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Abstract—In this paper, we propose a generic, two-phase frame-
work for solving constrained optimization problems using genetic
algorithms. In the first phase of the algorithm, the objective func-
tion is completely disregarded and the constrained optimization
problem is treated as a constraint satisfaction problem. The ge-
netic search is directed toward minimizing the constraint violation
of the solutions and eventually finding a feasible solution. A linear
rank-based approach is used to assign fitness values to the indi-
viduals. The solution with the least constraint violation is archived
as the elite solution in the population. In the second phase, the
simultaneous optimization of the objective function and the sat-
isfaction of the constraints are treated as a biobjective optimiza-
tion problem. We elaborate on how the constrained optimization
problem requires a balance of exploration and exploitation under
different problem scenarios and come to the conclusion that a non-
dominated ranking between the individuals will help the algorithm
explore further, while the elitist scheme will facilitate in exploita-
tion. We analyze the proposed algorithm under different problem
scenarios using Test Case Generator-2 and demonstrate the pro-
posed algorithm’s capability to perform well independent of var-
ious problem characteristics. In addition, the proposed algorithm
performs competitively with the state-of-the-art constraint opti-
mization algorithms on 11 test cases which were widely studied
benchmark functions in literature.

Index Terms—Constrained optimization, constraint handling,
genetic algorithm (GA), hyperheuristic.

I. INTRODUCTION

MOST REAL-WORLD optimization problems involve
constraints. Consider an optimization problem such

as maximizing the profits of a particular production line. The
objective function to be maximized could be a function of
various manipulating variables, including but not limited to the
material consumption, the labor cost, the operating hours of the
machines, and many additional factors. If the raw materials,
manpower, and machines can be made available without limi-
tation then there is no limit to the profit that can be achieved.
However, in face of real-world complications, they are most
likely limited in the form of constraints imposed upon the
optimization function. What constitute the difficulties of the
constrained optimization problem are various limits on the
decision variables, the constraints involved, the interference
among constraints, and the interrelationship between the con-
straints and the objective function. Taking a numerical example,
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suppose we want to maximize a function ,
where the two variables are defined by , . Under
the presence of no additional constraint, an optimum value of

can be reached when and . Assume
that there is an equality constraint imposed on these variables
described by . Considering a resolu-
tion of up to two decimal places in the discrete search space,
there are only 50 feasible solutions among 10 000 possible
candidates. This implies that feasible space is only 0.5% of the
actual parameter space. The best objective function value that
can be reached is (for and ). The
problem complexity can be greatly increased by the number of
constraints or the types of constraints. The general constrained
continuous-parameter optimization problem as succinctly de-
fined in [29] is to search for so as to

(1)

where . The objective function is defined on the
search space , and the set defines the feasible
region. Usually, the search space is an -dimensional hyper box
in . The domains of the variables are defined by their lower
and upper bounds as

(2)

whereas the feasible region is restricted by a set of addi-
tional constraints

(3)

and

(4)

The inequality constraints that take the value of 0, i.e.
at the global optimum to the problem are called

the active constraints. In the following discussion and in the
remainder of this paper, without loss of generality we shall
consider the minimization of the objective function unless
specified otherwise. In addressing the constrained optimization
problem in the real-world scenario, we can arguably say that
obtaining a feasible solution (one that is usable under the
problem formulation) takes precedence over optimizing the
objective function (which minimizes the cost involved). There
are also problems with higher complexity in which finding a
single feasible solution itself can be a monumental task. These
problems are treated as constraint satisfaction problems and
various evolutionary algorithms have been proposed to solve
them effectively, e.g., [10]. The main challenge in constrained
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optimization is simultaneously handling the constraints as
well as optimization of the objective function. The constraint
handling methods have primarily focused on various designs
of fitness formulation for each individual in the population
depending on its objective function and constraint satisfaction.
Over the past decade, various constraint-handling techniques
using genetic algorithms (GAs) [7], [10], [12] and benchmark
test functions [24] for constrained optimization problems have
been proposed.

We summarize next our motivations to propose a new con-
straint handling scheme to complement the existing methods in
literature.

1) Reliability: From a practical point of view, it is essential
that the GA used for constrained optimization produces
feasible optimal solutions for every run. While this may
be too much to ask, we would certainly hope that at least
the feasibility criteria can be met for every run and that
adequate optimization can be achieved.

2) A generic framework: There are various types of con-
strained optimization problems that we may encounter
and it would be impractical if the GA used has to be
tuned to fit for a specific problem or if it uses special
operators that cannot be implemented in all problem do-
mains. While a generic framework may not result into
the most efficient design for each problem setting, it is
the most advisable at the algorithm design stage, while
necessary modifications can be made to tailor for partic-
ular problems (such as exploiting carefully crafted genetic
operators).

