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Abstract
Clustering problems widely exist in machine learning, pattern recognition, image analysis and information sciences, etc.
Although many clustering algorithms have been proposed, it is unpractical to find a clustering algorithm suitable for all types
of datasets. Fuzzy c-means (FCM) is one of themost frequently-used fuzzy clustering algorithm for the reason that it is efficient,
straightforward, and easy to implement. However, the traditional FCM taking Euclidean distance as similarity measurement
can not distinguish the intersection between two clusters. Therefore, kernel function has been taken as similarity measurement
to solve this issue. As a comprehensive partition criterion, intuitionistic fuzzy set which consider both membership degree
and non-membership degree has been used to replace traditional fuzzy set to describe the natural attributes of objective
phenomena more delicately. Thus, Kernel intuitionistic fuzzy c-means (KIFCM) has been proposed in this paper to settle
clustering problem. Considering FCM is easily getting trapped in local optima due to its high sensitivity to initial centroid.
State Transition Algorithm (STA) has been adopted in this study to obtain the initial centroid to enhance its stability. The
proposed STA-KIFCM compared with some other clustering algorithms are implemented using five benchmark datasets.
Experimental results not only show that the proposed method is efficient and can reveal encouraging results, but also indicate
that the proposed method can achieve high accuracy.

Keywords Clustering problem · State transition algorithm · Kernel function · Intuitionistic fuzzy set · Fuzzy c-means

1 Introduction

Clustering problems exist in many areas including machine
learning, pattern recognition, image analysis and information
sciences, etc (Sipe 2001; Fouche and Langit 2011; Bastanlar
and Ozuysal 2014). With the growing interest in automati-
cally understanding, processing and summarizing data,many
application domains have employed various clustering algo-
rithms to identify patterns within a dataset. Clustering is
the process of assigning data objects into a set of disjoint
groups called clusters so that objects in each cluster are
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more similar to each other than objects from different clus-
ters. Clustering algorithms work by assigning objects to a
group if they show a high level of similarity and by assign-
ing objects to different groups if they are distinguished from
each other. The common used clustering algorithms can be
broadly classified as Hard and Fuzzy (Hathaway and Bezdek
1995). C-means is one of the most popular hard clustering
algorithms which partition data objects into c clusters, where
the number of clusters, c, is decided in advance according to
application purposes. This model is inappropriate for real
data sets where there are no definite boundaries between
the clusters. Using the distance-based (DB) method can find
the appropriate number of clusters in advance (Davies and
Bouldin 1979). Fuzzy c-means (FCM) is one of themost pop-
ular unsupervised fuzzy clustering algorithm (Wang 1983;
Zhang and Chen 2004). Since FCM is easily implemented
and has obtained satisfactory results in many applications, it
has become an important tool for clustering analysis (Zhou
et al. 2014; Askari et al. 2017). Furthermore, due to the
increasing complexity of the clustering environment and
lack of knowledge about the domain of clustering prob-
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lem in the process of distance measurement under an fuzzy
environment, the kernel-based fuzzy c-means (KFCM) algo-
rithm replaces the Euclidean distance metric which is widely
used in previous literatures with a kernel metric. The kernel
function is applied in order to achieve better mapping for
nonlinear separable datasets. Previous studies have shown
that the KFCM algorithm performs better than the FCM
algorithm. FCM algorithm considers the degree of member-
ship as studied in many literatures (Liu and Xu 2008; Zhang
and Chen 2003; Atanassov and Rangasamy 1986). IFCM not
only thinks about the degree of membership, but also consid-
ers the non-membership of the point in dataset. The IFCM
algorithm can achieve better performance compared with the
FCMalgorithm (Chaira 2011). For example, the intuitionistic
fuzzy c-means (IFCM) algorithm was applied in applica-
tions to medical images in Bezdek et al. (1984). It is more
reasonable to replace fuzzy measurement with intuitionistic
metric. Since kernel intuitionistic fuzzy c-means (KIFCM)
is an extension of both KFCM and IFCM, this study replaces
the Euclidean distance with kernel function and substitutes
the fuzzy measurement with the intuitionistic fuzzy metric.
KIFCM can describe the natural properties of clustering phe-
nomena more delicately and comprehensively (Ghosh and
Dubey 2013). In KIFCM, the goal is to minimize the sum
of distances between data points and their respective parent
cluster centroid, taking into account the similarity between
elements and corresponding clustering center in each cluster.
KIFCM has been widely studied in many literatures because
of the nice recognition performance and robustness (Papa-
georgiou and Iakovidis 2013). Although KIFCM algorithm
appears good performance in fuzzy clustering problems, but
there still exists some revealed deficiency in motivating the
proposal of alternative approaches for fuzzy clustering. Such
as initializationwith randomly generated centers, high proba-
bility of getting trapped into local minima and low accuracy.
Therefore, this study intends to improve the KIFCM algo-
rithm by employing global search optimization algorithm.

