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Abstract The copper removal process (CRP) is an indis-

pensable step for the purification of zinc sulfate solution by

adding powdered zinc to a series of reactors in zinc

hydrometallurgy. The selection of optimal amount of zinc

powder is a complicated task because of the complex

reaction mechanism, resulting in the fluctuation of copper

ion concentration and the waste of zinc powder in the

actual process. In this paper, we formulate a dynamic

optimization problem (DOP) for the control of the zinc

powder in CRP, aiming at reducing production costs and

improving product quality simultaneously. A novel

dynamic optimization method based on the state transition

algorithm (STA) is investigated for solving this problem,

and to improve the performance of STA, an adaptive

strategy is adopted by its transformation operators. Simu-

lation results from some classical DOPs show that the

proposed method can optimize effectively and efficiently.

The proposed approach is successfully applied to solve the

DOP arising in CRP and the simulation results show that

zinc powder consumption is considerably reduced under

the assumption of an acceptable copper ion concentration.

Keywords Copper removal process � Dynamic

optimization � State transition algorithm � Global
optimization

1 Introduction

Zinc is an important nonferrous metal, widely used in

electrical engineering, chemical engineering, automotive

battery and other industries. More than 80% of zinc all over

the world are produced by zinc hydrometallurgy, which is

composed by five steps: roasting, calcine leaching, solution

purification, electrowinning and melting [1, 2]. In the

solution purification process, it is important to remove the

impurities to an acceptable level before electrowinning,

like copper, cobalt, nickel, and cadmium, which will lower

the electrolytic efficiency and reduce the quality of the zinc

ingot. Copper is the major impurity in leaching solution of

zinc hydrometallurgy. Because of copper’s special negative

oxidation potential, the copper removal process (CRP) is

commonly carried out by using zinc additives in the first

stage of solution purification procedure. An appropriate

zinc powder addition needs to be chosen precisely to

ensure an acceptable copper ion concentration in CRP.

Although an excess of amount of zinc powder addition can

make a sharp decrease of copper ion concentration, it may

cause huge waste of zinc powder; meanwhile, inadequate

amount of copper ions can not provide enough activator to

accelerate precipitation of cobalt subsequently. In the real-

world CRP, due to the complex reaction mechanism and

the unavailability of on-line ion concentration measure-

ment, manual operation hardly assures the precision, reli-

ability and stability, leading to problems such as

unqualified outlet copper ion concentration, excessive zinc

powder consumption, and then resulting in low electrolytic

efficiency and fluctuation of the quality of zinc products.

Therefore, it is critical to propose an effective method to

improve productivity, reduce production costs, and opti-

mize the zinc powder addition to ensure an qualified copper

ion concentration with the least zinc powder consumption.
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The optimization problem arising in CRP is a typical

dynamic optimization problem (DOP), whose process

variables and process values keep changing with dynamic

systems which are formulated by mass–energy differential

equations. Generally, DOPs aim to optimize a predefined

performance index for reducing production costs, improv-

ing product quality, meeting safety requirements and

environmental regulations over a time interval [3–5]. The

basic characteristic of DOP is the value determination of a

function at infinite points, namely all points in the control

horizon. This type of problems are really difficult to solve

due to their highly nonlinear, multidimensional, multi-

modal nature, and the presence of constraints on both state

and control variables [6].

Several typical methods has been proposed over the last

two decades. DOPs can be solved either by analytical

methods or numerical methods [7]. Early analytical solu-

tion strategy, known as variational approach, is proposed to

solve classical DOPs under special conditions, and guar-

antees a global solution. However such approach requires

rigorous continuous-differential properties for system

functions and variables, making it not easy to implement.

Alternatively, the numerical methods apply discretization

to convert the original infinite-dimensional problem into a

finite-dimensional nonlinear programming (NLP) problem

directly. Considering the degree of discretization, numeri-

cal methods generally can be categorized as complete

discretization (i.e., it discretizes both sate and control

variables of DOPs) or partial discretization [i.e., it only

discretizes control variables, which is referred as control

vector parameterization (CVP)]. The dynamic optimization

method based on complete discretization inherently gen-

erates a large-scale nonlinear programming problem, and

therefore it requires extra large-scale NLP solvers which

may increase the optimization complexity [8]. On the other

hand, CVP method has been widely used due to their easy

implementation, good computational efficiency [9, 10]. In

this paper, CVP method will be introduced detailedly to

solve the DOPs.