The rest of the paper is organized as follows. In Section II,
a thorough review of the essential features of some of the best
known constraint handling schemes pertinent to this research is
presented. In Section III, we introduce the proposed constraint
handling scheme and elaborate it in detail. In Section IV, we
analyze the distinctions between the proposed constraint-han-
dling scheme and another scheme that favors domination of
feasible solutions in tackling problems with different charac-
teristics. Using the Test Case Generator-2 (TCG-2) proposed in
[35], we demonstrate the effectiveness and efficiency of the pro-
posed constraint handling method in Section V. In Section VI,
we evaluate the performance of the proposed constraint-han-
dling scheme on the 11 test cases proposed in [24] and provide
a fair comparison with the best results from the state-of-the-art
in literature. Finally, we conclude with some observations about
the proposed algorithm.

II. LITERATURE SURVEY

In this section, we will review some of the relevant methods
proposed for constraint handling using GAs. We have broadly
categorized these methods into: 1) methods based on penalty
functions; 2) methods based on preference of feasible solutions
over infeasible ones; and 3) methods based on multiobjective
optimization. Techniques involving special operators [30], de-
coders [24], repair mechanisms [27], and hybrid approaches
[22] are considered irrelevant to the algorithm proposed herein.
We intend to present the basic ideas underlying the design of

each of the above constraint-handling methods and provide the
rationale to justify our proposed design framework.

1) Methods Based on Penalty Functions: Penalty functions
were popularly used in the conventional methods for con-
strained optimization [15] and were amongst the first methods
used to handle constraints with evolutionary algorithms. In
these methods, the individuals are penalized based on their
constraint violations. The penalty imposed on infeasible indi-
viduals can range from completely rejecting the individual to
decreasing its fitness based on the degree of violation. There
are different types of penalty functions based on this principle
and some of them are discussed next.

In the death penalty method, the infeasible solutions are not
considered for selection for the next generation and this is the
greatest penalty that can be imposed on an infeasible solution.
Among all penalty methods, the death penalty is the simplest to
implement. This approach has the drawback of not exploiting
any information from the infeasible individuals to guide the
search [7]. Also, when the initial population consists of no fea-
sible solution, the whole population has to be rejected and a new
one is randomly generated. This technique may work well in
problems where the feasible space is convex and covers a large
part of the search space but is not generally used otherwise.

In the static penalty method, the penalty is a weighted sum of
the constraint violations. The objective function is modified as

(5)

actual objective function value;
penalty coefficient for constraint ;
degree of violation of constraint corresponding
to the individual ;
modified objective function value after adding
penalty.

The success of the static penalty method depends on the
proper penalty coefficients chosen for constraints. This has
to be determined carefully based on the difficulties of these
constraints.

In [21], a dynamic penalty method was proposed where the
penalty assigned to each individual depends on the generation
number and a scaling constant in addition to its constraint vi-
olation. The authors of [21] claim that this as an important dis-
tinction which applies more selective pressure on nearly feasible
solution, thus making them feasible. However, the difficulty in-
volved in tuning many parameters for dynamic penalty method
has significantly limited its applicability.

While the penalty function methods discussed so far are easy
to implement, they require some degree of parameter tuning to
tailor for each problem. From [33], we summarize some of the
guidelines for penalty function methods: 1) penalties which are
functions of the distance from feasibility perform better than
those which are merely functions of the number of violated con-
straints; 2) for a problem having few constraints and few feasible
solutions, penalties which are solely functions of the number of
violated constraints are not likely to find solutions; and 3) the
more accurate the penalty is estimated, the better quality of so-
lution can be found.
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A method with a self-adaptive penalty function to alleviate
the difficulty of choosing penalty coefficients was proposed in
[14]. The authors proposed a two-stage penalty function that re-
quires no explicit definition of any parameters. The method was
formulated to ensure that slightly infeasible solutions with a low
objective function value remain fit. The first stage ensures that
the worst of the infeasible solutions has a penalized objective
function that is higher than or equal to that of the best solution
in the population (all other solutions are penalized by a lesser
amount depending on their feasibility). The second penalty in-
creases the penalized objective value of the worst of the infea-
sible solutions to twice the objective value of the best solution.
The method, however, required the definition of a scaling factor.

