversity in the population,
making then unnecessary the use of sharing techniques. The behavior expected under this scheme is to have
few feasible individuals at the beginning, and then gradually produce solutions that may be feasible with
respect to some constraints but not with respect to others. Over time, these solutions will combine to
produce individuals that are feasible, but not necessarily optimum. At that point the direct use of the
objective function will help the EA to approach the optimum, but since some infeasible solutions will still be
present in the population, those individuals will be responsible to keep the diversity required to avoid
stagnation.

More recently, Coello [23] proposed another approach based on non-dominance. In this case, fitness is
assigned to an individual using the following algorithm:

Let the vector ~xxi (i ¼ 1; . . . ; pop size) be an individual in the current population whose size is pop size.
The proposed algorithm is the following:
• To compute the rank of an individual ~xxi is feasible, following procedure is used:

rankð~xxiÞ ¼ countð~xxiÞ þ 1; ð44Þ

where countð~xxiÞ is computed according to the following rules:
1. Compare~xxi against every other individual in the population. Assuming pairwise comparisons, we will

call ~xxj (j ¼ 1; . . . ; pop size and j 6¼ i) the other individual against which xi is being compared at any
given time.

2. Initialize countð~xxiÞ (for i ¼ 1; . . . ; pop size) to zero.
3. If both ~xxi and ~xxj are feasible, then both are given a rank of zero and countð~xxiÞ remains without

changes.
4. If ~xxi is infeasible and ~xxj is feasible, then countð~xxiÞ is incremented by one.
5. If both~xxi and~xxj are infeasible, but~xxi violates more constraints than~xxj, then countð~xxiÞ is incremented

by one.
6. If both ~xxi and ~xxj are infeasible, and both violate the same number of constraints, but ~xxi has a total

amount of constraint violation larger than the constraint violation of~xxj, then countð~xxiÞ is incremented
by one.

1266 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

If any constraint gkð~xxÞ (k ¼ 1; . . . ;m, where m is the total amount of constraints) is considered satisfied if
gið~xxÞ6 0, then, the total amount of constraint violation for an individual~xxi (denoted as coefð~xxiÞ) is given
by

coefð~xxiÞ ¼
Xp
k¼1

gkð~xxiÞ for all gkð~xxiÞ > 0: ð45Þ

• Compute fitness using the following rules:
7. If ~xxi is feasible, then rankð~xxiÞ ¼ fitnessð~xxiÞ, else
8. rankð~xxiÞ ¼ 1=rankð~xxiÞ.

• Individuals are selected based on rankð~xxiÞ (stochastic universal sampling is used).
• Values produced by fitnessð~xxiÞ must be normalized to ensure that the rank of feasible individuals is al-

ways higher than the rank of infeasible ones.
This approach uses a real-coded GA with a simple self-adaptive mechanism for crossover and mutation

(see [23] for details) and it does not require any additional parameters to maintain diversity in the popu-
lation (as is normally the case of evolutionary multiobjective optimization techniques [21]).

Ray et al. [140] proposed an approach in which solutions are ranked separately based on the value of
their objective functions and their constraints. Then, a set of mating restrictions are applied based on the
information that each individual has of its own feasibility (this idea was inspired on an earlier approach by
Hinterding and Michalewicz [75]), so that the global optimum can be reached through cooperative learning.

Finally, Runarsson and Yao [149] proposed a constraint-handling approach based on stochastic ranking
that has some resemblance with the technique of Surry and Radcliffe [168]. In this case, however, the
population is ranked using a stochastic version of bubble sort in which individuals are compared to their
adjacent neighbors through a certain number of sweeps (this number is probabilistically determined). The
approach aims to find whether the objective function or the penalty function is dominating the search so
that an appropriate balance can be found and the evolutionary algorithm can be guided to the global
optimum in an efficient way. The authors used a multi-member evolution strategy with this approach and
were able to match (and even improve in some cases) the results produced by Koziel and Michalewicz [92]
in the benchmark functions of Michalewicz [104], at a lower computational cost.

5.4.1. Advantages and disadvantages
COMOGA compared fairly with a penalty-based approach in a pipe-sizing problem, since the resulting

EA was less sensitive to changes in the parameters. However, the results achieved were not better than those
found with a penalty function [167]. It should be added that COMOGA [167,168] requires several extra
parameters, although its authors argue that the technique is not particularly sensitive to their values [167].
This technique uses Pareto ranking based on constraint violation [168]. From Operations Research we
know that determining which solutions in some set are Pareto optimal is a computationally expensive
process (it is Oðk �M2Þ, where k is the number of objectives and M is the population size)).

The approach of Parmee and Purchase [129] was developed for a heavily constrained search space and it
proved to be appropriate to reach the feasible region. However, this application of a multi-objective op-
timization technique does not aim at finding the global optimum of the problem, and the use of special
operators suggested by the authors certainly limits the applicability of their approach.

The approach of Camponogara and Talukdar [16] has obvious problems to keep diversity (a common
problem when using evolutionary multi-objective optimization techniques [21]). This is indicated by the fact
that the technique discards the worst individuals at each generation. Also, the use of line search increases
the cost (computationally speaking) of the approach. Finally, it is not clear what is the impact of the
segment chosen to search in the overall performance of the algorithm.

The approach of Jim�eenez and Verdegay [81] can hardly be said to be using a multi-objective optimization
technique since it only ranks infeasible individuals based on constraint violation. A subtle problem with this
approach is that the evolutionary process first concentrates only on the constraint satisfaction problem and
therefore it samples points in the feasible region essentially at random [168]. This means that in some cases
(e.g., when the feasible region is disjoint) we might land in an inappropriate part of the feasible region from
which we will not be able to escape. However, this approach (as in the case of the technique Parmee and
Purchase [129]) may be a good alternative to find a feasible point in a heavily constrained search space.

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1267

The main drawback of the population-based approach Coello [24] is the number of sub-populations that
may be needed in larger problems, since they will increase linearly with the number of constraints. How-
ever, it is possible to deal with that problem in two different ways: first, some constraints could be tied; that
means that two or more constraints could be assigned to the same sub-population. That would significantly
reduce the number of sub-populations in highly constrained problems. Second, the approach could be
parallelized, in which case a high number of sub-populations would not be a serious drawback, since they
could be processed concurrently. The current algorithm would however need modifications as to decide the
sort of interactions between a master process (responsible for actually optimizing the whole problem) and
the slave sub-processes (all the sub-populations responsible for the constraints of the problem).

Specialists in evolutionary multi-objective optimization may indicate that VEGA is not a very good
choice because of its well-known limitations (it tries to find individuals that excel only in one dimension
regardless of the others [60,151]). However, that drawback turns out to be an advantage in the context of
constraint-handling, because what we want to find are precisely solutions that are feasible, instead of good
compromises that may not satisfy one of the constraints.

Coello’s approach based on non-dominance [25] tends to perform well. However, as it is normally the
case of constraint-handling techniques based on evolutionary multi-objective optimization concepts, this
approach tends to generate good trade-offs that may be more beneficial in highly constrained search spaces
(since they will allow us to approach the feasible region more efficiently). This implies that this approach
may have more difficulties to reach the global optimum efficiently.

The approach of Ray et al. [140] is a promising venue of future research in constraint-handling, since it
uses not only concepts from multiobjective optimization, but it also incorporates specific domain knowl-
edge into the constraint-handling mechanism of their GA. This makes the approach very efficient (com-
putationally speaking) with respect to other constraint-handling techniques, although there are some
sacrifices (as in Coello’s approach) in terms of quality of the solutions produced.

The approach of Runarsson and Yao [149] constitutes another promising path of future research in
constraint-handling. Their approach is efficient and highly competitive with other (more sophisticated)
techniques. Its only current drawback is the need of a parameter (called Pf by the authors of the technique)
that defines the probability of using only the objective function for comparisons in the ranking process
(when lying in the infeasible region). The authors of the technique, however, have provided some guidelines
to compute the most appropriate value of this parameter [149]. 2

6. Hybrid methods

Within this category we are considering methods that are coupled with another technique (normally a
numerical optimization approach) to handle constraints in an EA.

6.1. Lagrangian multipliers

Adeli and Cheng [1] proposed a hybrid EA that integrates the penalty function method with the primal–
dual method. This approach is based on sequential minimization of the Lagrangian method, and uses a
fitness function of the form

fitness ¼ f ð~xxÞ þ 1

2

Xm
j¼1

cj ½gjð~xxÞ
n

þ lj�
þ
o2

; ð46Þ

where ci > 0, li is a parameter associated with the ith constraint, and m is the total number of constraints.
Also

½gjð~xxÞ þ lj�
þ ¼ max½0; gjð~xxÞ þ lj�: ð47Þ

2 The technique also requires another parameter (the number of sweeps to be performed) which, however, can be fixed.

1268 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

The proposal of Adeli and Cheng [1] was to define lj in terms of the previously registered maximum
violation of its associated constraint and scale it using a parameter b. This parameter is defined by the user
and has to be greater than one. cj is increased using also the parameter b, whose value (kept constant
through the entire process) is multiplied by the previous value adopted for cj. This is to ensure that the
penalty is increased over generations.

This approach follows Powell’s early proposal [135] of combining the penalty function method with the
primal dual method. By using an outer loop we can update the Lagrange multiplier ki ¼ cili automatically
according to the information obtained in previous iterations. This makes unnecessary that penalty function
coefficients or Lagrange multipliers go to infinity to ensure convergence.

Additionally, no derivatives of the objective function or the constraints are required to update the co-
efficients used by the Lagrange multipliers [1].

Kim and Myung [88,117] proposed the use of an evolutionary optimization method combined with an
augmented Lagrangian function that guarantees the generation of feasible solutions during the search
process. This proposal is an extension of a system called Evolian [116,118], which uses evolutionary pro-
gramming with a multi-phase optimization procedure in which the constraints are scaled. During the first
phase of the algorithm, the objective is to optimize

fitnessð~xxÞ ¼ f ð~xxÞ þ C
2

Xn
i¼1

ðmax½0; gi�Þ2ð~xxÞ

þ
Xp
j¼1

jhjð~xxÞj2
!
; ð48Þ

where C is a constant. Once this phase is finished (i.e., once constraint violations have been decreased as
much as the user wants), the second phase starts. During this second phase, the optimization algorithm of
Maa and Shanblatt [99] is applied to the best solution found during the first phase.

The second phase uses Lagrange multipliers to adjust the penalty function according to the feedback
information received from the environment during the evolutionary process, in a way akin to the proposal
of Adeli and Cheng [1].

6.1.1. Advantages and disadvantages
The technique of Adeli and Cheng [1] provided them with good results, but the additional parameters

needed to make it work properly do not seem to overcome the most serious drawbacks of a traditional
penalty function. They initialize these parameters following the recommendations of Belegundu and Arora
[11], but it is not clear what is the impact of these parameters when chosen in an arbitrary manner.

The main drawback of the appraoch of Kim and Myung [88,117] is the same as before: despite the fact
that they provide more guidelines regarding the definition of some of the extra parameters needed by their
procedure, there are still several values that have to be adjusted using an empirical procedure.