Recently, evolutionary algorithms such as genetic

algorithms (GA) [11], particle swarm optimization (PSO)

[12], differential evolution (DE) [13] and other heuristic

algorithms [14] have been introduced to solve various

optimization problems, found to be robust and more likely

to locate global optimum as compared to traditional opti-

mization methods based on gradient. A stochastic global

optimization algorithm named state transition algorithm

(STA) [15–22] has been applied successfully in various

complex problems and exhibited excellent performance for

solving high-dimensional and nonlinear optimization

problems compared with GA and PSO. The basic STA

takes advantages of the space structure of the objective

function and searches optimal solutions utilizing its special

state transformation operators, whose search space is

mainly determined by their transformation factors. A large

transformation factor may facilitate the global search,

while a small transformation factor can promote the local

search. The strategy with a fixed transformation factor

adopted in the basic STA is not beneficial to the solution

accuracy and only increases redundant calculations in the

later stage of optimization. Therefore, in order to reduce

computational complexity and improve solution accuracy ,

it is necessary to develop adaptive transformation factors to

balance global exploration and local exploitation in STA.

In what follows, the novelty and the contributions of this

paper are summarized: (1) In order to obtain a qualified ion

concentration with the least zinc powder consumption, a

dynamic optimization problem is formulated for the control

of the zinc powder in CRP. (2) An improved state transition

algorithm with adaptive parameters is proposed, and then a

novel dynamic optimization method, CVP–STA, is pro-

posed for solving the DOPs. Simulation results from some

classical DOPs have demonstrated that the proposed

method can optimize effectively and efficiently and

becomes a promising alternative method for solving DOPs.

(3) The proposed approach is successfully applied to solve

the DOP arising in CRP.

The remainder of this paper is organized as follows. In

Sect. 2, the typical industrial CRP is described and ana-

lyzed in detail, and then a mathematical dynamic model for

CRP is constructed based on the interactions among CSTR

models. In Sect. 3, a dynamic optimization problem is

formulated for CRP, where various limitations and speci-

fications are considered. In Sect. 4, a novel dynamic opti-

mization approach based on the improved STA and CVP

method is proposed. Section 5 demonstrates the effective-

ness of proposed method by several typical DOPs, and then

the proposed approach is successfully applied to solve the

DOP arising in CRP. Finally, the conclusion is drawn in

Sect. 6.

2 Process analysis

2.1 Description of the copper removal process

In zinc hydrometallurgy, some impurities like copper,

nickel, cobalt, and cadmium often coexist in the ZnSO4

leaching solution. These impurity metal ions interfere with

the electrowinning process and lead to energy waste and

downgrade in product quality. Generally, purification pro-

cess can be divided into three steps to purify them

gradually.

The copper removal process (CRP) is commonly carried

out in the first stage of purification, not only because

copper is the major impurity in leaching solution of zinc
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hydrometallurgy, but also because it is more negative

oxidation potential than the other impurities. A simplified

schematic of CRP is shown in Fig. 1. In practice, the

ZnSO4 leaching solution needs to flow through two copper

precipitation reactors consecutively, where zinc powder is

delivered individually by weight belts. And then, the

overflowed purified solution is sent to the thickener to

separate clean solution from the precipitate. The super-

natant flows to the following purification stage, while part

of the precipitate is returned to the 1# reactor to accelerate

precipitation reaction.

The copper ion is deposited through two ways in CRP

[23]: The majority of copper ions continuously reacts with

zinc and precipitate as metallic copper according to the

chemical reaction (1):

CuSO4 þ Zn ! ZnSO4 þ Cu # ð1Þ

and part of the copper ions reacts with metallic copper and

precipitate in the form of cuprous oxide in accordance with

the reaction (2):

CuSO4 þ Cuþ H2O ! Cu2O # þH2SO4 ð2Þ

Owning to the complex reaction mechanism and rigorous

requirement of precise control, it is essential to build a

dynamic model to develop a visual and quantitative anal-

ysis for CRP.

2.2 Dynamic model of the CRP

Considering the reactors are very large and the zinc solu-

tion in the reactors is stirred continuously, the copper

precipitation reactors can be regarded as s CSTR system.

Based on the material and mass balance principles, the

dynamic CSTR model can described as follows [24]:

V _CCu2þ;1 ¼ QC0
Cu2þ;1 � ð1þ qÞQCCu2þ;1 � VrCu2þ;1 ð3Þ

V _CCu2þ;2 ¼ ð1þ qÞQC0
Cu2þ;2

� ð1þ qÞQCCu2þ;2 � VrCu2þ;2:
ð4Þ

Here CCu2þ;i and C0
Cu2þ;i

, i ¼ 1; 2 are the outlet concentra-

tions and feed concentrations of copper ions of the ith

reactor, and _CCu2þ;i and rCu2þ;i, i ¼ 1; 2 are the change rate

and reaction rate of copper ions concentration of the ith

reactor. V is the solution volume in each reactor , Q and q is

the inlet flow rate and returned underflow rate of the first

reactor, respectively. Noting that, the outlet impure solu-

tion of the #1 reactor flows into the #2 reaction directly,

namely C0
Cu2þ;2

¼ CCu2þ;1 .