Because penalty functions combine the objective function
value and the constraint violation value to decide the fitness of
each individual, there is a domination relationship between the
constraint violation and the objective function in deciding the
fitness of the individual. In [34], the authors characterize the
problem of choosing the appropriate penalty coefficient for
each constraint and describe how it affects the domination be-
tween the constraint violation and the objective function in de-
ciding the rank of each individual. To overcome the burden of
choosing an optimal , the authors propose a probability factor

which denotes the probability of the objective function used
to allocate rank to the individual. The ranking method incorpo-
rated assures that feasible solutions are ranked based only on
their objective function, while the probability factor deter-
mines whether objective function or constraint violation should
be used to rank infeasible individuals. A value of 0.45 was
found to produce very good results in [34]. This implies that
infeasible solutions would be ranked less often based on their
objective function value (45%) and more often based on their
constraint violation value (55%). While this method produced
the best results for all of the problems evaluated, there was one
significant drawback with the results obtained. For a particular
test problem, the method could only produce feasible solutions
6 out of 30 runs. This can be attributed to the selection scheme
in which constraint violation does not dominate the objective
function even when ranking infeasible solutions.

2) Methods Based on Preference of Feasible Solutions Over
Infeasible Solutions: In [32], the authors suggested a penalty
function method in which feasible solutions would always
have higher fitness than infeasible ones. A rank-based selection
scheme was used and the rank was assigned based on the
objective function values mapped into ( , 1) for feasible
solutions and the constraint violation mapped into (1, ) for
infeasible solutions. Hence, in this technique, all feasible so-
lutions dominate the infeasible ones. Infeasible solutions will
be compared based on their constraint violation, while feasible
solutions will be compared based on their objective function
value only. This method presents some interesting properties: 1)
as long as no feasible solution is found, the objective function
will produce no effect on the rank of the individual; 2) once
there is a combination of feasible and infeasible solutions in
the population, then feasible solutions will be ranked ahead of
all infeasible solutions; and 3) feasible solutions will be ranked
based on their objective function values. The major drawback
that we could experience in this method is a lack of diversity

either explicitly defined or as part of the selection scheme. This
deficiency will occur in problems with disconnected feasible
components in which cases the GA may be stuck within one of
the feasible components and never get to explore.

The same idea as described above formed the basis of [12],
where selection was based upon the following underlying prin-
ciples: 1) a feasible solution wins over any infeasible solutions;
2) two feasible solutions are compared only based on their ob-
jective function values; 3) two infeasible solutions are compared
based on the amount of their constraint violations; and 4) two
feasible solutions and are compared only if they are within a
critical distance , otherwise, another solution is checked
times before is chosen as the winner. The authors of [12] also
argued that real coded representation was better suited for con-
strained optimization problems as it affords a greater chance of
maintaining feasibility. In addition, the authors used a niching
scheme to maintain diversity among feasible solutions and bi-
nary tournament selection to make pairwise comparisons. The
penalty approach was different in the sense that the coefficient
was unity for all constraints and all the constraints were normal-
ized to allot equal importance to each constraint. This method
performed very well on a variety of benchmark test problems
and niching operator was incorporated to overcome the problem
of stagnation discussed above. However, this method requires
heuristically chosen parameters on critical distance and .

3) Methods Based on Multiobjective Optimization Tech-
niques: Constrained optimization by multiobjective genetic
algorithm (COMOGA) was proposed in [36], where the
solutions are first ranked based on nondomination of their
constraint violations, and then also ranked based on their
objective function. A factor selects solutions based on
objective function, while the others are selected based on
constraint violation. The is adjusted depending on the
target proportion of feasible solutions in the population. The
obvious drawback of this technique is the high computational
complexity, especially as the number of constraints increases.
Also, there is not enough evidence to suggest that treating each
constraint independently and ranking them based on Pareto
domination is an efficient design.

In [6], the author proposed a subpopulation-based approach
similar to VEGA by using subpopulations, where de-
notes the number of constraints and the first subpopulation is de-
voted to optimizing the objective function. The method differs
from [36] in that nondominated ranking is never employed but
the fitness function for each problem is changed so that initially
the fitness function for each subpopulation (except the first one
which is based on the objective function) depends on the viola-
tion of its constraint. If the solution evaluated does not violate
the constraint corresponding to the subpopulation but is infea-
sible, then the subpopulation will minimize the total number of
violations. Finally, once the solution becomes feasible, it will
be merged with the first subpopulation and look to minimize
the objective function. While the results produced were satis-
factory, the choice of the size of each subpopulation remained
an open question.

From our analyses of the algorithms previously proposed to
solve the constrained optimization problem, we notice three
common features: 1) lack of elitism; 2) choices of parameters
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that require a priori knowledge about the problem characteris-
tics; and 3) lack of an assurance of producing feasible solutions.
Elitism can be very effective in maintaining the best feasible
solution in the population and can guide the genetic search to
concentrate around this solution, thus providing an exhaustive
search. At the same time, elitism can lead to poor diversity in
the population. The algorithm proposed herein blends the elitist
approach with a nondominated ranking approach, thus pro-
viding a delicate balance between exploration and exploitation.
We believe that a possible rationale that many methods fail to
produce feasible solutions for every run is the simultaneous
handling both the objective function and the constraints in all
stages of the algorithm. This prevents the GA from moving
toward the feasible regions without being distracted by the
objective function landscape. Our proposed method provides a
greater assurance of producing feasible solutions because the
search is directed only based on the constraint violation value
until feasible solutions are found.