Manyglobal optimization algorithms such as genetic algo-
rithm (GA) and particle swarmoptimization (PSO) have been
successfully employed in many clustering applications in
previous literatures (Whitley 1994; Hosseinabadi et al. 2019;
Kuo et al. 2016; Filho et al. 2015;Deng et al. 2019). They aim
to solve optimization problems without being trapped into
local minima. The state transition algorithm is a novel intelli-
gent global search algorithm formany optimization problems
due to its versatility and simplicity (Li et al. 2012; Zhou
et al. 2012; Huang et al. 2018; Zhou et al. 2018; Huang et al.
2018; Zhou et al. 2018). In this paper, STA and KIFCM are
combined together to improve the accuracy and obtain better
clustering centers. Five benchmark datasets are implemented
to compare the proposed method with other methods such as
FCM, IFCM, KFCM and KIFCM. The experimental results
indicate that the proposed hybrid method achieve better per-

formance and realize higher accuracy than other methods.
The novelty and contributions of this paper are listed below:

(i) This study applies the intuitionistic fuzzy set and kernel
function together to settle clustering problems. Using
the intuitionistic fuzzy set can partition clustering data
points reasonably. Taking the kernel function as the dis-
tance metric can distinguish the overlapping clustering
data points accurately.

(ii) This study designs STA to avoid getting trapped into
local optima. STA has good performance both in wide
exploration and deep exploration which is the trade-off
between local and global search.

(iii) Combining STA with the promising KIFCM algorithm
can increase accuracy obviously. Accuracy is the most
important index in evaluating the performance of clus-
tering algorithm in clustering problems. This study
firstly intends to employ STA and KIFCM to manage
clustering problems.

The remainder of this study is organized as follows. Sec-
tion 2 presents the basic theory of FCM algorithm. Section 3
presents the hybridmethod. The experimental results are pre-
sented in Sect. 4. Finally, Sect. 5 concludes this study.

2 Theoretical basis of FCM algorithm

The basic theoretical knowledge necessary for this study are
presented in this section. This section includes two parts.
The first part includes distance-based (DB) c-means algo-
rithm used to determine the number of clusters. Another part
includesKIFCMalgorithmwhich combines the intuitionistic
fuzzy sets and kernel function into the conventional FCM.

2.1 Distance-based c-means algorithm

The conventional clustering algorithm partitions set of n
objects X = {x1, x2, . . . , xn} in Rd dimensional space into
c (2 ≤ c ≤ n) fuzzy clusters with clustering centers
C = {c1, c2, . . . , cc}. Determining the number of clusters
is a significant preliminary study before applying the pro-
posed hybrid method to get the best clustering centers. The
DB c-means algorithm aims to divide the dataset into sev-
eral clusters and calculate the DB index for each cluster. The
best number of clusters can be obtained by taking the ratio
of intra-cluster distance to inter-cluster distances as metric.
If a dataset can be divided into k clusters, the DB value can
be calculated as follows:

DB(k) = 1

k

k∑

i=1

Di (1)
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where Di is defined as below:

Di = max {
i �= j

d̄i + d̄ j

di j
} (2)

here, di j represents the inter-distance which is the distance
between centroid i and j , but d̄i represents the intra-distance
which is the average distance between each point in cluster
i to the centroid of cluster i .

Figure 1 shows the result of evaluating the DB value cor-
responding to 2–10 clusters. It applies c-means algorithm
which begins with a random initial centroid to cluster the
Old Faithful Geyser (OFG) dataset. At each trial,the results
might be different. But the error of evaluation can be reduced
when 20 repetitions are conducted. The result shows that the
smallest DB value is obtained at 3.

2.2 Intuitionistic and kernel FCM algorithm

In this section, the related background necessary for this
study will be introduced. This includes the intuitionistic
fuzzy logic and kernel FCM algorithm.