6.2. Constrained optimization by random evolution

Belur [12] proposed a hybrid technique called Constrained Optimization by Random Evolution
(CORE). The main idea of this approach is to use random evolutionary search combined with a mathe-
matical programming technique for unconstrained optimization (the author used the Nelder and Mead’s
simplex method [120], but any other similar technique should work as well). Whenever a solution is not
feasible, the following constraint functional is minimized:

Cð~xxÞ ¼
X
i2C1

h2
i ð~xxÞ �

X
j2C2

gjð~xxÞ; ð49Þ

where

C1 ¼ i
n

¼ 1; . . . ; n=jhið~xxÞj > ec
o
; ð50Þ

C2 ¼ j
n

¼ 1; . . . ; q=gjð~xxÞ < 0
o

ð51Þ

and ec is the tolerance allowed in the equality constraints hið~xxÞ.

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1269

6.2.1. Advantages and disadvantages
This minimization process can be seen as a repair algorithm for numerical optimization, which implies

that this technique has the same problems of the repair algorithms described in Section 4.

6.3. Fuzzy logic

Van Le [95] proposed a combination of fuzzy logic and evolutionary programming to handle constraints.
The main idea was to replace constraints of the form gið~xxÞ6 bi by a set of fuzzy constraints C1; . . . ;Cm,
i ¼ 1; . . . ;m defined as

lCið~xxÞ ¼ lrðbi;�iÞðgið~xxÞÞ; i ¼ 1; . . . ;m; ð52Þ

where �i is a positive real number that represents the tolerable violation of the constraints, and

lrða;sÞð~xxÞ ¼

1 if x6 a;

e�pððx�aÞ=sÞ
2 � e�p

1 � e�p
if a < x6 aþ s;

0 if x > aþ s:

8>><
>>: ð53Þ

The rationale behind this fuzzification process is to allow a higher degree of tolerance if gið~xxÞ is (greater
than bi but) close to bi and then the tolerance decreases rapidly when the error increases.

The fitness function is then redefined as

fitnessð~xxÞ ¼ f ð~xxÞ � min lC1
ð~xxÞ; . . . ; lCmð~xxÞ

�
: ð54Þ

6.3.1. Advantages and disadvantages
The idea of using degrees of constraint satisfaction as weight factors for the fitness of potential solutions

is interesting and the use of fuzzy logic to determine the acceptability of a certain solution seems a natural
way of processing constraints. However, the main problem with this approach is that it requires the def-
inition of �i (the tolerable violation of constraints) and p for each particular problem. Furthermore, Van Le
provides very little empirical evidence of the performance of his technique, although this is certainly a
research path that is worth exploring.

6.4. Immune system

Forrest and Perelson [61] and Smith et al. [163,164] explored the use of a computational model of the
immune system in which a population of antibodies is evolved to cover a set of antigens. In this proposal,
binary strings were proposed to model both antibodies and antigens, and an antibody was said to match an
antigen if their bit strings were complementary (maximally different).

Although Smith et al. [163,164] proposed this approach as a way to keep diversity in multi-modal op-
timization problems, Hajela and Lee [70,71] extended it to handle constraints.

The algorithm proposed by Hajela and Lee [70] is the following:
1. Generate a random population. Compute objective function values and a cumulative measure of con-

straint violation.
2. Separate feasible and infeasible individuals. Rank individuals within each group based on their objective

function values. Compute an average objective function value of a subset of feasible individuals.
3. Choose a number of feasible individuals with objective function value closest to the average value com-

puted in the previous step. Sort these individuals. They are called the antigen population.
4. Infeasible individuals are subject to an immune system simulation, generating antibodies to the antigen

population of the previous step. This simulation yields a subpopulation of designs with a reduction in
the level of constraint violations.

5. Conduct a traditional simulation of an EA with the objective function as the only measure of fitness. The
population is seeded with all currently feasible individuals from step (2), and enough copies of constraint

1270 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

conditioned individuals obtained in step (4). Several approaches are possible to introduce these con-
straint conditioned individuals. Hajela and Lee used two: (a) introduce multiple copies of the best con-
straint conditioned individual, and (b) introduce multiple copies, drawn at random from the best 25% of
constraint conditioned individuals.
The immune system simulation consists of using a simple matching function that computes the similarity

(on a bit-per-bit basis, assuming binary encoding) between two chromosomes. Then, the population of
antibodies is co-evolved until they become sufficiently similar to their antigens by maximizing their degree
of matching.

The idea is to adapt infeasible solutions to the current feasible individuals. The performance of the
approach depends on the selection of antibodies (infeasible individuals) that are exposed to the antigens
during the simulation. There are several choices. For example, all the infeasible individuals could be in-
cluded in the antibody group that is exposed to the antigens from step (3). In this case, we would try to
adapt infeasible individuals to the characteristics of the average feasible population. Another approach
could be to use only those infeasible individuals that are close to the average objective function value of the
antigen population. Such an approach would be based on the premise that individual features that de-
termine objective function value are similar for the antibodies and antigens. Therefore the antibodies would
inherit those features from the antigens that promote constraint satisfaction [70,71].

A simpler instance of this technique, called expression strategies, was proposed by Hajela and Yoo [72].
In this case, feasible and infeasible individuals are combined using uniform crossover [169] in such a way
that their chromosomic material is exchanged.

It is worth mentioning that Hajela and Yoo [72] proposed the use of the Kreisselmeir–Steinhauser
function [165] to handle equality constraints. The idea is that if hið~xxÞ is the ith equality constraint, then it
can be represented by a pair of inequality constraints as

hið~xxÞ6 0; �hið~xxÞ6 0: ð55Þ

The Kreisselmeir–Steinhauser function can then be used to fold these constraints into a cumulative measure
X:

X ¼ ð1=qÞ ln eqhið~xxÞ
�

þ e�qhið~xxÞ

� ð1=qÞ ln 2 þ c1; ð56Þ

where c1 represents the width of a band that replaces the original strict equality constraint, and q is a user-
defined constant that scales the amount of constraint violation (q must take a non-zero non-negative value).
As q grows, the scaling factor becomes one (i.e., there is no scaling of the constraint violation). If the
equality constraint hið~xxÞ is satisfied, then hið~xxÞ ¼ 0, and thus X ¼ c1. By reducing c1 the solutions are forced
to move closer to the equality constraint. Therefore, we can see c1 as a tolerance value. The idea then is to
replace constraints of the form hið~xxÞ ¼ 0, by constraints of the form X6 c1.

6.4.1. Advantages and disadvantages
Since the bit matching process used by this approach does not require evaluating the fitness function, its

computational cost is not really significant. However, some other issues remain to be solved. For example,
it is not clear what is the effect (in terms of performance) of mixing different proportions of each population
(antibodies and antigens). It is also unclear what is the behavior of the algorithm when there are no feasible
individuals in the initial population.

The underlying assumption of this approach might rise some controversy: by making the genotype of an
infeasible individual more similar to the genotype of a feasible individual we can actually decrease its
amount of constraint violation. Smith et al. [164] provide some theoretical analysis regarding the expected
fitness of an individual when either perfect or partial matching is required. However, their work was done in
the context of fitness sharing (where the emphasis is to keep diversity in the population), and is not nec-
essarily applicable to constraint handling. Therefore, the only support to this hypothesis are the empirical
results reported by Hajela and Lee [70,71].

Finally, although it is always possible to compute genotypic distances regardless of the encoding used by
the EA, it is not entirely clear if it is possible to use this approach with non-binary representations.

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1271

6.5. Cultural algorithms

Some social researchers have suggested that culture might be symbolically encoded and transmitted
within and between populations, as another inheritance mechanism [49,141]. Using this idea, Reynolds
[142] developed a computational model in which cultural evolution is seen as an inheritance process that
operates at two levels: the micro-evolutionary and the macro-evolutionary levels.

At the micro-evolutionary level, individuals are described in terms of ‘‘behavioral traits’’ (which could be
socially acceptable or unacceptable). These behavioral traits are passed from generation to generation using
several socially motivated operators. At the macro-evolutionary level, individuals are able to generate
‘‘mappa’’ [141], or generalized descriptions of their experiences. Individual mappa can be merged and
modified to form ‘‘group mappa’’ using a set of generic or problem specific operators. Both levels share a
communication link.

Reynolds [142] proposed the use of genetic algorithms to model the micro-evolutionary process, and
Version Spaces [112] to model the macro-evolutionary process of a cultural algorithm.

The main idea behind this approach is to preserve beliefs that are socially accepted and discard (or
prune) unacceptable beliefs. The acceptable beliefs can be seen as constraints that direct the population at
the micro-evolutionary level [103]. Therefore, constraints can influence directly the search process, leading
to an efficient optimization process. In fact, Reynolds et al. [143] and Chung and Reynolds [20] have ex-
plored this area of research with very encouraging results in numerical optimization. A cultural algorithm
models the evolution of the culture component of an evolutionary computational system over time. This
culture component provides an explicit mechanism for acquisition, storage and integration of individual
and group’s problem solving experience and behavior [82]. In contrast, traditional EAs only use implicit
mechanisms for representing and storing individual’s global acquired knowledge, which is passed from
generation to generation.

The approach taken by Chung and Reynolds [20] was to use a hybrid of evolutionary programming and
GENOCOP [107] in which they incorporated an interval constraint-network [38,80] to represent the con-
straints of the problem at hand. An individual is considered as ‘‘acceptable’’ when it satisfies all the con-
straints of the problem. When that does not happen, then the belief space is adjusted (the intervals
associated with the constraints are adjusted). This approach is really a more sophisticated version of a
repair algorithm in which an infeasible solution is made feasible by replacing its genes by a different value
between its lower and upper bounds. Since GENOCOP assumes a convex search space, it is relatively easy
to design operators that can exploit a search direction towards the boundary between the feasible and
infeasible regions.

In more recent work, Jin and Reynolds [82] proposed an n-dimensional regional-based schema, called
belief-cell, as an explicit mechanism that supports the acquisition, storage and integration of knowledge
about non-linear constraints in a cultural algorithm. This belief-cell can be used to guide the search of an
EA (evolutionary programming in this case) by pruning the instances of infeasible individuals and pro-
moting the exploration of promising regions of the search space. The key aspect of this work is precisely
how to represent and save the knowledge about the problem constraints in the belief space of the cultural
algorithm.

The idea of Jin and Reynolds’ approach is to build a map of the search space similar to the ‘‘Divide-and-
Label’’ approaches used for robot motion planning [94]. This map is built using information derived from
evaluating the constraints of each individual in the population of the EA. The map is formed by dividing
the search space in sub-areas called cells. Each cell can be classified as: feasible (if it lies completely on a
feasible region), infeasible (if it lies completely on an infeasible region), semi-feasible (if it occupies part of
the feasible and part of the infeasible regions), or unknown (if that region has not been explored yet). This
map is used to derive rules about how to guide the search of the EA (avoiding infeasible regions and
promoting the exploration of feasible regions). In other words, these cells are used to form a ‘‘navigation
map’’ for the EA.