According to the kinetic modeling of the competitive–

consecutive reaction system presented in [25], the reaction

rate of copper ions concentration in CRP can be described

as the following simplified equation:

rCu2þ;1 ¼ ðk1GZn;1 þ k2ÞV�1CCu2þ;1 ð5Þ

rCu2þ;2 ¼ ðk1GZn;2 þ k3ÞV�1CCu2þ;2; ð6Þ

where ki; i ¼ 1; 2; 3 are system parameters, GZn;i; i ¼ 1; 2

are the zinc powder addition rate of the ith reactor.

In the context of CRP, the choice of the zinc powder

addition of two reactors is critical. Therefore, in the

remainder of this paper, we denote the zinc powder addi-

tion rate of two reactors as the control variable, namely

u ¼ ½GZn;1;GZn;2�, and the outlet copper ions concentration

as state variable, which is described as

Fig. 1 A simplified schematic of CRP
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x ¼ ½CCu2þ;1;CCu2þ;2�. As mentioned above, the mathemat-

ical dynamic model of the CRP is rewritten as:

_x1 ¼ V�1½Qx0 � ðQþ qÞx1 � ðk1u1 þ k2Þx1�
_x2 ¼ V�1½ðQþ qÞx1 � ðQþ qÞx2 � ðk1u2 þ k3Þx2�

�
ð7Þ

3 Dynamic optimization problem of the CRP

The dynamic optimization of zinc powder addition is

essential to guarantee a qualified copper ion concentration

and to minimize the zinc powder consumption in the

meanwhile. In this section, we introduce the general for-

mulation of dynamic optimization problem and formulate a

DOP for CRP.

3.1 General formulation of dynamic optimization

problem

Most of the industrial optimization problems are dynamic

in nature. One basic characteristic of such problem is that

the system is modeled by differential–algebraic equation

(DAE) system deriving from the mass and energy balance.

_x ¼ f ðuðtÞ; xðtÞ; tÞ;
xðt0Þ ¼ x0;

�
; ð8Þ

where xðtÞ 2 Rn is a state profile vector, with initial con-

dition x0 and uðtÞ 2 Rm is a control profile vector.

Generally, dynamic optimization in those applications

aims to optimize a predefined performance index like

profitability, product quality, and productivity subject over

a time interval. Therefore, a typical dynamic optimization

problem can be stated as follows:

min
uðtÞ

JðuðtÞÞ ¼ W0ðxðtfÞ; tfÞ þ
Z tf

t0

L0ðuðtÞ; xðtÞ; tÞdt

s:t:

_x ¼ f ðuðtÞ; xðtÞ; tÞ
xðt0Þ ¼ x0

hðtf ; xðt j uÞ; uðtÞÞ� 0

gðt; xðt j uÞ; uðtÞÞ� 0

ul � uðtÞ� uu

t 2 ½t0; tf �

8>>>>>>>><
>>>>>>>>:

;

ð9Þ

where JðuðtÞÞ is the predefined performance index, namely

objective function, basically composed of two parts: The

evaluation function at the final time tf , denoted by W0; and

the cost function, L0, weighting the state path travelled and

the control sequence used. The control variables uðtÞ must

satisfy their bound constraints ul and uu, resulting from

system’s physical limitations. Besides, the boundary con-

ditions and path constraints are denoted by h and g,

respectively. In summary, such dynamic optimization

problem is to find the input u�ðtÞ; t 2 ½t0; tf � that drives the
plant along the trajectory x�ðtÞ; t 2 ½t0; tf � such that the

aforementioned cost function is minimized where the final

time tf is fixed.

3.2 Formulation of the dynamic optimization

problem in CRP

The dynamic optimization in CRP arises a typical dynamic

optimization problem to determine every control point for a

dynamic CSTR system in the control horizon to ensure a

qualified outlet copper ion concentration without incurring

a large amount of control effort.

3.2.1 Objective function

In order to minimize the total zinc powder additive amount,

the dynamic optimization problem in CRP has the fol-

lowing objective:

min
uðtÞ

JðuðtÞÞ ¼
Z tf

t0

u1ðtÞ þ u2ðtÞdt; ð10Þ

3.2.2 Constraints

By adding powdered zinc to a series of reactors, most

copper ions will be precipitated in CRP, while 0.2–0.4 g/L

copper ions need to remain to inhibit precipitation of

cadmium and to accelerate precipitation of cobalt. To

ensure a qualified outlet copper ion concentration, a ter-

minal state constraint must be satisfied; on the other hand,

because of the technical and equipment limitation in an

actual CRP, the path constraint of control must be taken

into consideration.

Therefore, the constraints of the dynamic optimization

problems can formulated as following:

CCu2þ;min � x2ðtfÞ�CCu2þ;max

ulzinc � uðtÞ� uuzinc

(
ð11Þ

What is more, there exists implicit constraints imposed by

dynamic model. During the whole process, the control

variable and process value keep changing in accordance

with the dynamic CSTR system, which is formulated by

mass–energy differential Eq. (7).