While it is commonly accepted that no algorithm will be ef-
fective in solving all types of problems as documented in the no
free lunch theorem [40], we have proposed a generic framework
that requires absolutely no definition of any problem dependent
parameter. This is in keeping up with the development of al-
gorithms with an increasing level of generality by the usage of
hyperheuristics. Hyperheuristics are heuristics that choose be-
tween the lower-level heuristics. Hence, with respect to GAs,
hyperheuristics define an approach where the higher level is a
GA that decides which heuristic to call next. That is, a GA is
coded such that it represents a sequence of heuristic calls, rather
than a representation of the problem itself. The lower level of
the hyperheuristic is the set of heuristics which operate directly
on the solution. The interested reader is referred to [2] and [3]
for more reading. Our proposed algorithm is an effort to define
a hyperheuristic to solve constrained optimization problems.
Throughout this research, we have not made an effort to exper-
iment with lower level heuristics. In the following, Section III
describes the proposed constraint handling scheme and how it
can satisfy the design requirements of reliability and problem
independence.

III. PROPOSED CONSTRAINT HANDLING SCHEME

GAs being a stochastic search technique can offer no guar-
antee of producing feasible solutions. To address this concern,
we have formulated the GA in such a way that finding feasible
solutions is the prioritized objective. Once a feasible solution is
found, then the best one is kept in the population using the elitist
scheme, thus assuring that the found feasible solution is never
lost. However, preferring feasible solutions over infeasible ones
could cause the GA to be stuck in one particular feasible com-
ponent, where there are disconnected feasible components and
the GA may never get to explore the other feasible components
containing the global optimum. So exploring the search space
guided by both the constraint satisfaction and the objective func-
tion optimization will be the secondary objective. The proposed
constraint handling scheme consists of two phases and the al-
gorithm switches smoothly from the first phase to the second
based on a simple conditional statement.

1) Phase one (constraint satisfaction algorithm): In the first
phase of the algorithm, the objective function is com-
pletely disregarded and the entire search effort is directed
toward finding a single feasible solution. Each individual
of the population is ranked based on its constraint viola-
tion only and fitness is assigned to each individual based
on its rank. The elitist strategy is used and the solution
with the least constraint violation is copied to the next
generation. This phase takes care of the feasibility criteria
and provides a usable solution (one that satisfies all con-
straints). We find this technique to be especially suitable
for highly constrained problems wherein finding a fea-
sible solution may be extremely difficult. In such prob-
lems, it would be worthwhile and efficient to explore the
search space based on the constraints alone without taking
the objective function into consideration.

2) Phase two (constrained optimization algorithm): The
algorithm switches to this phase once at least one feasible
solution has been identified. This phase is treated as a
biobjective optimization problem, where the constraint
violations and the objective functions have to be mini-
mized simultaneously in a modified objective space that
we call the “objective function—constraint violation
space,” or space for short. We have used a non-
dominated sorting like in [13] to rank the individuals.
We save the feasible individual with the best objective
function in the population as the elitist solution. We also
use a niching scheme in the space so that sufficient
diversity is maintained and the GA will continue to
explore. We believe that this multiobjective evolutionary
algorithm (MOEA)-based approach will search to mini-
mize both the objective function and constraint violation
simultaneously and guide the algorithm in exploring the
region between the constrained and unconstrained optima
and the feasible and infeasible parts of the search space.
The details of implementation of the algorithm are given
below.

A. Scalar Constraint Violation

From the problem formulation, we have constraints and the
constraint violation for an individual is a vector of dimen-
sions. Using a tolerance of 0.001 for equality constraints,
the constraint violation of individual on the th constraint is
calculated by

(6)

Each constraint violation is then normalized by dividing it by
the largest violation of that constraint in the population. We use
normalized constraint violations to treat each constraint equally.
First, we find the maximum violation of each constraint in the
population by using (7)

(7)

These maximum constraint violation values are used to
normalize each constraint violation. The normalized constraint
violations are added together to produce a scalar constraint
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violation for that individual which takes a value between
0 and 1

(8)

where denotes the absolute operator.

B. Rank-Based Fitness Allocation

In both phases of the proposed algorithm, we allocate a fitness
to each individual based on its rank in the population. In the first
phase, all the individuals are ranked based on their scalar con-
straint violation. The rank-based fitness function is implemented
from [4]. In the second phase, the individuals are sorted into dif-
ferent fronts based on nondomination and rank is assigned to
each individual based on the front it belongs to.