6.5.1. Advantages and disadvantages
This approach presents an interesting hybrid of knowledge-based approaches and evolutionary com-

putation techniques. However, it does not require the explicit definition of rules by the user, since the

1272 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

algorithm is able to learn its own rules over time. The approach has been refined in the last few years, and
proposals such as the one contained in Jin and Reynolds’ paper [82] are applicable even to problems with
disjoint feasible regions (normally quite difficult for most constraint-handling techniques). However, the
technique requires more refinement and validation. For example, in Jin and Reynolds’ paper, only one test
function was used. Also, they had to experiment with different strategies to update the constraint knowl-
edge of the problem. The other issue that deserves consideration is the efficiency of the method. Jin and
Reynolds’ do not discuss the computation cost of building belief maps in the presence of non-linear op-
timization constraints, and their approach might be sensitive to high dimensionality.

6.6. Ant colony optimization

This technique was proposed by Dorigo et al. [30,46–48] and it consists of a meta-heuristic intended for
hard combinatorial optimization problems such as the traveling salesperson. The main algorithm is really a
multi-agent system where low level interactions between single agents (i.e., artificial ants) result in a
complex behavior of the whole ant colony. The idea was inspired by colonies of real ants, which deposit a
chemical substance on the ground called pheromone [46]. This substance influences the behavior of the ants:
they will tend to take those paths where there is a larger amount of pheromone.

Recently, some researchers [13,173] have extended this technique to numerical optimization problems,
with very promising results. The main issue when extending the basic approach to deal with continuous
search spaces is how to model a continuous nest neighborhood with a discrete structure. Bilchev and
Parmee [14], for example, proposed to represent a finite number of directions whose origin is a common
base point called the nest. Since the idea is to cover eventually all the continuous search space, these vectors
evolve over time according to the fitness values of the ants.

To handle constraints, Bilchev and Parmee [13,14] proposed to make a food source ‘‘unacceptable’’ in
case it violated a constraint regardless of the value of its objective function (i.e., death penalty). As evo-
lution progresses, some food sources that were acceptable before, will vanish, as constraints are tightened
(i.e., the amount of ‘‘acceptable’’ constraint violation is decreased).

To make this model effective, three different levels of abstraction were considered: (a) the individual
search agent (the lowest level in which any local search technique could be used), (b) the cooperation
between agents (the middle level, which consists of a joint search effort in a certain direction), and (c) the
meta-cooperation between agents (the highest level, which determines cooperation among different paths
rather than just among different individuals).

The results obtained by Bilchev and Parmee [13,14] were very encouraging and showed clearly the high
potential of this technique in multi-modal and/or heavily constrained search spaces.

6.6.1. Advantages and disadvantages
The first drawback of this approach is that it needs several parameters to work: first, an additional

procedure has to be used to locate the nest (Bilchev and Parmee [13] suggest the use of a niching EA), which
implies extra computational effort. Second, it requires a search radius R, which defines the portion of the
search space that will be explored by the ants and has an obvious impact on the performance of the al-
gorithm. Third, it is necessary to provide a model for the exhaustion of the food source to avoid that the
ants pass through the same (already exhausted) path more than once.

Finally, it is necessary to be very careful about the equilibrium between local and global exploration,
because in some cases (e.g., highly multi-modal landscapes), too much CPU time could be spent in local
searches.

7. Some experimental results

To have an idea of the differences among some of the techniques discussed in this paper, we have
conducted a small experimental study in which we implemented and tested six different penalty-based
approaches coupled to a genetic algorithm and an approach based on non-dominance. The techniques
selected are the following:

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1273

• Static penalty [78] (see Section 2.1),
• Dynamic penalty [83] (see Section 2.2),
• Annealing penalty [105] (see Section 2.3),
• Adaptive penalty [10,69] (see Section 2.4),
• Death penalty (see Section 2.7),
• Co-evolutionary penalty [25] (see Section 2.5),
• Use of non-dominance [23] (see Section 5.4).

Additionally, we will compare results against those found by other researchers using mathematical
programming techniques and/or other types of GAs.

The first five penalty-based approaches previously indicated are representative of the techniques most
commonly used in the standard literature on evolutionary optimization. The sixth and seventh approaches
are proposals of the author. The co-evolutionary penalty uses two nested GAs so that one tries to adjust the
penalty factors that the other one uses to optimize the objective function. The last approach (which we will
denote as MGA, for multi-objective genetic algorithm) was proposed as an alternative to the manual fine
tuning of the penalty factors. This last approach consists of a real-coded GA with arithmetical crossover
[104], non-uniform mutation, elitism, tournament selection, and a simple self-adaptation mechanism for
defining the crossover and mutation rates along the evolutionary process (see [23] for details).

All the penalty-based approaches indicated above (except for the co-evolutionary penalty) were im-
plemented using a GA with binary representation, two-point crossover, tournament selection, and uniform
mutation. The co-evolutionary penalty was implemented using a GA with fixed point representation [26],
uniform crossover and non-uniform mutation [104].

Three test functions were selected to perform our small comparative study. Their corresponding de-
scription together with our comparison of results follows.

7.1. Example 1: Himmelblau’s nonlinear optimization problem

This problem was originally proposed by Himmelblau [74], and it has been used before as a benchmark
for several other GA-based techniques that use penalties [64]. In this problem, there are five design variables
(x1; x2; x3; x4; x5), six nonlinear inequality constraints and 10 boundary conditions. The problem can be
stated as follows:

Minimize f ð~xxÞ ¼ 5:3578547x2
3 þ 0:8356891x1x5 þ 37:293239x1 � 40792:141 ð57Þ

Subject to : g1ð~xxÞ ¼ 85:334407 þ 0:0056858x2x5 þ 0:00026x1x4 � 0:0022053x3x5; ð58Þ

g2ð~xxÞ ¼ 80:51249 þ 0:0071317x2x5 þ 0:0029955x1x2 þ 0:0021813x2
3; ð59Þ

g3ð~xxÞ ¼ 9:300961 þ 0:0047026x3x5 þ 0:0012547x1x3 þ 0:0019085x3x4; ð60Þ

06 g1ð~xxÞ6 92; ð61Þ

906 g2ð~xxÞ6 110; ð62Þ

206 g3ð~xxÞ6 25; ð63Þ

786 x1 6 102; ð64Þ

336 x2 6 45; ð65Þ

276 x3 6 45; ð66Þ

276 x4 6 45; ð67Þ

276 x5 6 45: ð68Þ

1274 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

The comparison of results for several constraint-handling approaches for the first example are shown in
Tables 1 and 2. This problem was originally solved using the Generalized Reduced Gradient method
(GRG) [74]. Gen and Cheng [64] solved this problem using a genetic algorithm based on both local and
global reference (they used a population size of 400 individuals, a crossover rate of 0.8, and a mutation rate
of 0.088). 3 The solutions reported for the penalty-based approaches (static penalty, dynamic penalty,
annealing penalty, adaptive penalty and death penalty) in Table 1 were produced after performing 30 runs,
using the following parameters: population size¼ 50, crossover rate¼ 0.8, mutation rate¼ 0.005, maximum
number of generations¼ 100. Specific parameters for the dynamic penalty are: C ¼ 0:5, a ¼ b ¼ 2:0
(Eq. (12) was used to assign fitness). Specific parameters for annealing penalties are: s0 ¼ 1:0, sf ¼ 0:000001,
and s is updated every 20 generations (Eq. (18) is used to assign fitness). Specific parameters for the
adaptive penalty are: b1 ¼ 1:0, b2 ¼ 2:0, k ¼ 20, kð0Þ ¼ 100:0 (Eq. (24) is used to assign fitness). For the
static penalty, local and global penalty factors were defined as indicated by Homaifar et al. [78, p. 253] for
this example.

The co-evolutionary penalty used the following parameters: crossover rate¼ 0.8, initial mutation
rate¼ 0.1, pop size1 ¼ 60, pop size2 ¼ 30, Gmax1 ¼ 25, Gmax2 ¼ 20.

The solutions shown for the MGA were produced after performing 30 runs, and using the following
parameters: population size¼ 50, and maximum number of generations¼ 100 (crossover and mutation
rates were obtained through self-adaptation along the evolutionary process).

As expected, the death penalty, which does not use any constraint-violation information, had a poorer
performance than the other GA-based approaches. Also, the dynamic penalty approach was better than a
static penalty, and there was not much difference between using an adaptive penalty function and the
dynamic penalty suggested by Joines and Houck [83]. The annealing penalty, however, had a poorer
performance than the dynamic and adaptive penalties.

The best approaches were the co-evolutionary penalty and the MGA, with the first reporting slightly
better results than the second. Note however that while all penalty-based approaches and the MGA per-
formed only 5000 fitness function evaluations, the co-evolutionary penalty technique performed a con-
siderably higher number of fitness function evaluations (900 000). One of the main advantages of the MGA
is that no fine-tuning of the penalty factors are required. The co-evolutionary penalty also presents this
advantage, but its use implies a significantly higher computational cost.

Also, note that the other penalty-based approaches can provide better results if some fine-tuning of their
parameters (including their penalty factors) takes place. Finally, it should be clear from these results that all
GA-based approaches performed better than the mathematical programming technique used in this case
(GRG).

Table 1

Comparison of several constraint-handling techniques for the first example (Himmelblau’s function) (N/A¼not available) (PART I)

Results MGA [23] Gen [64] Static penalty [78] GRG [74] Co-evolutionary penalty [25]

Best)31005.7966)30183.576)30790.27159)30373.949)31020.859

Mean)30862.8735 N/A)30446.4618 N/A)30984.2407

Worst)30721.0418 N/A)29834.3847 N/A)30792.4077

S.D. 73.240 N/A 226.3428 N/A 73.6335

Table 2

Comparison of several constraint-handling techniques for the first example (Himmelblau’s function) (PART II)

Results Dynamic [83] Annealing [105] Adaptive [10,69] Death penalty

Best)30903.877)30829.201)30903.877)30790.271

Mean)30539.9156)30442.126)30448.007)30429.371

Worst)30106.2498)29773.085)29926.1544)29834.385

S.D. 200.035 244.619 249.485 234.555

3 The maximum number of generations used is unknown.

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1275

7.2. Example 2: Welded beam design

A welded beam is designed for minimum cost subject to constraints on shear stress (s), bending stress in
the beam (r), buckling load on the bar (Pc), end deflection of the beam (d), and side constraints [138]. There
are four design variables as shown in Fig. 1 [138]: hðx1Þ, lðx2Þ, tðx3Þ and bðx4Þ.