3.2.3 The resulting problem formulation

In summary, the dynamic optimization problem of the CRP

can be formulated as follows:
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min
uðtÞ

JðuðtÞÞ ¼
Z tf

t0

u1ðtÞ þ u2ðtÞdt;

s:t:

Dynamic equation ð7Þ
xðt0Þ ¼ ½x1ð0Þ; x2ð0Þ�
CCu2þ;min � x2ðtfÞ�CCu2þ;max

ulzinc � uðtÞ� uuzinc

t 2 ½t0; tf �;

8>>>>>><
>>>>>>:

ð12Þ

where xðt0Þ is the initial condition for the dynamic system

and tf means the effective residence time of solution in

reactors.

Now, such a typical nonlinear dynamic optimization

problem above is really challenging to solve, not only due

to their highly nonlinear and multidimensional nature, but

also due to the presence of terminal and path constraints on

both state and control variables.

4 Proposed dynamic optimization approach

4.1 Control vector parameterization

Control vector parameterization (CVP) method is widely

used for solving dynamic optimization problems involving

differential equation systems or transient processes. Instead

of discreting both state and control variables, the idea of

CVP is to only approximate the control variables by a

linear combination of basis functions so that an infinite-

dimensional control problem can be transformed into a

finite-dimensional nonlinear programming problem, which

subsequently can be solved by a suitable numerical opti-

mization algorithm.

In this section, we introduce a general uniform subin-

terval approximation scheme. Applying this approximation

scheme, the time horizon was evenly partitioned by pre-

fixed time knot tk; k ¼ 0; . . .; n, where n� 1 is the number

of the discrete time intervals, with the knot points

satisfying

t0\t1\t2\ � � �\tn�1\tn ¼ tf ; ð13Þ

Besides, the distance of each time knot is equal, so the

subinterval solely determined by parameter n:

tk ¼ t0 þ k � ðtf � t0Þ=n � k ¼ 0; . . .; n ð14Þ

In terms of the kth subinterval, with the piecewise basis

function, the control trajectory over the entire time span is

approximated as follows:

uðtÞ ¼
Xn
k¼1

dkðtÞukðtÞ; t 2 ½t0; tf �

dkðtÞ ¼
1; t 2 ½tk�1; tk�
0; else

�
; k ¼ 0; . . .; n

ð15Þ

where ½tk�1; tk� is the kth control subinterval, and ukðtÞ is

the approximating control function defined on the kth

subinterval. Note that, the control variables at each time

stage are represented with common basis functions, such as

piecewise-constant function, linear function, quadratic

function or polynomial function [26]. This approximation

scheme is illustrated in Fig. 2.

So far, applying this approximation scheme yields a

finite-dimensional approximation of the original optimal

control problem, and a new cost function has been yield as

below:

min J ¼ W0 xðtfÞ; tfð Þ þ
Xn
k¼1

Z tk

tk�1

L0 ukðtÞ; xðtÞ; t
� �

dt

t 2 ½t0; tf �;
ð16Þ

where control heights and fixed switching knots need to be

chosen optimally.

By designing special algorithms for computing the

gradients of the cost and constraint function, the approxi-

mate problem can be solved using standard gradient-based

optimization techniques. However,the gradient-based

optimization methods are dependent on the gradient

information and easy to get trapped into local minima.

Therefore, a global optimization method based on STA will

be introduced to overcome this limitation.

4.2 Proposed improved STA

4.2.1 The basic STA

State transition algorithm (STA) is a global stochastic

optimization algorithm proposed by Zhou [15], and it has

already shown appealing features as a efficient algorithm

for solving various optimization problems [27–29]. In

STA, a solution to an optimization problem is considered

as a state, and an update of a solution can be treated as a

state transition. As time goes by, the solution will be

transferred to the optimal state gradually by its special

transformation operators. A detailed algorithm procedure

of the basic STA can be seen in [15].

The transformation operators serve to generate a can-

didate solution set, xkþ1, based on the current state xk and

historical states xk�1. Generally, four special state trans-

formation operators are designed [30].

1. Rotation transformation (RT)
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xkþ1 ¼ xk þ a
1

nkxkk2
Rrxk; ð17Þ

where a is a positive constant, called the rotation

factor; Rr 2 Rn�n, is a random matrix with its entries

being uniformly distributed random variables defined

on the interval [- 1, 1], and k�k2 is the 2-norm of a

vector.

2. Translation transformation (TT)

xkþ1 ¼ xk þ bRt

xk � xk�1

kxk � xk�1k2
; ð18Þ

where b is a positive constant, called the translation

factor; Rt 2 R is an uniformly distributed random

variable defined on the interval [0,1].