C. Crowding-Distance Assignment

It is desirable to have a diverse set of solutions in the
space to maintain the explorative power of the algorithm and,
hence, a niching scheme based on the distance of the nearest
neighbors to each solution is applied. To get an estimate of the
density of solutions surrounding a particular individual in the
second phase, we calculate the normalized average distance of
two points on either side of this point along each one of the di-
mensions. This quantity takes a value between 0 (the indi-
vidual has multiple copies in the population) to 1 (the individual
is not crowded). The fitness of the individual based on its rank
and crowding-distance is given by

(9)

Note here that the elitist individual is chosen irrespective of
its fitness but based only on the conditions for each of the two
phases. The pseudocode of the algorithm is given in Fig. 1.

In the following section, we discuss the algorithm design and
how we come up with it based on the difficulties associated with
different problem scenarios.

IV. CONSTRAINED OPTIMIZATION—ALGORITHM DESIGN

As discussed before, one of the major challenges for con-
strained optimization is to search for optimal solutions that are
feasible with respect to the constraints. One of the approaches
for effectively solving the constrained optimization problem
is to treat the constraints as “objectives with goals” and define
preference among individuals as described in [17]. However,
this can lead to an extremely high-dimensional objective space
as the number of constraints grows. The computational com-
plexity will become unmanageable. Hence, we have used a
single parameter, the scalar constraint violation (SCV), repre-
senting normalized net violation of constraints by an individual.
To analyze the proposed algorithm further, let us consider each
of the two phases individually. Let us define the usage of the
following terms:

feasible region, i.e. the domain of the
search space that is feasible;

Fig. 1. Pseudocode of the proposed constraint handling algorithm.

th disconnected feasible component in
the search space , ;

, ,

A. Phase One—Constrained Satisfaction Problem

Goal: To find a feasible solution from a random initializa-
tion.

If there are constraints and feasible components, then a
GA with selection based only on constraint violation will find
a feasible solution with probability one as . This is true
because in this case the scalar constraint violation is only a mea-
sure of distance from the feasible region. As selection favors
minimizing this distance, a feasible solution will be eventually
reached. Since there are feasible components, the probability
of the first feasible solution being found in any one of the fea-
sible components is approximately .

Next, we begin our analysis of the second phase of the al-
gorithm where the actual optimization takes place. During the
design of our fitness scheme, we could have chosen either one
of the following two schemes: the preference scheme or the non-
dominated scheme. The preference scheme based on [31] is de-
fined by the following.

1) Any feasible solution is better than any infeasible
solution.

2) Among two feasible solutions and , assign greater prob-
ability of selection to the solution with the better objective
function.

We shall compare this with the nondominated scheme in
which:
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1) Solutions are ranked based on the nondomination of their
constraint violations and objective function values.

In analyzing these two selection schemes, we try to draw
meaningful conclusions about the design of the selection
scheme under different problem scenarios.

B. Phase Two—Constrained Optimization Problem

Goal: To search for the feasible global optimum after a
single feasible solution is found.

We define the efficiency of a search technique by its speed
(with respect to the number of function evaluations) at which
it can get to the global optimum as opposed to an exhaustive
brute-force search.

A major issue in solving the constrained optimization
problem is the balance between the exploration and exploita-
tion. Let us consider the space. In our algorithm, we
maintain the feasible solution with the best objective function
unchanged in our population and this can be regarded as an
artificial way of creating a genetic drift phenomenon which
helps in exploitation. At the same time, we apply a niching
scheme in the space looking for a well extended and
uniform Pareto front, thus helping the algorithm explore even
when it is converging. The following cases illustrate why and
when this property of the algorithm is essential.

Case 1: There is only one feasible component —a
need for exploitation

In this case, our initial feasible solution will belong to this fea-
sible component and the global optimum is also located within
this component. Selection based on the preference scheme will
be more efficient in converging to the global optimum than the
nondominated scheme as: 1) there is no need to explore and 2)
the infeasible solutions (which carry no useful genetic informa-
tion in this case) are not encouraged in the population and this
technique can lead to the global optimum in a less number of
evaluations.

Case 2: If there are disconnected feasible compo-
nents—a need for exploration.

In this case, the preference scheme may not be efficient in
converging to the global optimum. This is because the chances
of the feasible initial solution being located in the feasible com-
ponent with the global optimum is and becomes less as the
number of disconnected components increase so there may be a
need for the GA to search for solutions in the other components.
This presents a need for exploration to find feasible solutions.
We analyze the two methods by taking two solutions and
from the population and evaluate the selection scheme that will
increase the probability of converging to the global optimum.
We also assume in our discussion that the feasible solution with
the best objective function is saved as the elitist solution in the
population.