2.2.1 Intuitionistic fuzzy logic

Fuzzy set theory, proposed by Zadeh, has been successfully
applied in various fields (Zadeh 1999). The theory states that
the degree of membership of an element to a fuzzy set is a
single value between 0 and 1. But in Atanassov’s intuition-
istic fuzzy set, both the degree of membership μ(x) and the
degree of non-membership ν(x) are considered (Zhao et al.
2010). The intuitionistic fuzzy logic can describe the natural
attributes of objective phenomena more delicately and com-
prehensively. In the intuitionistic fuzzy set, an object x ∈ A
consists of the degree ofmembershipμA(x) and the degree of
non-membership νA(x), where μ(x) ∈ [0, 1], ν(x) ∈ [0, 1]
and 0 ≤ μA(x) + νA(x) ≤ 1. If μA(x) = 1 − νA(x),
∀x ∈ A,then A degrades into a fuzzy set. In intuitionis-
tic fuzzy set, there is a hesitation degree πA(x), defined as
below:

πA(x) = 1 − μA(x) − νA(x) (3)

Obviously, πA(x) ∈ [0, 1]. Therefore, the degree of mem-
bership in the IFCM algorithm is calculated as below:

μ∗
i j = μi j + πi j (4)

In this paper,Yager’s intuitionistic fuzzy complement is taken
as the intuitionistic fuzzy complement which can be written
as below:

πi j = 1 − μi j −
(
1 − μα

i j

)1/α
, −1 < α < 0 (5)

whereπi j isYager’s hesitation degree in the IFCMalgorithm.
According to Yager’s intuitionistic fuzzy complement, νi j =
(1− μα

i j )
1/α and πi j = 1− μi j − νi j , we can obtain the Eq.

(5). So μ∗
i j can be obtained as below:

μ∗
i j = 1 −

(
1 − μα

i j

)1/α
, −1 < α < 0 (6)

where α is a parameter in the Yager-generating function. α is
set to−1/2 in this paper, because the test shows a better result
whenα equals to−1/2.μ∗

i j is called theYager’s intuitionistic
membership degree in the IFCM algorithm.

2.2.2 Kernel FCM algorithm

Differing from conventional clustering algorithm, the fuzzy
clustering of objects is described by a fuzzy matrix μ with n
rows and c columns in which n is the number of data objects
and c is the number of clusters. The element μi j which is
the element in i th row and j th column in μ matrix indicates
the degree of membership of the i th object belonging to the
j th cluster. The FCM aims to minimize the sum of distances
between data points and their respective parent cluster cen-
troid as defined as below:

min J =
n∑

i=1

c∑
j=1

[
μi j

]m × di j
(
xi , c j

)

c∑
j=1

μi j = 1, ∀i = 1, 2, . . . , n

s.t. 0 ≤ μi j ≤ 1, ∀i = 1, 2, . . . , n;
∀ j = 1, 2, . . . , c

where the fuzzy parameterm (m > 1) determines the amount
of fuzziness of the resulting clusters.μi j and c j can be calcu-
lated byEqs. (7) and (8), respectively. di j (xi , c j ) = ‖xi−c j‖
is the Euclidian distance from object xi to the clustering cen-
ter c j .

μi j = 1

∑c
k=1

(
di j
dik

) 2
m−1

(7)

c j =
∑n

i=1

[
μi j

]m
xi∑n

i=1

[
μi j

]m (8)

Therefore, in the traditional FCMalgorithm, themembership
degree and the clustering center can be obtained by Eqs. (7)
and (8), respectively.

In the previous FCM algorithm, the distance between
two independent data points x and y is calculated using
Euclidean distance d(x, y) = ‖x − y‖. This is because the
Euclidean distance is the simplest and most used distance
measurement. In this paper, the kernel function works as the
distance measurement to substitute the Euclidean distance
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Fig. 1 DB value for different
clustering numbers with OFG
dataset

measurement (Fan et al. 2009). Defining a nonlinear map as
Φ : x → Φ(x) ∈ F , where x ∈ X . X represents the data
space, and F represents the transformed feature space with
higher or even infinite dimension. The bidimensional kernel
function frequently used are listed as follows:

– Gaussian function

K (x, y) = exp
(
−‖x − y‖2/σ 2

)
, (9)

– Radial basis (RBF) functions

K (x, y) = exp

(
−

∑

i

|xai − yai |b/σ 2

)

(0 < b ≤ 2)

(10)

– Hyper tangent function

K (x, y) = 1 − tanh
(
−‖x − y‖2/σ 2

)
, (11)

where x and y represent two independent data points, σ rep-
resents the standard deviation which can be set in advance.
Obviously, RBF function reduces into Gaussian function
with a = 1 and b = 2. Taking the kernel function as metric
has advantage in distinguishing overlapping data points than
conventional Euclidean distance measurement.