3. Expansion transformation (ET)

xkþ1 ¼ xk þ cRexk; ð19Þ

where c is a positive constant, called the expansion

factor; Re 2 Rn�n is a random diagonal matrix with its

entries obeying the Gaussian distribution.

4. Axesion transformation (AT)

xkþ1 ¼ xk þ dRaxk; ð20Þ

where d is a positive constant, called the axesion

factor; Ra 2 Rn�n is a random diagonal matrix with its

entries obeying the Gaussian distribution and only one

random position having nonzero value.

4.2.2 The improved STA

State transformation operator is a core body of techniques

that enable STA to make good use of the historical states’

information, to generate satisfactory candidate solutions

and to make better state updates. The transformation factor

in aforementioned operators is critical for the performance

of STA. A large transformation factor enables operators to

search in unexplored areas and facilitate the global search.

At the same time, a small transformation factor promotes

the fine-tuning of a solution in a local region and benefits

local search. To address this issue, an adaptive strategy for

transformation factors is suggested to balance the global

and local search in the proposed STA.

In the basic STA, the rotation factor a is decreasing only

according to the iterations and translation factor b even

remains constant during the whole optimization procedure.

While, in the proposed STA, the transformation factors will

be changed adaptively according to the relative improve-

ment between the last two best objective function values.

An adaptive strategy is adopted as follows: first, a

counter c is defined to count the relative improvements:

c ¼ maxð0; c� 1Þ; if f ðBestkÞ � f ðBestk�1Þ[ s
maxð0; cþ 1Þ; else

�

ð21Þ

where s is a specified tolerance suggested to be 10�4 and

f ðBestkÞ is the objective function value in the kth iteration.

And then a and b are updated according to the following

formula:

aðbÞ ¼
fc� aðbÞ; if c\C1

1

fc
� aðbÞ; if c[C2

aðbÞ; else

8><
>: ; ð22Þ

where C1 and C2 denote the lower and upper threshold

values of the counter, and fc is suggested to be 2. If the

counter is smaller than C1, the factor will be multiplied by

fc to promote global search, and if the counter is larger than

C2, the factor will be divided by fc to promote local search.

In addition to adopt an adaptive parameter strategy, we

remove axesion operation to reduce the computational

complexity of the proposed STA.

The procedures of the proposed method can be descri-

bed as follows:

Step 1: Initialization: Randomly generate an initial

solution Best0 in the feasible solution space. Set

the algorithm parameters, including a ¼ amax,

amin, b ¼ bmax, bmin, c, fc and SE; let k ¼ 0,

c ¼ 0.

Fig. 2 Piecewise control

approximation with equidistant

knot points
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Step 2: Expansion: Generate SE candidate solutions

utilizing the ET operator based on the current

best solution Bestk, then update the current best

solution, and if Bestk has improved, then

implement the TT operator and update Bestk as

described above; otherwise not.

Step 3: Rotation: Generate SE candidate solutions

utilizing the RT operator based on the current

best solution Bestk, then update the current best

solution, and if Bestk has improved, then

implement the TT operator and update Bestk as

described above; otherwise not.

Step 4: Parameter update: The rotation factor a and

translation factor b are updated by Eqs. (21) and

(22).

Step 5: Termination: If a and b exceed the minimum or

maximum values, they are reset to the lower or

upper bound values, accordingly. Let k ¼ k þ 1,

go to step 2 until the specified termination

criterion is met, and Bestk is considered a global

minimizer of the problem.

4.3 Proposed dynamic optimization approach

CVP method constructs an approximated control function

and allows us to estimate the fitness functions in a more

computationally efficient way, and the global optimization

method, STA, provide a global optimal solution of the

resulting NLP avoiding getting trapped in the local optima.

In this section, by integrating CVP with STA, a dynamic

optimization approach named CVP–STA is formed.

Note that a piecewise-constant approximation scheme is

the most commonly used in practice, owning to its sim-

plicity, easy to implement, strong convergence properties

and its versatility at handing non-standard optimal control

problem [10]. In this paper, without loss of generality, we

use piecewise-constant functions to approximate control

variables.

With piecewise-constant basis functions, the control

variables corresponding to the discrete time interval is

approximated as follows:

uðtÞ 	 ukðtÞ ¼ uk;

t 2 ½tk�1; tk�; k ¼ 1; . . .; n;
ð23Þ

where ½tk�1; tk� is the kth control subinterval, and uk is a

constant value for the kth control stage.

According to the approximation scheme presented

above, the approximate problem only involving a finite

number of decision variables has been proposed, with its

optimization variable vector

v ¼ ½u1; . . .; un�; ð24Þ

and only the control parameters need to be chosen opti-

mally. Furthermore, the control intervals number n can also

be taken as decision variables to be optimized. In this

paper, for simplicity, we focus solely on the typical control

parameterizations method in which the number of control

intervals n are fixed.

