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Abstract In this paper, a discrete state transition algorithm is introduced to solve
a multiobjective single machine job shop scheduling problem. In the proposed
approach, a non-dominated sort technique is used to select the best from a candidate
state set, and a Pareto archived strategy is adopted to keep all the non-dominated
solutions. Compared with the enumeration and other heuristics, experimental results
have demonstrated the effectiveness of the multiobjective state transition algorithm.
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1 Introduction

The multiobjective optimization is encountered in many real-world applications [1].
For a specific policy, the decision maker may find it advantageous for one goal but
disadvantageous for others. A traditional way to deal with this issue is to impose a
priori preference reflecting the relative importance of different objectives; however,
the final solution just indicates a decision maker’s satisfaction, and it might be
dissatisfactory for other decision makers.

To ameliorate the problem, the concept of Pareto optimality and other relevant
concepts are introduced. These are defined as follows:

(1) Pareto dominance: A feasible solution x D .x1; � � � ; xn/ is said to Pareto
dominate another feasible solution y D .y1; � � � ; yn/, denoted as x � y , if

fi .x/ � fi .y/;8i 2 f1; � � � ; kg; and 9j 2 f1; � � � ; kg; fj .x/ < fj .y/; (1)

where fi .x/ is the i th objective function, k is the number of objectives.
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(2) Pareto optimality: A feasible solution x� is said to be Pareto optimal if and
only if

:9x 2 S;x � x�; (2)

where S is the feasible space.
(3) Pareto optimal set: The Pareto optimal set, denoted as P �, is defined by

P � D fx� 2 S j:9x 2 S;x � x�g: (3)

(4) Pareto front: The Pareto front, denoted as Pf �, is defined by

Pf � D f.f1.x�/; � � � ; fk.x�//jx� 2 P �g: (4)

The introduction of Pareto optimality allows us to find a set of Pareto optimal
solutions simultaneously, independent of the decision maker’s priori preference.

In the past few decades, evolutionary-based and nature-inspired multiobjective
optimization techniques have drawn considerable attention for scheduling problems
[2–7]. In this paper, we introduce a recently new heuristics called state transition
algorithm [8–11] as the basic search engine for the multiobjective optimization.
A non-dominated sort approach is used to select the best from a candidate state set,
and the best state is stored using a Pareto archive strategy. Experimental results have
testified the effectiveness of the proposed algorithm.

2 Problem Description

In the field of joinery manufacturing, jobs with similar materials can be scheduled
together to minimize the amount of materials used; therefore, reducing the cost.

For example, based on the cost savings matrix shown in Table 1, pairing Job1
and Job2 will provide saving in the cost equivalent to 4 units.

Additionally, based on the jobs’ processing times and due dates as shown in
Table 2, and for any given sequence and pair of jobs, not only the total cost saving
C is affected but also the total tardiness time T, which is calculated as:

Table 1 The cost savings matrix for five
jobs having the same material

Job1 Job2 Job3 Job4 Job5

Job1 0 4 2:64 4:08 3:9

Job2 4 0 3:64 4:72 4:23

Job3 2:64 3:64 0 2:65 2:87

Job4 4:08 4:72 2:65 0 3:84

Job5 3:9 4:23 2:87 3:84 0
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Table 2 Due dates and processing times for a set of five jobs

Job Due date (days)a Processing Time (h)

Job1 8 17:40

Job2 2 24:00

Job3 11 19:20

Job4 3 25:00

Job5 3 14:40
aNumber of operational hours = 8 h per day

T D
nX

jD1

maxf0; cj � dj g (5)

where cj and dj are the completion time and the due time of job j , respectively.
The goal of this paper is to determine the optimal sequence with pairing, in order

to maximize the total cost savings and minimize the total tardiness time.
It is obvious that finding the permutation of the sequence f1; 2; � � � ; ng with pair-

ing becomes a solution to the multiobjective single machine scheduling problem;
however, not without the necessity to discuss the number of pairs for any fixed
sequence of jobs.