Further improvement is achieved by adding a kernel func-
tion and intuitionistic fuzzy set into the conventional FCM.
The kernel intuitionistic fuzzy c-means (KIFCM) algorithm
maps the data point xi and centroid c j in the kernel space as
∅(xi ) and∅(c j ), respectively. The sum of distances between
data points and their respective parent cluster centroid that

the KIFCM aims to minimize is defined as follows:

min J =
n∑

i=1

∑c
j=1

[
μi j

]m × ‖∅ (xi ) , ∅

(
c j

)2 ‖
c∑

j=1
μi j = 1, ∀i = 1, 2, . . . , n

s.t. 0 ≤ μi j ≤ 1, ∀i = 1, 2, . . . , n;
∀ j = 1, 2, . . . , c

where ‖∅(xi ), ∅(c j )2‖ is the distance between ∅(xi ) and
∅(c j ) measured by kernel function, calculated by using Eq.
(12):

‖∅ (xi ) , ∅

(
c j

)2 ‖ = K (xi , xi ) + K
(
c j .c j

) − 2K
(
xi , c j

)

(12)

where K (x, y) is the kernel function. This paper applies the
Hyper tangent functions as the kernel function. The Hyper
tangent function is defined in Eq. (11). So, the kernel metric
which is taken as the distance measurement can be defined
as Eq. (13):

di j
(
xi , c j

)2 = ‖φ (xi ) − φ
(
c j

)2 ‖ = 2
(
1 − K

(
xi , c j

))

(13)

The formulations used to calculate the degree of member-
ship μi j and clustering center c j are defined as Eqs. (14) and
(15), respectively.

μi j =
(
1/

(
1 − K

(
xi , c j

))) 1
m−1

∑c
k=1 (1/ (1 − (K (xi , ck))))

1
m−1

(14)
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c j =
∑n

i=1

[
μi j

]m
K

(
xi , c j

)
xi∑n

i=1

[
μi j

]m
K

(
xi , c j

) (15)

2.2.3 Kernel intuitionistic FCM algorithm

This study substitutes the Hyper tangent function for the
Euclidean distance measurement as the distance measure-
ment. Based on the intuitionistic fuzzy set, the kernel
intuitionistic FCM algorithmwhich evolves the conventional
fuzzy logic into the intuitionistic fuzzy set can be obtained
(Lin 2014). Themembershipμ∗

i j can be calculated according
to Eq. (16). The new clustering center c∗

j can be calculated
by Eq. (17).

μi j =
(
1/

(
1 − K

(
xi , c j

))) 1
m−1

∑c
k=1 (1/ (1 − (K (xi , ck))))

1
m−1

μ∗
i j = 1 −

(
1 − μ

−1/2
i j

)−2
(16)

c∗
j =

∑n
i=1

[
μ∗
i j

]m
K

(
xi , c j

)
xi

∑n
i=1

[
μ∗
i j

]m
K

(
xi , c j

) (17)

The intuitionistic clustering center can be obtained by Eq.
(17) in IFCM algorithm. The KIFCM algorithm can be
obtained by combining the kernel function and intuitionistic
fuzzy set into FCM algorithm. The KIFCM algorithm can be
stated in Algorithm 1.

Algorithm 1. KIFCM.

Step 1: Set the parameter m and initialize the member-
ship μi j (i = 1, 2, . . . , n; j = 1, 2, . . . , c) matrix.

Step 2: Calculate the clustering center c∗
j ( j =

1, 2, . . . , c) according to Eq. (17).

Step 3: Calculate the distance measurement
‖ø(xi ), ø(c j )2‖(i = 1, 2, . . . , n; j = 1, 2, . . . , c)
using Eqs. (13) and (11).

Step 4: Update and normalizeμ∗
i j (i = 1, 2, . . . , n; j =

1, 2, . . . , c) according to Eq. (16).

Step 5: Go to Step 2 if KIFCM terminating condition
is not met.

When the relative change in the centroid values becomes
small, the KIFCM algorithm is terminated.

3 Hybridmethod with STA and KIFCM

The hybrid method proposed in this paper are included in
this section. The first part of this section is STA which is
a global search optimization algorithm. The second part of
this section is KIFCM which shows a good performance in

clustering problems. KIFCM algorithm which was proposed
firstly in this paper is presented in this section.