The problem can be stated as follows:

Minimize f ð~xxÞ ¼ 1:10471x2
1x2 þ 0:04811x3x4ð14:0 þ x2Þ ð69Þ

Subject to : g1ð~xxÞ ¼ sð~xxÞ � smax 6 0; ð70Þ

g2ð~xxÞ ¼ rð~xxÞ � rmax 6 0; ð71Þ

g3ð~xxÞ ¼ x1 � x4 6 0; ð72Þ

g4ð~xxÞ ¼ 0:10471x2
1 þ 0:04811x3x4ð14:0 þ x2Þ � 5:06 0; ð73Þ

g5ð~xxÞ ¼ 0:125 � x1 6 0; ð74Þ

g6ð~xxÞ ¼ dð~xxÞ � dmax 6 0; ð75Þ

g7ð~xxÞ ¼ P � Pcð~xxÞ6 0; ð76Þ

where

sð~xxÞ ¼
ffi
ðs0Þ2 þ 2s0s00

x2

2R
þ ðs00Þ2

r
; ð77Þ

s0 ¼ Pffiffiffi
2

p
x1x2

; s00 ¼ MR
J

; M ¼ P L
�

þ x2

2

; ð78Þ

R ¼
ffi
x2

2

4
þ x1 þ x3

2

� 2
r

; ð79Þ

J ¼ 2
ffiffiffi
2

p
x1x2

x2
2

12

��
þ x1 þ x3

2

� 2
��

; ð80Þ

rð~xxÞ ¼ 6PL
x4x2

3

; dð~xxÞ ¼ 4PL3

Ex3
3x4

; ð81Þ

Pcð~xxÞ ¼
4:013E

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

3x
6
4=36

p
L2

1

� x3

2L

ffiffiffiffiffiffi
E

4G

r !
; ð82Þ

Fig. 1. The welded beam used for the second example.

1276 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

P ¼ 6000 lb; L ¼ 14 in; dmax ¼ 0:25 in; E ¼ 30 � 106 psi; G ¼ 12 � 106 psi;

smax ¼ 13600 psi; rmax ¼ 30000 psi:

For this example, we used the same parameters for all the approaches, except the static penalty, for
which we used a value of 50.0 for all cases (local and global penalty factors).

The comparison of results for several constraint-handling approaches for the second example are shown
in Tables 3 and 4. This problem has been solved before by Deb [42] using a simple genetic algorithm with
binary representation, and a traditional penalty function as suggested by Goldberg [67], and by Ragsdell
and Phillips [137] using geometric programming. Ragsdell and Phillips also compared their results with
those produced by the methods contained in a software package called ‘‘Opti-Sep’’ [158], which includes the
following numerical optimization techniques: ADRANS (Gall’s adaptive random search with a penalty
function), APPROX (Griffith and Stewart’s successive linear approximation), DAVID (Davidon–Fletcher–
Powell with a penalty function), MEMGRD (Miele’s memory gradient with a penalty function), SEEK1
and SEEK2 (Hooke and Jeeves with two different penalty functions), SIMPLX (Simplex method with a
penalty function) and RANDOM (Richardson’s random method). In the case of Siddall’s techniques [158],
only the best solution produced by the techniques contained in ‘‘Opti-Sep’’ is displayed.

In this case, the results were somewhat more surprising. The dead penalty turned out to be better than
the dynamic penalty. This may due to the use of an inappropriate penalty factor, but it illustrates well the
idea of why the fine tuning of the penalty factors becomes an important issue when using penalty-based
constraint-handling techniques. Regarding the other approaches, the use of a static penalty was again no
better than using an adaptive penalty or a death penalty. However, the static penalty was better than the
annealing penalty in this example. This is due to an inappropriate cooling schedule for the annealing
penalty. The best results were produced by the co-evolutionary penalty (even its worst results was better
than the best result of the MGA). Note however that the computational cost of this technique remains
significantly higher (900 000 fitness function evaluations vs. 5000 of the other approaches). Once again, all
the mathematical programming techniques provided much poorer results than any of the GA-based ap-
proaches.

7.3. Example 3: Design of a pressure vessel

A cylindrical vessel is capped at both ends by hemispherical heads as shown in Fig. 2. The objective is to
minimize the total cost, including the cost of the material, forming and welding. There are four design
variables: Ts (thickness of the shell), Th (thickness of the head), R (inner radius) and L (length of the cy-
lindrical section of the vessel, not including the head). Ts and Th are integer multiples of 0.0625 inch, which
are the available thicknesses of rolled steel plates, and R and L are continuous. Using the same notation
given by Kannan and Kramer [84], the problem can be stated as follows:

Table 3

Comparison of several constraint-handling techniques for the second example (welded beam) (N/A¼not available) (PART I)

Results MGA [23] Deb [42] Siddall [158] Ragsdell [137] Co-evolutionary penalty [25]

Best 1.8245 2.4331 2.3815 2.3859 1.7483

Mean 1.9190 N/A N/A N/A 1.7720

Worst 1.9950 N/A N/A N/A 1.7858

S.D. 0.05377 N/A N/A N/A 0.01122

Table 4

Comparison of several constraint-handling techniques for the second example (welded beam) (PART II)

Results Static [78] Dynamic [83] Annealing [105] Adaptive [10,69] Death penalty

Best 2.0469 2.1062 2.0713 1.9589 2.0821

Mean 2.9728 3.1556 2.9533 2.9898 3.1158

Worst 4.5741 5.0359 4.1261 4.84036 4.5138

S.D. 0.6196 0.7006 0.4902 0.6515 0.6625

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1277

Minimize f ð~xxÞ ¼ 0:6224x1x3x4 þ 1:7781x2x2
3 þ 3:1661x2

1x4 þ 19:84x2
1x3 ð83Þ

Subject to : g1ð~xxÞ ¼ �x1 þ 0:0193x3 6 0; ð84Þ

g2ð~xxÞ ¼ �x2 þ 0:00954x3 6 0; ð85Þ

g3ð~xxÞ ¼ �px2
3x4 � 4

3
px3

3 þ 12960006 0; ð86Þ

g4ð~xxÞ ¼ x4 � 2406 0: ð87Þ

The comparison of results for several constraint-handling approaches for the second example are shown
in Tables 5 and 6. This problem has been solved before by Deb [43] using Genetic Adaptive Search (Ge-
neAS), by Kannan and Kramer [84] using an augmented Lagrangian Multiplier approach, and by Sandgren
[150], using Branch and Bound.

All the penalty-based techniques (except for the co-evolutionary penalty that kept the same parameters
indicated before) used a population size of 500 and a maximum number of generations of 5000 for this
example. This change was required so that these approaches could provide competitive results (the pop-
ulation size and maximum number of generations were empirically determined). All their other parameters
remained the same (local and global penalties were defined with a value of 50 for the static penalty ap-
proach, as in the previous example). For the MGA, we only extended the maximum number of generations
to 1000 (using the same population size of 50, as before).

This example illustrates how the use of penalty-based approaches is highly dependant on the problem at
hand. Despite the fact that all the penalty-based approaches performed 2 500 000 fitness function evalua-
tions (except for the co-evolutionary penalty approach that performed 900 000 evaluations, as before), they

Table 5

Comparison of several constraint-handling techniques for the third example (pressure vessel) (N/A¼ not available) (PART I)

Results MGA [23] Deb [43] Kannan [84] Sandgren [150] Co-evolutionary penalty [25]

Best 6069.3267 6410.3811 7198.0428 8129.1036 6288.7445

Mean 6263.7925 N/A N/A N/A 6293.8432

Worst 6403.4500 N/A N/A N/A 6308.1497

S.D. 97.9445 N/A N/A N/A 7.4133

Table 6

Comparison of several constraint-handling techniques for the third example (pressure vessel) (PART II)

Results Static [78] Dynamic [83] Annealing [105] Adaptive [10,69] Death penalty

Best 6110.8117 6213.6923 6127.4143 6110.8117 6127.4143

Mean 6656.2616 6691.5606 6660.8631 6689.6049 6616.9333

Worst 7242.2035 7445.6923 7380.4810 7411.2532 7572.6591

S.D. 320.8196 322.7647 330.7516 330.4483 358.8497

Fig. 2. Center and end section of the pressure vessel used for the first example.

1278 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

were not able to match the results of the dominance-based approach (MGA), which only performed 50,000
fitness function evaluations. Note that the co-evolutionary penalty approach did not perform very well in
this example, mainly due to its choice of parameters (allowing a larger number of fitness function evalu-
ations could slightly improve its performance). Again, the mathematical programming techniques produced
poorer results than any of the GA-based approaches.

8. Some recommendations

Having such a wide variety of possible techniques to handle constraints in evolutionary optimization
may be overwhelming for a newcomer. However, as suggested by our small comparative study, even the
simple use of a death penalty may be sufficient in some applications, if nothing about the problem is known.
Our suggestion for beginners in the use of evolutionary algorithms is therefore to use penalty-based ap-
proaches first (maybe a simple static or dynamic penalty approach), since they are the easiest to implement
and are also quite efficient. Later on, and depending on the application at hand, other techniques may be
desirable. For example, if a combinatorial optimization problem has to be solved, then repair algorithms
(see Section 4) may be the best choice. If dealing with linear constraints, then the use of special repre-
sentations and operators (see Section 3) may become necessary. If dealing with highly constrained search
spaces, then the use of techniques that separate constraints and objectives (see Section 5) may be useful. If
something about the problem is known, or if there is a need of saving time fine tuning the penalty factors of
a penalty function of any type, then one can consider the use of approaches such as those discussed in
Section 5.4 or Section 6. More sophisticated techniques are normally reserved for more complex problems
in which the results found by penalty-based approaches are far from satisfactory, or when the computa-
tional costs related to these techniques are too high.

Also, it is important to add that most of the comparative studies of constraint-handling techniques
reported in the literature are inconclusive. Whereas some technique may perform better in a certain class of
functions (e.g., nonlinear optimization problems), it will tend to be inferior in a different domain (e.g.,
combinatorial optimization). Despite the goal of generality that should characterize new constraint-han-
dling techniques, it is known that because of the No Free-Lunch Theorems [174], it is expected that the best
constraint-handling techniques for a certain type of problems will tend to exploit specific domain knowl-
edge.

9. Conclusions and future research paths

In this paper we have given a very comprehensive review of the most important constraint-handling
techniques developed for evolutionary algorithms. We reviewed a wide variety of techniques that go from
several variations of a simple penalty function to biologically inspired techniques that emulate the behavior
of the immune system, culture, or ant colonies. However, there is still plenty of room for new techniques
and more research in this area. For example, regarding the development of new approaches, the following
issues deserve special attention:
• Generality. Ideally, the same constraint-handling approach should work with any kind of problem and

constraints. If modifications are required, they should be minor. There are several approaches such as
decoders and the use of special representations, that depend on certain characteristics of the problem
and cannot be easily generalized. Although we should not aim to produce a single (universal) con-
straint-handling technique that will defeat any other [174], it is reasonable to aim to make it easier to
be adapted to different types of problems/constraints.

• Minimum fine tuning. Finding an appropriate penalty function for an optimization problem in general
normally requires a lot of fine tuning. Ideally, a good constraint-handling technique should minimize
the requirement of this fine tuning, or should not need it at all. When fine tuning is necessary, the per-
formance of the algorithm tends to depend on it. Furthermore, this trial and error process adds up to the
parameter tuning required by most EAs (i.e., how to define the values of: population size, crossover and
mutation rates, maximum number of generations, etc.).