Given a sequence s D .1; 2; � � � ; n/, for n D 3, we have two possible pairing
options (1-2)-3 and 1-(2-3); for n D 4, we have two possible pairing options
(1-2)-(3-4) and 1-(2-3)-4, as pairing options (1-2)-3-4 and 1-2-(3-4) are discarded;
for n D 5, we have three possible options (1-2)-(3-4)-5, (1-2)-3-(4-5) and 1-(2-3)-
(4-5), as options (1-2)-3-4-5, 1-2-(3-4)-5, 1-2-3-(4-5) and 1-(2-3)-4-5 are discarded.

If P1.n/ denotes the number of pairs with the first two jobs pairing, and P2.n/

denotes the complement of P1.n/, then we have the following theorem:

Theorem 1.

P1.nC 1/ D P.n � 1/; P2.nC 1/ D P1.n/; n � 3 (6)

where P.n/ D P1.n/CP2.n/ is the total number of pairs. For example, P1.2/ D 1;

P2.2/ D 0, P1.3/ D 1; P2.3/ D 1, P1.4/ D 1; P2.4/ D 1, P1.5/ D 2; P2.5/ D 1,
we have P1.4/ D P.2/; P2.4/ D P1.3/, P1.5/ D P.3/; P2.5/ D P1.4/.

Figure 1 shows the growth trend of the number of pairs with the sequence size;
however, only small size job scheduling problems are considered in this study.
Considering that P.10/ D 12 � 10Š D 3;628;800, a complete enumeration
approach is used for pairing and only the permutation of a sequence is focused.
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Fig. 1 Growth trend relative to the sequence size

3 Discrete State Transition Algorithm

In the case a solution to a specific optimization problem is described as a state, then
the transformation to update the solution becomes a state transition. Without loss of
generality, the unified form of discrete state transition algorithm can be described as:

�
xkC1 D Ak.xk/

L
Bk.uk/

ykC1 D f .xkC1/
; (7)

where xk 2 Z n stands for a current state, corresponding to a solution of a specific
optimization problem; uk is a function of xk and historical states; Ak.�/, Bk.�/
are transformation operators, which are usually state transition matrixes;

L
is an

operation, which is admissible to operate on two states; and f is the cost function
or evaluation function.

The following three transformation operators are defined to permute current
solution [10]:

(1) Swap Transformation

xkC1 D A
swap
k .ma/xk; (8)

where A
swap
k 2 R

n�n is the swap transformation matrix, ma is the swap factor,
a constant integer used to control the maximum number of positions to be
exchanged, while the positions are random. Figure 2 shows an example of the
swap transformation with ma D 2.



A Multiobjective State Transition Algorithm for Single Machine Scheduling 83

Fig. 2 Illustration of the swap transformation

Fig. 3 Illustration of the shift transformation

(2) Shift Transformation

xkC1 D A
shif t

k .mb/xk; (9)

where A
shif t

k 2 R
n�n is the shift transformation matrix, mb is the shift factor, a

constant integer used to control the maximum length of consecutive positions to
be shifted. Note that both the selected position to be shifted after and positions
to be shifted are chosen randomly. Figure 3 shows an example of the shift
transformation with mb D 1.

(3) Symmetry Transformation

xkC1 D A
sym

k .mc/xk; (10)

where Asym

k 2 R
n�n is the symmetry transformation matrix, mc is the symmetry

factor, a constant integer used to control the maximum length of subsequent
positions as center. Note that both the component before the subsequent
positions and consecutive positions to be symmetrized are created randomly.
Figure 4 shows an example of the symmetry transformation with mc D 0.

4 Pareto Archived Strategy Based on DSTA

In state transition algorithm, the times of transformation are called search enforce-
ment (SE); as a result, after each transformation operator, a candidate state set S is
generated.
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Fig. 4 Illustration of symmetry transformation

4.1 Non-dominated Sort

We use a sorting approach similar to the fast-non-dominated-sort proposed in [12],
described as follows:

1: for each s 2 S do
2: ns  0

3: for each t 2 S do
4: if t � s then
5: ns  ns C 1

6: end if
7: end for
8: end for

where ns is the domination count, representing the number of solutions dominating
solution s. After the non-dominated sort, the state with the least count will be stored
as incumbent best for the next transformation operator.