3.1 State transition algorithm

STA is a novel intelligent global optimization algorithm pro-
posed by Huang et al. (2019), inspired by the understanding
of temporal and spatial correlation. STA has been widely
used to solve many global search problems (Zhou et al. 2018,
2019; Huang et al. 2019; Zhou et al. 2019a, b; Han et al.
2018). Its heuristic ideas enable itself to search large and
discontinuous search spaces without getting trapped into the
local optima. Based on the current state xk , the unified form
of generation of a new state xk+1 in STA can be described as
follows:

{
xk+1 = Akxk + Bkuk
yk+1 = f (xk+1)

(18)

where xk = [xk1, xk2, . . . , xkn]T stands for a n-dimensional
state, corresponding to a solution of an optimization prob-
lem; uk is a function of xk and historical states. Ak and Bk are
state transition matrices, which are usually some state trans-
formation operators; f (·) is the objective function of fitness
function, and yk+1 is the function value at xk+1. Using state
space transformation for reference, four special state transi-
tion operators are designed to generate continuous solutions
for an optimization problem. The four special state transition
operators can be described as below:

– Rotation transformation

xk+1 = xk + α
1

n‖xk‖2 Rt xk, (19)

where α is a positive constant, called the rotation factor;
Rr ∈ R

n×n , is a random matrix with its entries being
uniformly distributed random variables defined on the
inteval [−1, 1], and ‖ · ‖2 is the 2-norm of a vector. This
rotation transformation has the function of searching in
a hypersphere with the maximal radius α.

– Translation transformation

xk+1 = xk + βRt
xk − xk−1

‖xk − xk−1‖2 , (20)

where β is a positive constant, called the transition fac-
tor; Rt ∈ R is a uniformly distributed random variable
defined on the interval [0, 1]. The translation transforma-
tion has the function of searching along a line from xk−1

to xk at the starting point xk with the maximum length β.
– Expansion transformation

xk+1 = xk + γ Rexk, (21)
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where γ is a positive constant, called the expansion fac-
tor; Re ∈ R

n×n is a random diagonal matrix with its
entries obeying the Gaussian distribution. The expansion
transformation has the function of expanding the entries
in xk to the range of [−∞,+∞], searching in the whole
space.

– Axesion transformation

xk+1 = xk + δRaxk, (22)

where δ is a positive constant, called the axesion factor;
Ra ∈ R

n×n is a random diagonal matrix with its entries
obeying the Gaussian distribution and only one random
position having nonzero value. The axesion transforma-
tion is aiming to search along the axes, strengthening
single dimensional search.

With the state transformation operators, sampling tech-
nique and update strategy, the procedures of the state
transition algorithm can be described in Algorithm 2.

Algorithm 2. STA.

Step 1: Set parameters of STA includingα (αmin ,αmax ),
β, γ , δ, SE and maximum iterative count.

Step 2: Initialize Best and f Best .

Step 3: Generate SE samples by Expansion transfor-
mation on the basis of the current Best and update the
current Best by strategy of greed.

Step 4: Generate SE samples by Rotation transforma-
tion on the basis of the current Best and update the
current Best by strategy of greed.

Step5:Generate SE samples byAxesion transformation
on the basis of the current Best and update the current
Best by strategy of greed.

Step 6: Go to Step 3, if the terminating condition is not
met.

When the current Best needs to be abandoned, Transla-
tion transformation can be taken to update the Best . That
is the update strategy of greed. Generally, the maximum
iteration reached is taken as the terminating condition. In
Algorithm 2, SE is called search enforcement, represent-
ing the times of transformation by a certain operator. The
changeable rotation factor can not only speed up the process
of finding optimal solution, but also increase the accruacy
of the solution. For better understanding of more detailed
steps of STA, the STA toolbox can be downloaded via the
following link:https://www.mathworks.com/matlabcentral/
fileexchange/52498-state-transition-algorithm

Algorithm 3. STA-KIFCM.

Step 1 Set parameters of STA including α, β, γ , δ,
SE and maximum iterative count, input and regularize
dataset of KIFCM.

Step 2 Initialize Best and f Best .

Step 3 STA

Step 3.1 Calculate d and μ∗ using Eqs. (13) and
(16), respectively.

Step 3.2 Calculate μ∗ by Eq. (16) and normalize it.

Step 3.3 Update Best by four operators and f Best
by rule of greed.

Step 3.4 If STA terminating condition is not met, go
to Step 3.3.

Step 4 KIFCM

Step 4.1 Calculate d and μ∗ using Eqs. (13) and
(16), respectively.

Step 4.2 Calculate μ∗ by Eq. (16) and normalize it.