Based on the specific details of the uniform subinterval

approximation scheme, a flowchart of the proposed method

is given in Fig. 3.

Remark 1 Basically, a heuristic stopping criterion is

formulated based on checking the relative improvement of

the best objective function if

Jk � Jk�D

Jk

����
����� e; ð25Þ

where e is a sufficiently small positive number as the tol-

erance precision for terminating the search process of

problem and D is an appropriate value to designate com-

parison interval.

However, in order to avoid sinking into the iterations for

too long, another stopping criterion is proposed if

iter� MaxIter; ð26Þ

where MaxIter is an appropriate large number which usu-

ally given in advance.

Fig. 3 The flowchart of CVP–STA
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5 Simulation results and discussion

5.1 Example validation

In this section, we present several numerical simulations.

Two typical real-word dynamic optimization problems are

applied to demonstrate the effectiveness and efficiency of

the approach formed for DOPs. For comparison, experi-

ments adopt several recent evolution algorithms such as

real-coded genetic algorithm (GA) [31], artificial bee col-

ony (ABC) algorithm [32], adaptive particle swarm opti-

mization (PSO) [33] and the basic state transition algorithm

(STA) to solve the DOPs. For the sake of fairness and

normalization, all of these calculations are carried on

MATLAB (Version R2016b) software platform using

3.4 GHz Intel i7 PC with 8 G RAM. The built-in routine

‘‘ode45’’ is chosen as ODE integrator, and the same ter-

mination criteria is adopted for all test algorithms as shown

in Remark 1 with D ¼ 20, � ¼ 10�6 and

MaxIter ¼ 100 � Dim, where Dim is the number of vari-

ables. The basic parameters of algorithms are shown in

Table 1, which were recommended in their corresponding

references.

During the test, the control variable is discretized into

n intervals, and each algorithm for different control stages

is run 30 times independently in order to ensure that the

random initial solution does not generate any influence on

the quality of the results obtained. Several common sta-

tistical indexes are employed to evaluate the performance

of these method. Note that time is the average of 30 dif-

ferent runs.

Remark 2 The time complexity for all algorithms is

presented here in brief. The time complexity of the evo-

lutionary algorithm mainly consists of two parts: the search

operators for generating candidate solutions and the cal-

culation of the fitness, and it is generally a function of

population size, problem type and the number of genera-

tions. For GA, the time complexity is OðG� D� mÞ [34].
Here D is the dimension of a problem, G is the maximum

number of iterations, and m is the size of population.

Similarly, for PSO, ABC, the basic STA and the improved

STA, the time complexity are the same, denoted as

OðG� D� mÞ, where G, D, and m implies the same as

those in GA.

5.1.1 Case 1: Plug flow reactor catalyst blend problem

In this problem, the objective is to obtain the optimal

catalyst concentration profile that maximizes the yield of

the intermediate product C for a fixed reactor length where

the reaction A $ B ! C occurs. The model equations

describing the system dynamics of the reactant and product

concentrations are given in [35]. Denoting xA, xB and J as

the mole fractions of the substance A, B and C, the

dynamic optimization problem is described as:

max J ¼ 1� xAðtfÞ � xBðtfÞ

s:t:

_xA ¼ uðk2xB � k1xBÞ
_xB ¼ uðk1xA � k2xBÞ � ð1� uÞk3xB
k1 ¼ 1; k2 ¼ 10; k3 ¼ 1

xAð0Þ ¼ 1; xBð0Þ ¼ 0

0� uðtÞ� 1

tf ¼ 12;

8>>>>>>>><
>>>>>>>>:

ð27Þ

where u is the fraction of catalyst contained in the mixture

need to be chosen optimally.

During the test, the control variable is discretized into

n ¼ 5; 10; 15 intervals, and the results of 30 independent

runs of each algorithm for different control stages are

showed in Table 2, and the optimal control trajectory and

state profiles of this problem obtained by improved STA

are illustrated in Fig. 4.

Table 2 lists a comparison of results for algorithms

using different number of control slots, and the bold

symbol denotes better results. It is obvious that the

Table 1 Basic parameters setting

Algorithm Parameter Value

Improved STA SE 10

Rotation factor range [1e-4, 1]

Translation factor range [0.1, 10]

Expansion factor 1

Lower threshold 4

Upper threshold 9

Basic STA [15] SE 30

Rotation factor range [1e-4, 1]

Translation factor 1

Expansion factor 1

Axesion factor 1

GA [31] Population size 20

Crossover rate 0.95

Tournament size 2

Mutation rate 0.05, 0.1, 0.2

ABC [32] Colony size 30

Food sources number 0.5 9 colony size

Limit 100

PSO [33] Swarm size 30

Inertia range [0.1, 1.1]

Self adjustment weight 1.49

Social adjustment weight 1.49

Minimum neighborhood size 0.25 9 swarm size
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execution time increases with the number of control slots.