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1279

• Efficiency. In many real-world applications, a single evaluation of the fitness function might be very ex-
pensive. Therefore, a good constraint-handling technique should not require a high evaluation cost. In
Section 2.5 we saw an example of a technique that requires a high number of fitness function evaluations
to obtain the information that will guide the search. As we mentioned before, in some applications, the
problem of finding a feasible solution might be itself NP-hard [161].

• Well-known limitations. If we assume that no single constraint-handling technique will be the best for all
kinds of problems, then it is important to identify clearly the limitations of each available technique to
know when to use them. Michalewicz and Schoenauer [109] discussed this issue, but the question remains
open regarding the characteristics that we could use from a problem to decide what technique to use.

• Incorporation of knowledge about the domain. Incorporating knowledge about an specific domain reduces
the generality of an evolutionary approach [67]. However, in highly complex problems (e.g., heavily con-
strained search spaces) some knowledge about the domain can considerably improve performance of an
EA. Therefore, it is desirable that a good constraint-handling approach has the capability to incorporate
efficiently such domain knowledge whenever is available.
The ‘‘utopical’’ constraint-handling technique for EAs should combine the best of these issues. The

development of such a technique, however, might prove impossible in practice [174]. For example, if we
emphasize efficiency, our constraint-handling technique might lose generality. The converse is also normally
true. Nevertheless, even if these issues are incompatible to a certain extent, they should at least be taken into
consideration when developing a new approach and aim to obtain reasonable trade-offs among these
objectives.

Regarding open areas of research, the following are particularly important:
• Comparisons of approaches. Despite the several comparative studies of constraint-handling techniques

used with EAs reported in the literature (see for example [101–103,109]), more work is required. It is de-
sirable, for example, to study in more detail the behavior of certain approaches under different sorts of
constraints (linear, non-linear, etc.), so that we can establish under what conditions is more convenient to
use them.
Michalewicz et al. [106] argue that any problem can be characterized by a certain set of parameters

including the following: number of linear and nonlinear constraints, number of equality constraints,
number of active constraints, ratio between the feasible search space and the whole search space, and the
type of objective function (number of variables, number of local optima, continuity of the function, etc.).
However, tests performed in the past regarding eleven (now considered classical) test functions (see [109])
have produced inconclusive evidence about the behavior of several constraint-handling techniques. This
means that the appropriate choice of a certain technique in the absence of knowledge about the domain
remains as an open research problem [106,109].
• Test suites. A very important issue closely related to the previous one is the existence of good test suites

that are publicly available. Regarding this issue, there is some literature that can be used (see for example
[56,102]). 4 Chung and Reynolds [20] have provided a test suite for cultural algorithms. More recently,
Michalewicz et al. [106] have proposed the design of a scalable test suite of constrained optimization
problems in which many features can be easily tuned to allow the evaluation of the advantages and dis-
advantages of a certain constraint-handling technique. The test case generator proposed by Michalewicz
et al. [106] has six parameters that can be tuned to investigate advantages and disadvantages of a certain
constraint-handling technique: dimensionality of the search space, multimodality of the search space,
number of constraints used, connectedness of the feasible subspaces, ratio between the feasible search
space and the whole search space, and function ruggedness. However, more work in this direction is de-
sirable.

• Metrics. Closely related to the previous issue is the development of good metrics that allow to compare
different techniques in a quantitative way. Beyond the obvious comparative issues such as quality of the
final solution found and amount of fitness function evaluations required, there are other aspects of a
certain technique that might be relevant in certain cases. For example, it would be interesting to have

4 The web page http://solon.cma.univie.ac.at/�neum/glopt/test.html also contains test problems for constrained optimization

algorithms.

1280 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

a metric that traces down the behavior of a technique in terms of the number of feasible solutions found.
Also, metrics that determine that robustness and convergence rate of a certain technique are highly de-
sirable. These metrics would be very useful to determine the limitations of a constraint-handling ap-
proach in quantitative form.

• Multi-objetive optimization. Despite the considerably large amount of research on evolutionary multiob-
jective optimization (EMO) [21], little emphasis has been made on constraint-handling. In fact, many of
the early EMO approaches considered only unconstrained problems. As we saw in Section 5.4, EMO
techniques can be used also to handle constraints, but ironically, their use in multiobjective optimization
has been very limited until now. Most EMO researchers tend to use traditional (static) penalty functions
instead of trying to exploit the power of EMO techniques to handle constraints as additional objectives.

Acknowledgements

The author thanks the two anonymous reviewers for their comments that greatly helped him to improve
the contents of this paper. He also acknowledges the support from CONACyT through NSF-CONACyT
project No. 32999-A.

References

[1] H. Adeli, N.-T. Cheng, Augmented Lagrangian genetic algorithm for structural optimization, J. Aerospace Engrg. 7 (1) (1994)

104–118.

[2] T. B€aack (Ed.), Evolutionary Algorithms in Theory and Practice, Oxford University Press, New York, 1996.

[3] T. B€aack (Ed.), Proceedings of the Seventh International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo,

CA, July 1997.

[4] T. B€aack, F. Hoffmeister, H.-P. Schwefel, A survey of evolution strategies, in: R.K. Belew, L.B. Booker (Eds.), Proceedings of the

Fourth International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 1991, pp. 2–9.

[5] T. B€aack, S. Khuri, An evolutionary heuristic for the maximum independent set problem, in: Z. Michalewicz, J.D. Schaffer,

H.-P. Schwefel, D.B. Fogel, H. Kitano (Eds.), Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE

Press, Piscataway, NJ, 1994, pp. 531–535.

[6] J.E. Baker, Adaptive selection methods for genetic algorithms, in: J.J. Grefenstette (Ed.), Proceedings of an International

Conference on Genetic Algorithms and their Applications, Lawrence Erlbaum, Hillsdale, NJ, 1985, pp. 100–111.

[7] J.E. Baker, An analysis of the effects of selection in genetic algorithms, PhD thesis, Vanderbilt University, Nashville, TN, 1989.

[8] J.C. Bean, Genetics and random keys for sequencing and optimization, Technical Report TR 92-43, Department of Industrial

and Operations Engineering, The University of Michigan, 1992.

[9] J.C. Bean, Genetics and random keys for sequencing and optimization, ORSA J. Comput. 6 (2) (1994) 154–160.

[10] J.C. Bean, A.B. Hadj-Alouane, A dual genetic algorithm for bounded integer programs, Technical Report TR 92-53,

Department of Industrial and Operations Engineering, The University of Michigan, 1992 (R.A.I.R.O.-R.O, invited submission

to special issue on GAs and OR), to appear.

[11] A.D. Belegundu, J.S. Arora, A computational study of transformation methods for optimal design, AIAA J. 22 (4) (1984)

535–542.

[12] S.V. Belur, CORE: Constrained optimization by random evolution, in: J.R. Koza (Ed.), Late Breaking Papers at the Genetic

Programming 1997 Conference, Stanford Bookstore, Stanford University, CA, July 1997, pp. 280–286.

[13] G. Bilchev, I.C. Parmee, The ant colony metaphor for searching continuous design spaces, in: T.C. Fogarty (Ed.), Evolutionary

Computing, Springer, Sheffield, UK, April 1995, pp. 25–39.

[14] G. Bilchev, I.C. Parmee, Constrained and multi-modal optimisation with an ant colony search model, in: I.C. Parmee,

M.J. Denham (Eds.), Proceedings of the 2nd International Conference on Adaptive Computing in Engineering Design and

Control, University of Plymouth, Plymouth, UK, March 1996.

[15] D. Br�eelaz, New methods to color vertices of a graph, Commun. ACM 22 (1979) 251–256.

[16] E. Camponogara, S.N. Talukdar, A genetic algorithm for constrained and multiobjective optimization, in: J.T. Alander (Ed.),

3rd Nordic Workshop on Genetic Algorithms and their Applications (3NWGA), University of Vaasa, Vaasa, Finland, August

1997, pp. 49–62.

[17] S.E. Carlson, A general method for handling constraints in genetic algorithms, in: Proceedings of the Second Annual Joint

Conference on Information Science, 1995, pp. 663–667.

[18] C.W. Carroll, The created response surface technique for optimizing nonlinear restrained systems, Operations Research 9 (1961)

169–184.

[19] V. Chankong, Y.Y. Haimes, Multiobjective decision making: theory and methodology, in: Systems Science and Engineering,

North-Holland, Amsterdam, 1983.

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1281

[20] C.-J. Chung, R.G. Reynolds, A testbed for solving optimization problems using cultural algorithms, in: L.J. Fogel, P.J. Angeline,

T. B€aack (Eds.), Evolutionary Programming V: Proceedings of the Fifth Annual Conference on Evolutionary Programming, MIT

Press, Cambridge, MA, 1996.

[21] C.A.C. Coello, A comprehensive survey of evolutionary-based multiobjective optimization techniques, Knowledge Inf. Syst., Int.

J. 1 (3) (1999) 269–308.

[22] C.A.C. Coello, The use of a multiobjective optimization technique to handle constraints, in: A.A.O. Rodr�ııguez, M.R.S. Ortiz,

R.S. Hermida (Eds.), Proceedings of the Second International Symposium on Artificial Intelligence (Adaptive Systems),

Institute of Cybernetics, Mathematics and Physics, Ministry of Science Technology and Environment, La Habana, Cuba, 1999,

pp. 251–256.

[23] C.A.C. Coello, Constraint-handling using an evolutionary multiobjective optimization technique, Civil Engrg. Environ. Syst. 17

(2000) 319–346.

[24] C.A.C. Coello, Treating constraints as objectives for single-objective evolutionary optimization, Engrg. Optim. 32 (3) (2000)

275–308.

[25] C.A.C. Coello, Use of a self-adaptive penalty approach for engineering optimization problems, Comput. Ind. 41 (2) (2000)

113–127.

[26] C.A.C. Coello, A.D. Christiansen, A simple genetic algorithm for the design of reinforced concrete beams, Engrg. Comput. 13 (4)

(1997) 185–196.

[27] C.A.C. Coello, M. Rudnick, A.D. Christiansen, Using genetic algorithms for optimal design of trusses, in: Proceedings of the

Sixth International Conference on Tools with Artificial Intelligence, IEEE Computer Society Press, New Orleans, LA, USA,

November 1994, pp. 88–94.

[28] D.W. Coit, A.E. Smith, Penalty guided genetic search for reliability design optimization, Comput. Ind. Engrg. 30 (4) (September

1996) 895–904 (special issue on genetic algorithms).

[29] D.W. Coit, A.E. Smith, D.M. Tate, Adaptive penalty methods for genetic optimization of constrained combinatorial problems,

INFORMS J. Comput. 8 (2) (1996) 173–182.

[30] A. Colorni, M. Dorigo, V. Maniezzo, Distributed optimization by ant colonies, in: P. Bourgine, F. Varela (Eds.), Proceedings of

the First European Conference on Artificial Life, MIT Press/Bradford Books, Cambridge, MA, 1991.