Step 4.3Update the Best using Eq. (17) and f Best .

Step 4.4 If KIFCM terminating condition is not met,
go to Step 4.1.

Step 5 Go to Step 3, if STA-KIFCM terminating con-
dition is not met.

3.2 STA-KIFCM algorithm

Good performance of the KIFCM algorithm has been shown
bymany literatures (Pena et al. 1999). However, the results of
KIFCM is not stable sinceKIFCM is highly dependent on the
initial clustering centers. The searching ability of theKIFCM
algorithm is a local search procedure. Previously, many stud-
ies focus on designing a novel cluster initialization (Babu
and Murty 1993). STA has good performace in generating
heuristic and stochastic initial clustering centers (Zhou et al.
2016). There exist four operators which can generate diverse
candidate clustering centers in STA. After that, KIFCM can
obtain the clustering centers rapidly and reasonably. So,the
hybrid method can generate the optimal clustering centers
accurately. The hybrid method with STA and KIFCM can
not only avoid getting trapped into the local optima, but also
improve the degree of accuracy efficiently. The procedures
of the hybrid method can be stated in Algorithm 3.

Several stopping rules can be used. The terminate con-
dition in the Step 3.4 is the maximum number of iterations
reached. The Step 4.4 is terminated when the relative change
in the degree of membership becomes small. The Step 5 stop
when the objective function cannot be minimized anymore.
Figure 2 shows the total flowchart of the STA-KIFCM.
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4 Experiment results and discussion

This section shows experiments which use five benchmarks
datasets to evaluate the performances of fuzzy clustering
methods. In this section, the comparison algorithms will be
introduced in Sect. 4.1. Then, the experimental setup, results
and discussion are included in the rest of this section.

4.1 Comparison algorithms

In this paper, three evolutionary algorithms are adopted to
generate the initial centroid for KIFCM. Two typical evolu-
tionary algorithms named GA and PSO are used to compare
with STA to overcome a drawback of KIFCM algorithm
which is highly dependent on initial centroid. All the parame-
ters of these algorithms are used as the recommended settings
on their corresponding reference (Kuo et al. 2018). The STA-
KIFCM proposed in this paper has been detailedly described
in Fig. 2. In fact, the function of GA and PSO are similar
to STA in generating the initial centroid for KIFCM. The
main differences between these evolutionary algorithms are
the way of generating candidate solutions and updating opti-
mal solution strategy. The detail descriptions of differences
between GA-KIFCM, PSO-KIFCM and STA-KIFCM are
given as follows.

(1) GA-KIFCM: the way of generating candidate solution
is based on crossover operator and mutation operator.
The strategy of updating optimal solution is the rule of
greedy (Whitley 1994; Hosseinabadi et al. 2019; Kuo
et al. 2018).

(2) PSO-KIFCM: the vector and position updating formula
are adopted to generate candidate solution. The updating
optimal solution can be summarized as learning from the
best particle (Filho et al. 2015; Deng et al. 2019; Kuo
et al. 2018).

In addition, the framework of GA-KIFCM and PSO-KIFCM
are similar to STA-KIFCM which has been illustrated in
Fig. 2. Compared to STA-KIFCM, GA and PSO are adopted
to take the place of STA in GA-KIFCM and PSO-KIFCM,
respectively.

4.2 Experimental setup

Table 3 shows the parameters of PSO-KIFCM and GA-
KIFCM methods which have been set in Kuo et al. (2018).
The parameters are set according to the rule that the number
of evaluating target function are uniform. The preparation for
the experiment are outlined below:

Table 1 Datasets characteristics

Datasets parameter Iris Wine Tae Seed OFG

Number of clusters 3 3 3 6 3

Number of features 4 13 5 9 2

Number of instances 150 178 151 214 272

– Parameters of STA-KIFCM settings

According to previous literatures, this study sets the
weighting exponent m as 2 (Pedrycz and Rai 2008). The
standard deviation σ in kernel function is chosen as

√
2.

The parameters β, γ , δ in STA are chosen as 1 and the
parameter α is decreased linearly from 1 to e−4 over
the course of iterations to facilitate global exploration in
the early stages and exploitation in the latter stages. The
search enforcement (SE) in STA can be chosen as 30,
which means that the number of candidate solutions in
every iteration is 30.

– Datasets description

This part adopts five benchmark clustering datasets
which can be downloaded from the UCI machine learn-
ing repository, with the exception of the Old Faithful
Geyser (OFG) dataset, to evaluate the performance of
the proposed algorithm. So many previous studies have
taken these datasets into various fields including biology,
oncology, education,medicine, chemistry and agriculture
(Michielssen et al. 1992). Table 1 gives a brief overview
of these datasets characteristics.