For problem 1, all algorithms can find the global optimum

with high precision, while the execution time of the

improved STA is less than the remainders for all control

slots, which indicates the high efficiency of improved STA.

And owning to the adaptive parameters, the improved STA

exhibits excellent global exploration and local exploitation

ability with good mean, best, worst values and the smallest

standard deviation values.

5.1.2 Case 2: Optimization of continuous stirred tank

reactor (CSTR)

Optimization of continuous stirred tank reactor (CSTR) is a

multimodal optimal control problem which has been con-

sidered by Cruz [13]. The nonlinear differential equations

that result from a heat and mass balance governing the

behavior of the process. The dynamic optimization prob-

lem of this problem can be described as follow

min J ¼ x3ðtfÞ

s:t:

_x1 ¼ �ð2þ uÞðx1 þ 0:25Þ þ ðx2 þ 0:5Þe
25x1
x1þ2

_x2 ¼ 0:5� x2 � ðx2 þ 0:5Þe
25x1
x1þ2

_x3 ¼ x21 þ x22 þ 0:1u2

xð0Þ ¼ ½0:09; 0:09; 0�
0� uðtÞ� 5

tf ¼ 0:78;

8>>>>>>>>>><
>>>>>>>>>>:

ð28Þ

where u represents the manipulation of coolant feed flow

need to be chosen optimally. x1 represents the deviation

Table 2 Numerical simulation results for test problems

n Algorithm Best Mean Worst SD Time (s)

Problem 1 (max) 5 Improved STA 0.472599 0.472599 0.472599 1.206484e-09 5.099405

Basic STA [15] 0.472599 0.472599 0.472599 1.149066e-07 7.917762

GA [31] 0.472599 0.472594 0.472530 1.252269e-05 11.116829

ABC [32] 0.472599 0.472599 0.472599 1.117669e-07 5.501882

PSO [33] 0.472599 0.472599 0.472599 8.557214e-09 5.763425

10 Improved STA 0.473630 0.473630 0.473630 9.716912e-08 15.329338

Basic STA [15] 0.473630 0.473628 0.473625 1.294347e-06 17.288272

GA [31] 0.473630 0.473578 0.473441 4.568647e-05 26.030803

ABC [32] 0.473630 0.473630 0.473627 7.013694e-07 19.016008

PSO [33] 0.473630 0.473630 0.473630 1.211241e-07 16.582363

15 Improved STA 0.474531 0.474531 0.474530 1.029255e-07 33.564853

Basic STA [15] 0.474530 0.474528 0.474521 1.712338e-06 38.032976

GA [31] 0.474531 0.474356 0.473995 1.176201e-04 40.849704

ABC [32] 0.474531 0.474530 0.474529 2.843568e-06 46.333104

PSO [33] 0.474531 0.474531 0.474530 1.827999e-07 36.512235

Problem 2 (min) 10 Improved STA 0.137258 0.137258 0.137261 8.909569e-07 20.365621

Basic STA [15] 0.137258 0.137290 0.137385 2.990238e-05 24.974895

GA [31] 0.137259 0.137318 0.137620 1.018687e-04 53.317429

ABC [32] 0.137291 0.137838 0.140144 6.220728e-04 45.113475

PSO [33] 0.137258 0.137332 0.137994 2.244053e-04 20.716706

15 Improved STA 0.134969 0.134970 0.134971 4.285284e-07 44.395781

Basic STA [15] 0.134971 0.135002 0.135079 2.440593e-05 50.962329

GA [31] 0.134969 0.135015 0.135279 8.640548e-05 105.488990

ABC [32] 0.135173 0.136301 0.140907 1.172842e-03 95.618774

PSO [33] 0.134969 0.134995 0.135376 8.205750e-05 49.241551

20 Improved STA 0.134156 0.134156 0.134157 4.002515e-07 75.504284

Basic STA [15] 0.134160 0.134188 0.134299 3.192759e-05 85.426558

GA [31] 0.134157 0.134674 0.138198 9.767036e-04 120.017122

ABC [32] 0.134363 0.135418 0.138694 8.861394e-04 142.202570

PSO [33] 0.134155 0.134219 0.135289 2.532343e-04 81.210973
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from dimensionless steady-state temperature and x2 stands

for the deviation from the dimensionless steady-state con-

centration. In this problem, the objective is to obtain the

optimal cooling fluid control profile u(t) that minimizes the

cumulative change in temperature x1 and concentration x2
without a large amount of coolant usage u.

In this case, the control variable is discretized into n ¼
10; 15; 20 intervals, and the results of 30 independent runs

of each algorithm for different control stages are showed in

Table 2, and the optimal control trajectory and state pro-

files of this problem obtained by improved STA is illus-

trated in Fig. 5.