[31] R. Courant, Variational methods for the solution of problems of equilibrium and vibrations, Bull. Am. Math. Soc. 49 (1943)

1–23.

[32] W.A. Crossley, E.A. Williams, A study of adaptive penalty functions for constrained genetic algorithm based optimization, in:

AIAA 35th Aerospace Sciences Meeting and Exhibit, AIAA Paper 97-0083, Reno, Nevada, January 1997.

[33] C. Darwin, The Origin of Species by Means of Natural Selection or the Preservation of Favored Races in the Struggle for Life,

The Book League of America, 1929 (originally published in 1859).

[34] D. Dasgupta, Z. Michalewicz (Eds.), Evolutionary Algorithms in Engineering Applications, Springer, Berlin, 1997.

[35] Y. Davidor, Analogous crossover, in: J.D. Schaffer (Ed.), Proceedings of the Third International Conference on Genetic

Algorithms, Morgan Kaufmann, San Mateo, CA, 1989, pp. 98–103.

[36] Y. Davidor, Genetic Algorithms and Robotics: A Heuristic Strategy for Optimization, World Scientific, Singapore, 1990.

[37] Y. Davidor, A genetic algorithm applied to robot trajectory generation, in: L. Davis (Ed.), Handbook of Genetic Algorithms,

Van Nostrand Reinhold, New York, 1991, pp. 144–165 (Chapter 12).

[38] E. Davis, Constraint propagation with interval labels, Artif. Intell. 32 (1987) 281–331.

[39] L. Davis, Genetic Algorithms and Simulated Annealing, Pitman, London, 1987.

[40] L. Davis (Ed.), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, 1991.

[41] H. de Garis, Genetic programming: Building artificial nervous systems using genetically programmed neural networks modules,

in: R. Porter, B. Mooney (Eds.), Proceedings of the 7th International Conference on Machine Learning, Morgan Kaufmann,

Los Altos, 1990, pp. 132–139.

[42] K. Deb, Optimal design of a welded beam via genetic algorithms, AIAA J. 29 (11) (1991) 2013–2015.

[43] K. Deb, GeneAS: A robust optimal design technique for mechanical component design, in: D. Dasgupta, Z. Michalewicz (Eds.),

Evolutionary Algorithms in Engineering Applications, Springer, Berlin, 1997, pp. 497–514.

[44] K. Deb, An efficient constraint handling method for genetic algorithms, Comput. Methods Appl. Mech. Engrg. 186 (2–4) (2000)

311–338.

[45] K. Deb, D.E. Goldberg, An investigation of niche and species formation in genetic function optimization, in: J.D. Schaffer (Ed.),

Proceedings of the Third International Conference on Genetic Algorithms, George Mason University, Morgan Kaufmann, San

Mateo, CA, June 1989, pp. 42–50.

[46] M. Dorigo, G. Di Caro, The ant colony optimization meta-heuristic, in: D. Corne, M. Dorigo, F. Glover (Eds.), New Ideas in

Optimization, McGraw-Hill, New York, 1989.

[47] M. Dorigo, L.M. Gambardella, Ant colony system: A cooperative learning approach to the traveling salesman problem, IEEE

Trans. Evolutionary Comput. 1 (1) (1997) 53–66.

[48] M. Dorigo, V. Maniezzo, A. Colorni, The ant system: Optimization by a colony of cooperating agents, IEEE Trans. Syst. Man

Cybern. Part B 26 (1) (1996) 29–41.

[49] W.H. Durham, Co-evolution: Genes, Culture, and Human Diversity, Stanford University Press, Stanford, CA, 1994.

[50] A.E. Eiben, P.-E. Rau�ee, Zs. Ruttkay, GA-easy and GA-hard constraint satisfaction problems, in: M. Meyer (Ed.), Proceedings

of the ECAI’94 Workshop on Constraint Processing, Springer, Berlin, 1995, pp. 267–284.

[51] A.E. Eiben, Zs. Ruttkay, Self-adaptivity for constraint satisfaction: Learning penalty functions, in: Proceedings of the 3rd IEEE

Conference on Evolutionary Computation, IEEE Service Center, Piscataway, NJ, 1996, pp. 258–261.

1282 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

[52] A.E. Eiben, J.K. van der Hauw, Adaptive penalties for evolutionary graph coloring, in: Artificial Evolution’97, Springer, Berlin,

1998, pp. 95–106.

[53] A.E. Eiben, J.K. van der Hauw, J.I. van Hemert, Graph coloring with adaptive evolutionary algorithms, J. Heuristics 4 (1) (1998)

25–46.

[54] E. Falkenauer, A new representation and operators for genetic algorithms applied to grouping problems, Evol. Comput. 2 (2)

(1994) 123–144.

[55] A.V. Fiacco, G.P. McCormick, Extensions of SUMT for nonlinear programming: Equality constraints and extrapolation,

Manage. Sci. 12 (11) (1968) 816–828.

[56] C.A. Floudas, P.M. Pardalos, A Collection of Test Problems for Constrained Global Optimization Algorithms, Lecture Notes in

Computer Science, Springer, Berlin, 1990.

[57] D.B. Fogel, Evolutionary Computation. Toward a New Philosophy of Machine Intelligence, The Institute of Electrical and

Electronic Engineers, New York, 1995.

[58] L.J. Fogel, Artificial Intelligence through Simulated Evolution, Wiley, New York, 1966.

[59] C.M. Fonseca, P.J. Fleming, Genetic algorithms for multiobjective optimization: Formulation, discussion and generalization, in:

S. Forrest (Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms, University of Illinois at Urbana-

Champaign, Morgan Kauffman, San Mateo, CA, 1993, pp. 416–423.

[60] C.M Fonseca, P. Fleming, An overview of evolutionary algorithms in multiobjective optimization, Evol. Comput. 3 (1) (1995)

1–16.

[61] S. Forrest, A.S. Perelson, Genetic algorithms and the immune system, in: H.-P. Schwefel, R. M€aanner (Eds.), Parallel Problem

Solving from Nature, Springer, Berlin, Germany, 1991, pp. 320–325.

[62] M. Gen, R. Cheng, Interval programming using genetic algorithms, in: Proceedings of the Sixth International Symposium on

Robotics and Manufacturing, Montpelleir, France, 1996.

[63] M. Gen, R. Cheng, A survey of penalty techniques in genetic algorithms, in: T. Fukuda, T. Furuhashi (Eds.), Proceedings of the

1996 International Conference on Evolutionary Computation, IEEE, Nagoya, Japan, 1996, pp. 804–809.

[64] M. Gen, R. Cheng, Genetic Algorithms & Engineering Design, Wiley, New York, 1997.

[65] F. Glover, Heuristics for integer programming using surrogate constraints, Decision Sciences 8 (1) (1977) 156–166.

[66] F. Glover, G. Kochenberger, Critical event tabu search for multidimensional knapsack problems, in: Proceedings of the

International Conference on Metaheuristics for Optimization, Kluwer Academic Publishers, Dordrecht, Netherlands, 1995,

pp. 113–133.

[67] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison-Wesley, Reading, MA,

1989.

[68] D.E. Goldberg, M.P. Samtani, Engineering optimization via genetic algorithm, in: Ninth Conference on Electronic

Computation, ASCE, New York, 1986, pp. 471–482.

[69] A.B. Hadj-Alouane, J.C. Bean, A genetic algorithm for the multiple-choice integer program, Operations Research 45 (1997)

92–101.

[70] P. Hajela, J. Lee, Constrained genetic search via schema adaptation. An immune network solution, in: N. Olhoff, G.I.N.

Rozvany (Eds.), Proceedings of the First World Congress of Structural and Multidisciplinary Optimization, Pergamon, Goslar,

Germany, 1995, pp. 915–920.

[71] P. Hajela, J. Lee, Constrained genetic search via schema adaptation. An immune network solution, Struct. Optim. 12 (1996)

11–15.

[72] P. Hajela, J. Yoo, Constraint handling in genetic search using expression strategies, AIAA J. 34 (12) (1996) 2414–2420.

[73] S.A. Harp, T. Samad, Genetic synthesis of neural network architecture, in: L. Davis (Ed.), Handbook of Genetic Algorithms,

Van Nostrand Reinhold, New York, 1991, pp. 202–221 (Chapter 15).

[74] D.M. Himmelblau, Applied Nonlinear Programming, McGraw-Hill, New York, 1972.

[75] R. Hinterding, Z. Michalewicz, Your brains and my beauty: Parent matching for constrained optimisation, in: Proceedings of the

5th International Conference on Evolutionary Computation, Anchorage, AK, May 1998, pp. 810–815.

[76] F. Hoffmeister, J. Sprave, Problem-independent handling of constraints by use of metric penalty functions, in: L.J. Fogel,

P.J. Angeline, T. B€aack (Eds.), Proceedings of the Fifth Annual Conference on Evolutionary Programming (EP’96), MIT Press,

San Diego, CA, February 1996, pp. 289–294.

[77] J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Harbor, 1975.

[78] A. Homaifar, S.H.Y. Lai, X. Qi, Constrained optimization via genetic algorithms, Simulation 62 (4) (1994) 242–254.

[79] W.-C. Huang, C.-Y. Kao, J.-T. Horng, A genetic algorithm approach for set covering problem, in: Proceedings of the First IEEE

Conference on Evolutionary Computation, IEEE Press, New York, 1994, pp. 569–573.

[80] E. Hyvoenen, Constraint reasoning based on interval arithmetic – The tolerance propagation approach, Artif. Intell. 58 (1992)

71–112.

[81] F. Jim�eenez, J.L. Verdegay, Evolutionary techniques for constrained optimization problems, in: Seventh European Congress on

Intelligent Techniques and Soft Computing, Springer, Aachen, Germany, 1999.

[82] X. Jin, R.G. Reynolds, Using knowledge-based evolutionary computation to solve nonlinear constraint optimization problems:

A cultural algorithm approach, in: 1999 Congress on Evolutionary Computation, IEEE Service Center, Washington, DC, July

1999, pp. 1672–1678.

[83] J. Joines, C. Houck, On the use of non-stationary penalty functions to solve nonlinear constrained optimization problems with

GAs, in: D. Fogel (Ed.), Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE Press, Orlando, FL,

1994, pp. 579–584.

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1283

[84] B.K. Kannan, S.N. Kramer, An augmented Lagrange multiplier based method for mixed integer discrete continuous

optimization and its applications to mechanical design, J. Mech. Des. Trans. ASME 116 (1994) 318–320.

[85] S. Kazarlis, V. Petridis, Varying fitness functions in genetic algorithms: Studying the rate of increase of the dynamic penalty

terms, in: A.E. Eiben, T. B€aack, M. Schoenauer, H.-P. Schwefel (Eds.), Parallel Problem Solving from Nature V – PPSN V,

Springer, Amsterdam, Netherlands, 1998.

[86] D.G. Kim and P. Husbands, Riemann mapping constraint handling method for genetic algorithms, Technical Report CSRP 469,

COGS, University of Sussex, UK, 1997.