– Iris dataset was introduced by Fisher (Fisher 1936)
consisting of there species of the Iris flowers (Vir-
ginica, Versicolour and Setosa) includes a total of
150 instances with 4 features (Length and width of
the sepals and petals).

– Wine dataset consisting of wine derived from three
cultivars grown in the same region includes a total
of 178 instances with 13 features (alcohol, malic
acid, ash, alcalinity of ash, magnesium, total phenols,
flavanoids, nonflavanoid phenols, proanthocyanins,
color intensity, hue, OD280/OD315 of dilured wines
and proline).

– Tae dataset consists of evaluations of teaching perfor-
mance over three regular semesters and two summer
semesters of 151 teaching assistant (TA) assign-
ments at the Statistics Department of the University
of Wisconsin-Madison. The scores were divided
into three roughly equal-sized categories (“low”,
“medium”, and “high”) to form the class variable.

– Seed dataset consisting of kernels belonging to three
different varieties of wheat:Kama, Rosa and Cana-
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Fig. 2 The flowchart of the STA-KIFCM method

dian, 70 elements each, randomly selected for the
experiment includes seven geometric parameters of
wheat kernels (area, perimeter, compactness, length
of kernel, asymmetry coefficient, length of kernel
grooves).

– Old Faithful Geyser (OFG) Dataset describe the
waiting time between eruptions and the duration of
the eruption for the Old Faithful geyser in Yellow-
stone National Park, Wyoming, USA (Hutchinson
et al. 1997). 272 observations on 2 variables (erup-

tions numeric eruption time in mins, waiting numeric
waiting time to next eruption) are contained in the
data frame.

– Performance indices

The performance indices are used to evaluate the effec-
tiveness of fuzzy clustering method shown in Table 2.
The performance indices are listed as follows:
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Table 2 The comparison of
results obtained by each
algorithm

Methods Datasets Inter-distance T-consuming Accuracy (%)

FCM Iris 2.6910 0.0182 93

Wine 18.6902 0.0201 90

Tae 19.4265 0.0257 92

Seed 2.0096 0.1164 94

OFG 1.3687 0.0411 64

IFCM Iris 2.8641 0.0185 93

Wine 27.3673 0.0258 94

Tae 31.1523 0.0254 85

Seed 2.6412 0.2078 95

OFG 1.6098 0.0376 59

KFCM Iris 2.2539 1.4142 95

Wine 16.6493 1.4142 99

Tae 16.3404 1.4142 92

Seed 1.5472 1.4142 90

OFG 1.2241 1.4142 61

KIFCM Iris 2.9788 1.4142 95

Wine 26.1836 1.4142 98

Tae 29.0528 1.4142 86

Seed 2.6453 1.4142 85

OFG 1.6765 1.4142 60

PSO-KIFCM Iris 0.0100 19.0313 96

Wine 0.0843 26.5734 99

Tae 0.0099 21.7344 91

Seed 0.1306 87.4375 90

OFG 0.0055 38.5625 90

GA-KIFCM Iris 0.0294 22.1875 97

Wine 0.0703 28.0469 98

Tae 0.1034 22.5938 92

Seed 0.1402 93.4844 96

OFG 0.1013 39.5156 87

STA-KIFCM Iris 0.0100 15.5313 99

Wine 0.0346 20.1833 99

Tae 0.0110 16.7344 95

Seed 0.0452 75.0313 97

OFG 0.0055 36.0625 95

Table 3 Parameter settings for PSO-KIFCM and GA-KIFCMmethods

Methods Factors Parameters

PSO-KIFCM Maximum number of iteration 40

Number of particles 50

c1 0.5

c2 0.5

GA-KIFCM Maximum number of iteration 40

Number of chromosomes 50

Crossover rate 0.85

Mutation rate 0.001

(a) Inter-distance. The sum of distances between data points
and their respective parent cluster centroid, smaller value
of which are desirable and indicate greater compactness
of clustering. The inter-distance can be formulated as
follows:

d =
k∑

i=1

∑

x j∈Si
d ji (x j , ci )

2 (23)

where k represents the number of clustering centers, Si
represents the i th cluster and x j represents the j th point
belonging to cluster Si . d ji (x j , ci )2 represents the dis-
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Fig. 3 The clustering result of
OFG dataset

tance between point x j and ci . In FCM and IFCM, the
Euclidean distance d ji (x j , ci )2 = ‖x j − ci‖ is taking
as the distance measurement. But the kernel function
d ji (x j , ci )2 = ‖φ(x j ), φ(ci )‖ is the distance metric
in KFCM, KIFCM GA-KIFCM PSO-KIFCM and STA-
KIFCM.