From Table 2, we can see that the improved STA

exhibits excellent global exploration and local exploitation

ability for problem 2. In terms of the average execution

time, it is clear that for all control slots the improved STA

converges faster than PSO, GA and ABC algorithms, and at

the same time, the improved STA has more accurate and

stable solutions, which are quantified by the standard

deviation and the worst results. Moreover, the mean results

obtained by improved STA are always better than that of

others, which signifies its superior stability and conver-

gence performance. Therefore, adaptive transformation

factors in the improved STA can not only promote the

global exploration, but also improve the solution accuracy

and the stability of the algorithm.
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Fig. 4 Optimal results for problem 1 obtained by the improved STA. a Optimal control trajectory (case 1, n ¼ 15), b optimal state profiles (case

1, n ¼ 15)
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Fig. 5 Optimal results for problem 2 obtained by the improved STA. a Optimal control trajectory (case 2, n ¼ 20), b optimal state profiles (case
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5.2 Industrial numerical experiments

In this section, we use industry data of actual CRP to solve

the dynamic optimization problem with the CVP–STA so

as to verify its validity.

Normally, the solution volume V and solution flow rates

Q and q, having no obvious fluctuation therefore are con-

sidered constant, and the detailed parameters can be found

in [25]. In order to solve such a multi-variable dynamic

optimization problem in CRP, the same control interval is

adopted by two control variables and a penalty function is

used to form their end-point state constrains. The choice of

the number of piecewise interval n becomes an important

issue. A sufficient large n makes the approximate optimal

control trajectory converge to the true optima, while

resulting in the curse of dimensionality and increasing

optimization difficulty. In this paper, n is selected to be 5 to

obtain a satisfactory optima while avoid heavy numerical

calculation.

We first present the results for the case that the final time

tf is taken as 120 min (2 h). Based on the same uniform

piecewise control approximation scheme, detailed com-

parisons of optimization results obtained by the improved

STA, the basic STA, ABC, PSO, and GA have been listed

in Table 3, and the experimental parameters are set the

same with above experiments.

From the results, it is clear that the improved STA

exhibits excellent performance in global search ability and

stability, because the best (556.8070) and mean (601.1436)

results of the improved STA are much better than that of

others. Besides, we can see that the improved STA can

converge to the optima faster as indicated by the average

execution time (56.6795s). Although the standard deviation

of the results obtained by the improved STA is a little big,

the improved STA still has wonderful stability because the

worst result (615.2580) is almost equal to the mean results

obtained by GA, PSO and ABC algorithms. What’s more,

the standard deviation result (11.4147) of the improved

STA is much smaller than that of the basic STA (19.4188),

which indicates its improved local search ability. From

these comparisons, it can be concluded that the improved

STA gets very competitive performance with GA, PSO and

ABC algorithm in solving the DOP of the CRP. The

optimal control trajectory and state profiles of this problem

obtained by the improved STA are illustrated in Fig. 6.

From Table 3 and Fig. 6, we can see that the total

amount ð601:1436
 11:4147 kgÞ of the zinc powder in 2 h

under the dynamic optimization is much lower than the

average amount (737.15 kg) of practical zinc powder used

in real factory. At the same time, by applying the proposed

approach, the oscillation range of the 2# outlet copper ion

Table 3 Numerical simulation

results for CRP
Algorithm n Best Mean Worst SD Time (s)

CRP (min) Improved STA 5 556.8070 601.1436 615.2580 11.4147 56.6795

Basic STA [15] 5 557.6382 611.9231 638.0023 19.4188 59.6975

GA [31] 5 608.4483 614.4963 620.2041 3.1161 69.1452

ABC [32] 5 604.7624 613.8727 624.0807 4.0373 87.3417

PSO [33] 5 611.2100 615.9910 628.4048 3.8831 69.1380
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Fig. 6 Optimal results for DOP of the CRP obtained by the improved STA. a Optimal control trajectory (n ¼ 5), b optimal state profiles (n ¼ 5)
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concentration can be stable near the center of the produc-

tion limitation (0.2–0.4 g/L) without much fluctuation.

6 Conclusion

To further improve productivity and reduce production

costs, the dynamic optimization of zinc powder addition in

the CRP was studied in this paper. Based on a compre-

hensive analysis of CRP, a dynamic optimization problem

is formulated to obtain a qualified ion concentration with

the least zinc powder consumption. As for the complex

DOPs, a dynamic optimization method, named CVP–STA,

has been proposed. In this method, the original infinite-

dimensional DOPs can be successively transformed into a

finite-dimensional NLP by means of CVP method, and a

global meta-heuristic algorithm, STA, is introduced to

solve the resulting NLP. An adaptive parameter strategy is

proposed to improve the performance of STA. Simulation

results on two classical DOPs and industrial applications

have demonstrated that the proposed method can optimize

effectively and efficiently and can be a promising alter-

native method for solving engineering DOPs.
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