1) If solution is feasible and is infeasible, we could:
a) assign a greater probability of selection to irrespec-

tive of the objective function values of and ;
b) check if has a better objective function value than

and consider both and nondominated if it does,
otherwise, assign a greater probability of selection
to .

Fig. 2. Schematic of the nondominated ranking used in the GA.

In designing our algorithm, we chose option b). This
is because our elitist scheme already saves the best solu-
tion in the population. This elitist solution is obviously
feasible and has an objective function value that is just as
good or better then . So irrespective of whether or is
chosen, the elitist scheme assures that a part of the genetic
search proceeds along the direction of the feasible solu-
tion with the best objective function. Hence, by giving
an equal probability of selection, we are also favoring ge-
netic search in the infeasible regions that may have good
objective function values.

2) Among two feasible solutions and , consider and
nondominated irrespective of the objective function

values. This helps the algorithm explore more as the best
feasible solution is already stored as the elitist solution.
Hence, by giving both and an equal probability of
selection we are giving the algorithm a better chance to
explore.

Fig. 2 shows a nondominated set of solutions in the
space and all these individuals are ranked one. The niching

scheme assigns different fitness to these solutions based on how
crowded they are. So there is a greater selective pressure on so-
lutions at the two corners. The niching scheme tries to extend
the Pareto front along the directions of the two solid (black) ar-
rows. Since the elitist solution is saved unchanged in the popula-
tion, there is a greater probability of solutions around it. Hence,
we have indicated this solution in the figure using the hollowed
(white) arrow.

In the next section, we introduce the TCG-2 [35] and perform
actual experiments using the two selection schemes under the
problem scenarios discussed above in Cases 1 and 2.

V. SELECTION SCHEME COMPARISON USING TCG-2

In this section, we have used the TCG-2 to simulate different
problem scenarios and evaluate the performance of the two se-
lection schemes proposed. The TCG-2 is an enhanced version
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Fig. 3. Feasible components for n = 2, � = 0:001, c = 0:2, m = 8, and
d = 0:1.

of the TCG proposed in [31]. The nine different tunable features
of the TCG-2 are as follows:

dimensionality of the problem;
number of feasible components;
feasibility ratio of the search space;
complexity of the feasible search space;
number of active constraints;
number of peaks of the objective function;
width of the peaks;
decay of height of the peaks;
distance between the different feasible components.

The search space is composed of an -dimensional hypercube
with each dimension ranging in the closed interval of [0,1]. The
feasible regions of the search space are determined by , , ,
and . The general idea behind the TCG-2 is to randomly create

nonoverlapping boxes (or rectangular areas) in the search
space. The total occupancy of the feasible components put
together is . Considering a two dimension
search space, if the complexity is zero, then there are fea-
sible components and each one of them is a perfect rectangle.
New boxes are attached to the existing ones maintaining a min-
imum distance between the feasible components for the re-
maining part of the search space. Fig. 3 shows the fea-
sible components in a two-dimensional search space for ,

, , , and .
Based on the created feasible components, the constraint vi-

olation function is defined. The constraint violation value is
zero inside the feasible components, while outside the feasible
components the constraint violation value is the distance to the
closest center of all the feasible components. The constraint vi-
olation is defined by

if is inside a feasible
component

otherwise
(10)

where is the closest center to nay feasible component.
The objective function is defined using a set of randomly

placed Gaussians , where is the height of the peak

and is the center of the peak . In order to evaluate the objec-
tive function , the closest center of the solution vector
is found, and then the Gaussian function is evaluated.

All centers are placed randomly in the search space with
the exception of the global optimum that is placed such that
there are exactly active constraints at the global optimum. All
peaks heights are evenly distributed between [ , 1] such that the
global optimum has the highest peak , while the lowest
peak has . The global optimum is placed either inside the
feasible regions (if ) or at the borders (if ). Hence,
the global optimum always satisfies the constraints and has a
value of 1. The test scenario chosen is specified by a function
TCG-2 ( , , , , , , , , and ). We have implemented two
tests to verify the results from our previous discussion regarding
selection schemes for different types of problems. In each of
these tests, we have defined ten levels of difficulties and the
performance of each algorithm is plotted based on how it treats
problems of increasing difficulty.