(b) Time-consuming. Time complexity is commonly used to
evaluate the rapidity of algorithm. The less time consum-
ing with high validity is desirable.

(c) Accuracy. Each data point in the tested datasets are
labeled according to their membership value for each
cluster. The final cluster label for each data point is
defined as the cluster which has the highest membership
value. The same data point may be labeled differently
under each repetition. The accuracy of algorithm label-
ing is the ratio of the correct labels to total labels.

4.3 Result and discussion

The results of the experiment with five benchmark datasets
are shown in this part. The result of proposed STA-KIFCM
method compared with other methods have been shown in
Table 2. In order to reduce the error and contingency, each
algorithm is executed 100 times. The comparison results indi-
cate that low accuracy has been achieved by FCM, IFCM and
KFCM algorithms with OFG dataset. The reason is so many
points in OFG dataset are overlapped and close with each
other. Original points in OFG dataset have been shown in
Fig. 3. Although FCM and IFCM algorithms cost less time,
they behave lower accuracy than other algorithms. KFCM
and KIFCM algorithm cost almost the same time. Because
they are not very different in programming. The formula-
tion of calculating the degree of membership is the only

difference exists in these two algorithms. High accuracy and
short Inter-distance can be obtained by STA-KIFCM meth-
ods with less time than PSO-KIFCM, GA-KIFCM. Figure 4
displays the comparison result about accuracy. Although the
performance of PSO-KIFCM and GA-KIFCM are similar to
STA-KIFCMunder Iris,Wine andTae datasets, STA-KIFCM
has the highest accuracy in these three datasets. Moreover,
not only does STA-KIFCM perform the highest accuracy but
also the differences between STA-KIFCM and GA-KIFCM,
PSO-KIFCM are obvious under Seed and OFG datasets. So,
we can conclude that STA-KIFCM behaves a better perfor-
mance than PSO-KIFCM and GA-KIFCM under testing all
datasets. In obtaining the optimal initial clustering centroid
for KIFCM, STA achieves the highest accuracy with the low-
est time-consuming under five datasets. It shows that STAhas
excellent performance than GA and PSO in speedability and
optimality when solving the optimization problem in cluster-
ing. Figure 3 obtained by the STA-KIFCM method displays
the clustering result ofOFGdataset. OFGdataset can be clus-
tered into 3 clusters which has been verified in Sect. 2.1. So
many data points in cluster 2 are close with points in cluster
3. It is hard to partition the data in the intersection between
Clusters 2 and 3 by Euclidean distance measurement. And
the intersection between Clusters 2 and 3 can not be easily
distinguished by vision. But STA-KIFCM method can clas-
sify these points graphically and find the accurate clustering
centers exactly. It is easy to distinguish the edge between
cluster 2 and cluster 3.

5 Conclusions

In this paper, we integrate KIFCM with STA to overcome
the shortcomings of the conventional FCM. Using the novel
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Fig. 4 The comparison of accuracy for different methods

intelligent global search algorithm STA to provide a better
initial centroid can improve the results of KIFCM.Determin-
ing the parameters of STA can control the trade-off between
local and global search. If the data points are distributed in a
large area, wide exploration is required. On the other hand, if
the data points are located within a relatively small area, deep
exploitation is needed. STA can prevent the KIFCM algo-
rithms from getting trapped into local optima because it aims
to find the optimal initialized cluster centroid for KIFCM
algorithms. The proposed STA-KIFCM method are evalu-
ated using five well-known clustering datasets and compare
with PSO-KIFCM and GA-KIFCM. Experimental results
over five well-known datasets show that the STA-KIFCM
method is efficient and can reveal very encouraging results in
term of quality of clustering centers found because of the four
operators in STA. The proposed method in this paper have
intrinsic advantages, clusters are more internally homoge-
neous and more diverse from each other, and provide better
partitioning of testing datasets. According to these results,
further study can focus on three main perspectives. The first
is that reducing the time complexity of the hybrid method
should be further considered. The second is applying the
proposed clustering method to solve real-world problems in
industrial process. The third is replacing the kernel func-
tion measurement with different similarity measurements to
study the influence of similarity measurement on KIFCM
clustering results.
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