[87] D.G. Kim, P. Husbands, Mapping based constraint handling for evolutionary search; Thurston’s circle packing and grid

generation, in: I. Parmee (Ed.), The Integration of Evolutionary and Adaptive Computing Technologies with Product/System

Design and Realisation, Springer, Plymouth, UK, April 1998, pp. 161–173.

[88] J.-H. Kim, H. Myung, Evolutionary programming techniques for constrained optimization problems, IEEE Trans. Evol.

Comput. 1 (1997) 129–140.

[89] S. Kirkpatrick Jr., C.D. Gelatt, M.P. Vecchi, Optimization by simulated annealing, Science 220 (1983) 671–680.

[90] R. Kowalczyk, Constraint consistent genetic algorithms, in: Proceedings of the 1997 IEEE Conference on Evolutionary

Computation, IEEE, Indianapolis, USA, April 1997, pp. 343–348.

[91] S. Koziel, Z. Michalewicz, A decoder-based evolutionary algorithm for constrained parameter optimization problems, in:

T. B€aack, A.E. Eiben, M. Schoenauer, H.-P. Schwefel (Eds.), Proceedings of the 5th Parallel Problem Solving from Nature (PPSN

V), Springer, Amsterdam, September 1998, pp. 231–240.

[92] S. Koziel, Z. Michalewicz, Evolutionary algorithms, homomorphous mappings, and constrained parameter optimization, Evol.

Comput. 7 (1) (1999) 19–44.

[93] V. Kumar, Algorithms for constraint-satisfaction problems: a survey, AI Mag. (1992) 32–44.

[94] J.-C. Latombe, Robot Motion Planning, Kluwer Academic Publishers, Norwell, MA, 1993.

[95] T. Van Le, A fuzzy evolutionary approach to constrained optimization problems, in: Proceedings of the Second IEEE

Conference on Evolutionary Computation, IEEE, Perth, November 1995, pp. 274–278.

[96] G.E. Liepins, M.D. Vose, Representational issues in genetic optimization, J. Exp. Theoret. Comput. Sci. 2 (2) (1990) 4–30.

[97] G.E. Liepins, W.D. Potter, A genetic algorithm approach to multiple-fault diagnosis, in: L. Davis (Ed.), Handbook of Genetic

Algorithms, Van Nostrand Reinhold, New York, 1991, pp. 237–250 (Chapter 17).

[98] C.B. Lucasius, M.J.J. Blommers, L.M.C. Buydens, G. Kateman, A genetic algorithm for conformational analysis of DNA, in:

L. Davis (Ed.), Handbook of Genetic Algorithms, Van Nostrand Reinhold, New York, 1991, pp. 251–281 (Chapter 18).

[99] C. Maa, M. Shanblatt, A two-phase optimization neural network, IEEE Trans. Neural Networks 3 (6) (1992) 1003–1009.

[100] Z. Michalewicz, K. Deb, M. Schmidt, Th. Stidsen, Evolutionary algorithms for engineering applications, in: K. Miettinen,

P. Neittaanm€aaki, M.M. M€aakel€aa, J. P�eeriaux (Eds.), Evolutionary Algorithms in Engineering and Computer Science, Wiley,

Chichester, England, 1999, pp. 73–94.

[101] Z. Michalewicz, Genetic Algorithms + Data Structures¼Evolution Programs, second ed., Springer, Berlin, 1992.

[102] Z. Michalewicz, Genetic algorithms, numerical optimization, and constraints, in: L.J. Eshelman (Ed.), Proceedings of the Sixth

International Conference on Genetic Algorithms, University of Pittsburgh, Morgan Kaufmann, San Mateo, CA, July 1995,

pp. 151–158.

[103] Z. Michalewicz, A survey of constraint handling techniques in evolutionary computation methods, in: J.R. McDonnell,

R.G. Reynolds, D.B. Fogel (Eds.), Proceedings of the Fourth Annual Conference on Evolutionary Programming, MIT Press,

Cambridge, MA, 1995, pp. 135–155.

[104] Z. Michalewicz, Genetic Algorithms + Data Structures¼Evolution Programs, third ed., Springer, Berlin, 1996.

[105] Z. Michalewic, N.F. Attia, Evolutionary optimization of constrained problems, in: Proceedings of the 3rd Annual Conference on

Evolutionary Programming, World Scientific, Singapore, 1994, pp. 98–108.

[106] Z. Michalewicz, K. Deb, M. Schmidt, T.J. Stidsen, Towards understanding constraint-handling methods in evolutionary algo-

rithms, in: 1999 Congress on Evolutionary Computation, IEEE Service Center, Washington, DC, July 1999, pp. 581–588.

[107] Z. Michalewicz, C.Z. Janikow, Handling constraints in genetic algorithms, in: R.K. Belew, L.B. Booker (Eds.), Proceedings of

the Fourth International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 1991, pp. 151–157.

[108] Z. Michalewicz, G. Nazhiyath, Genocop III: A co-evolutionary algorithm for numerical optimization with nonlinear constraints,

in: D.B. Fogel (Ed.), Proceedings of the Second IEEE International Conference on Evolutionary Computation, IEEE Press,

Piscataway, NJ, 1995, pp. 647–651.

[109] Z. Michalewicz, M. Schoenauer, Evolutionary algorithms for constrained parameter optimization problems, Evol. Comput. 4 (1)

(1996) 1–32.

[110] Z. Michalewicz, J. Xiao, Evaluation of paths in evolutionary planner/navigator, in: Proceedings of the 1995 International

Workshop on Biologically Inspired Evolutionary Systems, Tokyo, Japan, May 1995, pp. 45–52.

[111] M. Mitchell, An Introduction to Genetic Algorithms, MIT Press, Cambridge, MA, 1996.

[112] T. Mitchell, Version spaces: An approach to concept learning, PhD thesis, Computer Science Department, Stanford University,

Stanford, CA, 1978.

[113] A.F. Kuri Morales, Personal Communication, 1999.

[114] A. Kuri Morales, C.V. Quezada, A universal eclectic genetic algorithm for constrained optimization, in: Proceedings of the 6th

European Congress on Intelligent Techniques and Soft Computing, EUFIT’98, Verlag Mainz, Aachen, Germany, September

1998, pp. 518–522.

[115] H. M€uuhlenbein, Parallel genetic algorithms in combinatorial optimization, in: O. Balci, R. Sharda, S. Zenios (Eds.), Computer

Science and Operations Research, Pergamon Press, New York, 1992, pp. 441–456.

1284 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

[116] H. Myung, J.-H. Kim, Evolian: Evolutionary optimization based on Lagrangian with constraint scaling, in: P.J. Angeline,

R.G. Reynolds, J.R. McDonnell, R. Eberhart (Eds.), Proceedings of the Sixth Annual Conference on Evolutionary

Programming, Springer, Indianapolis, April 1997, pp. 177–188.

[117] H. Myung, J.-H. Kim, Hybrid interior-Lagrangian penalty based evolutionary optimization, in: V.W. Porto, N. Saravanan,

D. Waagen, A.E. Eiben (Eds.), Proceedings of the Seventh Annual Conference on Evolutionary Programming, Springer, Berlin,

1998, pp. 85–94.

[118] H. Myung, J.-H. Kim, D.B. Fogel, Preliminary investigation into a two-stage method of evolutionary optimization on

constrained problems, in: J.R. McDonnell, R.G. Reynolds, D.B. Fogel (Eds.), Proceedings of the Fourth Annual Conference on

Evolutionary Programming, MIT Press, Cambridge, MA, 1995, pp. 449–463.

[119] R. Nakano, Conventional genetic algorithm for job shop problems, in: R.K. Belew, L.B. Booker (Eds.), Proceedings of the

Fourth International Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, 1991, pp. 474–479.

[120] A. Nelder, R. Mead, A simplex method for function minimization, Comput. J. 7 (1965) 308–313.

[121] B.A. Norman, J.C. Bean, Random keys genetic algorithm for scheduling: Unabridged version, Technical Report 95-10,

University of Michigan, Ann Harbor, 1995.

[122] B.A. Norman, J.C. Bean, A random keys genetic algorithm for job shop scheduling, Technical Report 96-10, University of

Michigan, Ann Harbor, 1996.

[123] B.A. Norman, A.E. Smith, Random keys genetic algorithm with adaptive penalty function for optimization of constrained

facility layout problems, in: T. B€aack, Z. Michalewicz, X. Yao (Eds.), Proceedings of the 1997 International Conference on

Evolutionary Computation, IEEE, Indianapolis, Indiana, 1997, pp. 407–411.

[124] A.L. Olsen, Penalty functions for the knapsack problem, in: Proceedings of the First IEEE Conference on Evolutionary

Computation, IEEE Press, New York, 1994, pp. 554–558.

[125] D. Orvosh, L. Davis, Shall we repair? genetic algorithms, combinatorial optimization and feasibility constraints, in: S. Forrest (Ed.),

Proceedings of the Fifth International Conference on Genetic Algorithms, Morgan Kauffman, San Mateo, CA, July 1993, p. 650.

[126] D. Orvosh, L. Davis, Using a genetic algorithm to optimize problems with feasibility constraints, in: Proceedings of the First

IEEE Conference on Evolutionary Computation, IEEE Press, New York, 1994, pp. 548–553.

[127] C.C. Palmer, A. Kershenbaum, Representing trees in genetic algorithms, in: Z. Michalewicz, J.D. Schaffer, H.-P. Schwefel,

D.B. Fogel, H. Kitano (Eds.), Proceedings of the First IEEE Conference on Evolutionary Computation, IEEE Press, Piscataway,

NJ, 1994, pp. 379–384.

[128] J. Paredis, Co-evolutionary constraint satisfaction, in: Proceedings of the 3rd Conference on Parallel Problem Solving from

Nature, Springer, New York, 1994, pp. 46–55.

[129] I.C. Parmee, G. Purchase, The development of a directed genetic search technique for heavily constrained design spaces, in:

I.C. Parmee (Ed.), Adaptive Computing in Engineering Design and Control-’94, University of Plymouth, Plymouth, UK, 1994,

pp. 97–102.

[130] I. Parmee (Ed.), The Integration of Evolutionary and Adaptive Computing Technologies with Product/System Design and

Realisation, Springer, Plymouth, UK, 1998.

[131] R. Parsons, S. Forrest, C. Burks, Genetic Algorithms for DNA Sequence Assembly, in: Proceedings of the 1st International

Conference on Intelligent Systems in Molecular Biology, AAAI Press, July 1993.

[132] R.J. Parsons, S. Forrest, C. Burks, Genetic algorithms, operators and DNA fragment assembly, Machine Learning 21 (1–2)

(1995) 11–33.

[133] V.W. Porto, N. Saravanan, D. Waagen, A.E. Eiben (Eds.), Evolutionary Programming VII: Proceedings of the Seventh Annual

Conference on Evolutionary Programming, Lecture Notes in Computer Science, vol. 1447, Springer, San Diego, CA, March 1998.