To perform this test, we increase our problem complexity
from a problem with one feasible component and one optimum
to a problem with ten disconnected feasible components and ten
peaks. All the other characteristics of the problem such as the
feasibility ratio and number of active constraints are kept the
same. In short, we basically have ten test scenarios defined by
TCG-2 (2, , 0.005, 0.2, 1, , 0.2, 0.5, 0.1), where and are
varied from 1 to 10. We allow the algorithm to run a maximum
of 5000 generations. In addition, since we know that the global
optimum is 1, we stopped the algorithm if the best feasible
objective function value crosses 0.999 borderline. When im-
plementing both the preference scheme and the nondominated
scheme, we use niching in the second phase of the both algo-
rithms to maintain diversity. The same elitist scheme is also
employed in both designs. Fig. 4(a) and (b) compares the re-
sults from the preference scheme method and the nondominated
scheme.

Starting with the same number of generations required for
and value of 1, the nondominated scheme shows a much better
performance when the number of disconnected components and
the number of peaks increase. Even though the increase in the
number of generations required to solve the problem does not
increase linearly with and , we can clearly see that under all
scenarios the nondominated scheme performs better. Fig. 5(a)
and (b) shows the mean objective function values obtained under
various problem scenarios.

Again, we notice that better performance is obtained by the
nondominated scheme for all choices of and greater than
1. By acknowledging that the nondominated scheme achieved
these results with a less number of generations, as shown in
Fig. 4(a) and (b), we can argue with confidence that the non-
dominated scheme performs more efficiently in the current de-
sign scheme. In the next section, we extend the tests to the 11
test problems from [29] used frequently in literature and provide
a fair comparison with some state-of-the-art approaches.

VI. TEST RESULTS

We apply the proposed constraint handling scheme to 11
test cases from [24], as shown in Table I, using real-coded

Authorized licensed use limited to: Central South University. Downloaded on February 12,2022 at 14:22:27 UTC from IEEE Xplore.  Restrictions apply. 



VENKATRAMAN AND YEN: GENERIC FRAMEWORK FOR CONSTRAINED OPTIMIZATION USING GAS 431

(a)

(b)

Fig. 4 (a) Number of generations used in preference scheme versus the test
scenario number. (b) Number of generations used in nondominated scheme
versus the test scenario number.

individuals with a probability of mutation , where is the
number of decision variables involved. The crossover is imple-
mented by using the binary representation of the chromosomes
[4] with a probability of 0.9. For all of the 11 problems, we use
a population size of only ten individuals and 10% elitism. The
linear rank-based fitness assignment is adopted from [4]. We run
the proposed algorithm for 5000 generations in each of 50 runs.
The characteristics of these test problems are given in Table I
reproduced from [24].

The feasibility ratio is determined experi-
mentally in [27] by calculating the percentage of feasible solu-
tions among 1 000 000 randomly generated individuals. For G2
and G3, a value of was used in [27] which is different
from 20 used in our experiments. Also, because we treat our
equality constraints by relaxing them using a threshold value,
the values of would be slightly different for G3, G5, and G11.
From Table I, we can clearly see that we have a variety of test
functions involving both maximization (Max) and minimiza-
tion (Min) problems with different types of objective functions

(a)

(b)

Fig. 5 (a) Mean objective function with a maximum of 5000 generations using
preference scheme versus the test scenario number. (b) Mean objective function
with a maximum of 5000 generations using nondominated scheme versus the
test scenario number.

(e.g., quadratic, nonlinear, or polynomial) and constraints (e.g.,
linear equality or nonlinear equality). We have used the pro-
posed constraint handling scheme without any modifications (on
the scheme and on the parameter setting) for solving all of these
11 problems. The results are shown in Table II.

One of the first observations is that all of the 50 runs pro-
duce feasible solutions for all the test problems and this assures
that in a “real-world scenario,” we produce usable solutions in
every run of the algorithm. This is largely credited by the first
phase of our algorithm which treats the constrained optimiza-
tion problem as a constraint satisfaction problem. In problems
G2 and G4, a feasible solution is always found in the random
initial population itself and this is because the feasible space
occupy a large portion of the search space in these problems.
Even though G1 contains nine constraints, they are all linear
and, hence, the feasible space is convex. Thus, by minimizing
the distance to the feasible regions the constraints can be sat-
isfied effectively and a feasible solution is found early in the
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TABLE I
SUMMARY OF TEST CASES

search process. G3 has only one constraint and it was relaxed
slightly by using a threshold of 0.001 to help find feasible solu-
tions. Finding feasible solutions presents the greatest challenge
in G5, where the combination of nonlinear equalities and linear
inequalities causes some complications in locating feasible so-
lutions. Nonlinear inequalities again cause some appreciable
delay in finding feasible solutions for G8, while a combination
of linear inequalities and nonlinear inequalities introduces some
delay in finding feasible solutions for G7 and G10.

Since finding feasible solutions is independent of the objec-
tive function in the first phase of our algorithm, we can draw
some conclusions about how constraints affect the GA’s ability
in finding feasible solutions.