[134] D. Powell, M.M. Skolnick, Using genetic algorithms in engineering design optimization with non-linear constraints, in: S. Forrest

(Ed.), Proceedings of the Fifth International Conference on Genetic Algorithms, University of Illinois at Urbana-Champaign,

Morgan Kaufmann, San Mateo, CA, July 1993, pp. 424–431.

[135] M.J.D. Powell, A method for nonlinear constraints in minimization problems, in: R. Fletcher (Ed.), Optimization, Academic

Press, London, England, 1969.

[136] N.J. Radcliffe, Equivalence class analysis of genetic algorithms, Complex Systems 5 (1991) 183–220.

[137] K.M. Ragsdell, D.T. Phillips, Optimal design of a class of welded structures using geometric programming, ASME J. Eng. Ind.,

Series B 98 (3) (1976) 1021–1025.

[138] S.S. Rao, Engineering Optimization, third ed., Wiley, New York, 1996.

[139] K. Rasheed, An adaptive penalty approach for constrained genetic-algorithm optimization, in: J.R. Koza, W. Banzhaf,

K. Chellapilla, K. Deb, M. Dorigo, D.B. Fogel, M.H. Garzon, D.E. Goldberg, H. Iba, R.L. Riolo (Eds.), Proceedings of the

Third Annual Genetic Programming Conference, Morgan Kaufmann, San Francisco, CA, 1998, pp. 584–590.

[140] T. Ray, T. Kang, S.K. Chye, An evolutionary algorithm for constrained optimization, in: D. Whitley, D. Goldberg, E. Cant�uu-

Paz, L. Spector, I. Parmee, H.-G. Beyer (Eds.), Proceedings of the Genetic and Evolutionary Computation Conference

(GECCO’2000), Morgan Kaufmann, San Francisco, CA, 2000, pp. 771–777.

[141] A.C. Renfrew, Dynamic modeling in archaeology: what, when, and where?, in: S.E. van der Leeuw (Ed.), Dynamical Modeling

and the Study of Change in Archaelogy, Edinburgh University Press, Edinburgh, Scotland, 1994.

[142] R.G. Reynolds, An introduction to cultural algorithms, in: A.V. Sebald, L.J. Fogel (Eds.), Proceedings of the Third Annual

Conference on Evolutionary Programming, World Scientific, River Edge, NJ, 1994, pp. 131–139.

[143] R.G. Reynolds, Z. Michalewicz, M. Cavaretta, Using cultural algorithms for constraint handling in GENOCOP, in:

J.R. McDonnell, R.G. Reynolds, D.B. Fogel (Eds.), Proceedings of the Fourth Annual Conference on Evolutionary

Programming, MIT Press, Cambridge, MA, 1995, pp. 298–305.

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1285

[144] J.T. Richardson, M.R. Palmer, G. Liepins, M. Hilliard, Some guidelines for genetic algorithms with penalty functions, in:

J.D. Schaffer (Ed.), Proceedings of the Third International Conference on Genetic Algorithms, George Mason University,

Morgan Kaufmann, Reading, MA, 1989, pp. 191–197.

[145] R.G. Le Riche, R.T. Haftka, Optimization of laminate stacking sequence for buckling load maximization by genetic algorithm,

AIAA J. 31 (5) (1993) 951–970.

[146] R.G. Le Riche, R.T. Haftka, Improved genetic algorithm for minimum thickness composite laminate design, Compos. Engrg.

3 (1) (1994) 121–139.

[147] R.G. Le Riche, C. Knopf-Lenoir, R.T. Haftka, A segregated genetic algorithm for constrained structural optimization, in:

L.J. Eshelman (Ed.), Proceedings of the Sixth International Conference on Genetic Algorithms, University of Pittsburgh,

Morgan Kaufmann, San Mateo, CA, July 1995, pp. 558–565.

[148] E. Ronald, When selection meets seduction, in: L.J. Eshelman (Ed.), Proceedings of the Sixth International Conference on

Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, July 1995, pp. 167–173.

[149] T.P. Runarsson, X. Yao, Stochastic ranking for constrained evolutionary optimization, IEEE Trans. Evol. Comput. 4 (3) (2000)

284–294.

[150] E. Sandgren, Nonlinear integer and discrete programming in mechanical design, in: Proceedings of the ASME Design

Technology Conference, Kissimine, Florida, 1988, pp. 95–105.

[151] J.D. Schaffer, Multiple objective optimization with vector evaluated genetic algorithms, in: Genetic Algorithms and their

Applications: Proceedings of the First International Conference on Genetic Algorithms, Lawrence Erlbaum, London, 1985,

pp. 93–100.

[152] M. Schoenauer, Z. Michalewicz, Evolutionary computation at the edge of feasibility, in: H.-M. Voigt, W. Ebeling, I. Rechenberg,

H.-P. Schwefel (Eds.), Proceedings of the Fourth Conference on Parallel Problem Solving from Nature, Springer, Berlin,

September 1996, pp. 245–254.

[153] M. Schoenauer, Z. Michalewicz, Sphere operators and their applicability for constrained parameter optimization problems, in:

V.W. Porto, N. Saravanan, D. Waagen, A.E. Eiben (Eds.), Evolutionary Programming VII: Proceedings of the Seventh Annual

Conference on Evolutionary Programming, Lecture Notes in Computer Science, vol. 1447, Springer, San Diego, CA, March

1998, pp. 241–250.

[154] M. Schoenauer, S. Xanthakis, Constrained GA optimization, in: S. Forrest (Ed.), Proceedings of the Fifth International

Conference on Genetic Algorithms, Morgan Kaufmann, San Mateo, CA, July 1993, pp. 573–580.

[155] M. Sch€uutz, J. Sprave, Application of partially mixed-integer evolution strategies with mutation rate pooling, in: L.J. Fogel,

P.J. Angeline, T. B€aack (Eds.), Proceedings of the Fifth Annual Conference on Evolutionary Programming (EP’96), MIT Press,

San Diego, CA, February 1996, pp. 345–354.

[156] H.-P. Schwefel, Numerical Optimization of Computer Models, Wiley, Great Britain, 1981.

[157] H.-P. Schwefel, Evolution and Optimum Seeking, Wiley, New York, 1995.

[158] J.N. Siddall, Analytical Design-Making in Engineering Design, Prentice-Hall, Englewood Cliffs, NJ, 1972.

[159] W. Siedlecki, J. Sklanski, Constrained genetic optimization via dynamic reward-penalty balancing and its use in pattern

recognition, in: J.D. Schaffer (Ed.), Proceedings of the Third International Conference on Genetic Algorithms, George Mason

University, Morgan Kaufmann, San Mateo, CA, June 1989, pp. 141–150.

[160] S. Carlson Skalak, R. Shonkwiler, S. Babar, M. Aral, Annealing a genetic algorithm over constraints. Available from http://

vlead.mech.virginia.edu/publications/shenkpaper/shenkpaper.html.

[161] A.E. Smith, D.W. Coit, Constraint handling techniques – penalty functions, in: T. B€aack, D.B. Fogel, Z. Michalewicz

(Eds.), Handbook of Evolutionary Computation, Oxford University Press and Institute of Physics Publishing, Oxford, 1997

(Chapter C 5.2).

[162] A.E. Smith, D.M. Tate, Genetic optimization using a penalty function, in: S. Forrest (Ed.), Proceedings of the Fifth International

Conference on Genetic Algorithms, University of Illinois at Urbana-Champaign, Morgan Kaufmann, San Mateo, CA, July

1993, pp. 499–503.

[163] R.E. Smith, S. Forrest, A.S. Perelson, Searching for diverse, cooperative populations with genetic algorithms, Technical Report

TCGA No. 92002, University of Alabama, Tuscaloosa, AL, 1992.

[164] R.E. Smith, S. Forrest, A.S. Perelson, Population diversity in an immune system model: Implications for genetic search, in:

L.D. Whitley (Ed.), Foundations of Genetic Algorithms, vol. 2, Morgan Kaufmann, San Mateo, CA, 1993, pp. 153–165.

[165] J. Sobieszanski-Sobieski, A technique for locating function roots and for satisfying equality constraints in optimization, Struct.

Optim. 4 (3–4) (1992) 241–243.

[166] E.J. Steele, R.A. Lindley, R.V. Blanden, Lamarck’s Signature. How Retrogenes Are Changing Darwin’s Natural Selection

Paradigm, Perseus Books, Reading, MA, 1998.

[167] P.D. Surry, N.J. Radcliffe, The COMOGA method: Constrained optimisation by multiobjective genetic algorithms, Control

Cybern. 26 (3) (1997).

[168] P.D. Surry, N.J. Radcliffe, I.D. Boyd, A multi-objective approach to constrained optimisation of gas supply networks: The

COMOGA method, in: T.C. Fogarty (Ed.), Evolutionary Computing. AISB Workshop. Selected Papers, Springer, Sheffield,

UK, 1995, pp. 166–180.

[169] G. Syswerda, Uniform crossover in genetic algorithms, in: J.D. Schaffer (Ed.), Proceedings of the Third International Conference

on Genetic Algorithms, George Mason University, Morgan Kaufmann, San Mateo, CA, June 1989, pp. 2–9.

[170] G. Syswerda, Schedule optimization using genetic algorithms, in: L. Davis (Ed.), Handbook of Genetic Algorithms, Van

Nostrand Reinhold, New York, 1991, pp. 332–349 (Chapter 21).

1286 C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287

[171] D.M. Tate, A.E. Smith, A genetic approach to the quadratic assignment problem, Computers and Operations Research 22 (1)

(1995) 73–78.

[172] S.R. Thangiah, An adaptive clustering method using a geometric shape for vehicle routing problems with time windows, in: L.J.

Eshelman (Ed.), Proceedings of the Sixth International Conference on Genetic Algorithms, University of Pittsburgh, Morgan

Kaufmann, San Mateo, CA, July 1995, pp. 536–543.

[173] M. Wodrich, G. Bilchev, Cooperative distributed search: The ant’s way, Control and Cybernetics 26 (3) (1997) 413–446.

[174] D.H. Wolpert, W.G. Macready, No free lunch theorems for optimization, IEEE Trans. Evol. Comput. 1 (1) (1997) 67–82.

[175] J. Xiao, Z. Michalewicz, K. Trojanowski, Adaptive evolutionary planner/navigator for mobile robots, IEEE Trans. Evol.

Comput. 1 (1) (1997) 18–28.

[176] J. Xiao, Z. Michalewicz, L. Zhang, Evolutionary planner/navigator: Operator performance and self-tuning, in: Proceedings of

the 3rd IEEE International Conference on Evolutionary Computation, IEEE Press, Nagoya, Japan, May 1996.

[177] T. Yokota, M. Gen, K. Ida, T. Taguchi, Optimal design of system reliability by an improved genetic algorithm, Trans. Inst.

Electron. Inf. Comput. Engrg. J78-A (6) (1995) 702–709 (in Japanese).

C.A. Coello Coello / Comput. Methods Appl. Mech. Engrg. 191 (2002) 1245–1287 1287