1) Nonlinear constraints in general introduce more diffi-
culty in finding feasible solutions than linear constraints.
This can be understood by acknowledging that GAs
are stochastic search techniques that work on reinforce-
ment learning based on the fitness values. This fitness
value is a trustable indicator of how far each solution
is from the feasible region when there is a linear map-
ping between the decision variables and the constraints.
However, when the mapping becomes nonlinear, then
the distance between slightly infeasible solutions and
completely feasible solutions in the decision space may
be disproportionate to the differences in the constraint
violation values. Hence, one step toward feasibility in the
constraint space may involve an exhaustive search in the
decision space.

2) The feasibility ratio and the type of constraints combine
together to define the degrees of difficulty in the constraint
satisfaction problem. We know from Table I that G2 and
G4 have a large value and a feasible solution was found
even in the random initial population on all 50 runs in spite
of the fact that nonlinear constraints were present in both

problems. At the same time, even for problems with low
like G1, feasible solutions could be easily found because
the constraints are all linear. G5 involves a combination
of nonlinear constraints and very low and this probably
caused the difficulty in finding feasible solutions. Also,
G6 and G10 which required relatively more generations
to find feasible solutions involve a combination of low
and nonlinear constraints.

In the results for the best values found by the algorithm from
Table III, we see that the algorithm has produced results ex-
tremely close to the optimum value known for all of the 11
test problems. For G1 even though the value of 15.0 could
not be reached accurately, the algorithm consistently produced

14.9999 as the optimal value. In G2, again the optimal value
of 0.8031 found is fairly close to the optimum value of 0.8035.
In addition to reaching the optimum in G3, the algorithm pro-
duces a result closed to the optimum in G4. In G5–G7 and G9,
the best results produced by the algorithm differ in decimal
places from the optimum value. G8 was a very easy problem
and the optimum results were obtained for all 50 runs. In G10,
again the algorithm having produced 7060.55 was quite close to
the 7049.33 optimum, which apparently no GA has reached, as
shown in Table III. The best value for G11 is only better than the
0.75 optimum because of the tolerance in the equality constraint
used. Also, note that the standard deviation over 50 runs for all
the problems other than G5 and G10 is extremely small and the
median is very near the best values obtained. This implies that
the algorithm is robust in obtaining consistent results. Table III
reproduced from [14] compares the best results obtained from
the other algorithms in literature to those obtained with the pro-
posed constraint handling scheme in the last column.

We can see that the algorithm has performed very well for
all of the test problems reaching or obtaining values extremely
near the global optimum. In fact, from the table, it is obvious
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TABLE II
RESULTS USING THE PROPOSED CONSTRAINT HANDLING

TABLE III
COMPARISON OF BEST RESULTS

that stochastic ranking scheme proposed in [34] has produced
the best results known so far for all the test problems. But a
downside to that approach as pointed out in [14] is that for G10
only 6 out of 30 runs produced feasible solutions. In [14], 17
runs out of 20 produced feasible solutions, while our algorithm
produced feasible solutions in all of the 50 runs. We in a way
have tackled the same problem of domination between the ob-
jective function and constraint violation in assigning the fitness
to the individual brought out in [14], but have solved it using
nondominated ranking as opposed to using a probability factor

[34].

The efficiency of each of the above algorithms can be
measured by comparing the number of function evaluations
used by each of the algorithms. The number of function
evaluations in general is equal to the

as each solution is evaluated once
in every generation. The algorithms presented in [14] and
[24] used 1 400 000 function evaluations, while the algorithm
in [34] used 350 000 function evaluations. The algorithm in
[12] used different number of function evaluations based upon
the difficulty of the problem ranging from 50 000 to 350 000.
In comparison, the proposed algorithm herein used 50 000
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function evaluations to produce the results shown in Table II
for all the problems.

VII. CONCLUSION

We have implemented a two-phase GA to solve the con-
strained optimization problem. This algorithm has the advan-
tage of being problem independent and does not rely on any
parameter tuning. The proposed constraint handling scheme
was tested on TCG-2. We assigned various levels of difficulty
based on the number of disconnected components and peaks
in the decision space. We provided the rationale behind using
a nondominated ranking scheme for selecting individuals in
a modified objective space of the objective function plotted
versus the constraint violation. This in addition to the elitist
scheme helps to provide a delicate balance between exploration
and exploitation. The experiment verified that the proposed
algorithm is an efficient design as the number of disconnected
feasible components and the number of peaks increase. We
then extended the tests to the 11 test problems commonly used
in literature. Apart from finding optimal solutions that are
extremely close to the optimum values, the proposed algorithm
also found feasible solutions in every run. We attribute this
to the first phase of the algorithm, where the complete search
effort is devoted to finding feasible solutions.
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