4.2 Pareto Archived Strategy

We adopt a simple Pareto archived strategy to select current best as follows:

1: for each Ai 2 A do
2: if best � Ai then
3: A  A � Ai

4: else if Ai � best then
5: A  A
6: else
7: A  A

S
best

8: end if
9: end for

where A is the archive keeping all non-dominated solutions.
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4.3 Pseudocodes of the Proposed Algorithm

The core procedure of the proposed algorithm can be outlined in pseudocodes:

1: repeat
2: State  operator.best; SE; n/

3: best  update_best.best; SE; n; data/

4: Paretoset  update_archive.Paretoset; best/

5: until the maximum number of iterations is met

where State is the state set; operator stands for the three transformation operators,
which are carried out sequentially; update_best is corresponding to the non-
dominated sort, and update_archive corresponds to the Pareto archived strategy.
The data is the known information (cost saving matrix, due dates, and processing
times) about a specific scheduling problem.

5 Experimental Results

In order to test the performance of the proposed multiobjective state transition algo-
rithm, two typical examples are used for comparison. In the following experiments,
SE D 20;ma D 2;mb D 1;mc D 0 are adopted for parameter settings. The
maximum number of iterations for are 100 and 1,000, respectively, for the two
examples. The known data for Example 1, 2 are given in Tables 1 and 2, Tables 3
and 4, respectively, and the corresponding results can be found in Tables 5 and 6.
It is worth noting that the pairing methodology used with complete enumeration
and Cuckoo Search (CS) is based on a greedy approach by first selecting the pair
that produces the highest cost savings, and then repeating the same procedure for
the remaining set of pairs in the sequence [7]. We can find that for Example 1,

Table 3 The cost savings matrix for ten jobs having the same material

Job1 Job2 Job3 Job4 Job5 Job6 Job7 Job8 Job9 Job10

Job1 0 2:73 2:1 2:16 2:66 3:6 2:46 2:7 2:46 2:8

Job2 2:73 0 2 1:6 4:3 3:69 2:3 3:5 2:76 3:6

Job3 2:1 2 0 1:4 3:51 3:33 2:52 3:68 2:52 2:46

Job4 2:16 1:6 1:4 0 2:17 2:32 2:72 3:04 2:04 2:97

Job5 2:66 4:3 3:51 2:17 0 3:6 4:05 4:41 2:7 2:64

Job6 3:6 3:69 3:33 2:32 3:6 0 2:58 4:7 3:44 2:94

Job7 2:46 2:3 2:52 2:72 4:05 2:58 0 2:6 2:88 2:82

Job8 2:7 3:5 3:68 3:04 4:41 4:7 2:6 0 3:64 3:57

Job9 2:46 2:76 2:52 2:04 2:7 3:44 2:88 3:64 0 3:76

Job10 2:8 3:6 2:46 2:97 2:64 2:94 2:82 3:57 3:76 0
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Table 4 Due dates and processing times for a
set of ten jobs

Job Due date (days) Processing time (h)

Job1 11 14:00

Job2 2 18:00

Job3 13 15:00

Job4 14 8:20

Job5 11 17:20

Job6 9 16:00

Job7 4 19:40

Job8 6 23:20

Job9 10 20:00

Job10 10 19:20

Table 5 Comparison results for the set of jobs
presented in Tables 1 and 2

Approach Optimal solutions T C

Complete
Enumeration

(2-5)-(1-4)-3 13 8.31
(5-2)-(1-4)-3 13 8.31
(2-5)-(4-1)-3 13 8.31
(2-4)-(5-1)-3 15 8.62

CS [7] (2-5)-(1-4)-3 13 8.31
(5-2)-(1-4)-3 13 8.31
(2-5)-(4-1)-3 13 8.31
(2-4)-(5-1)-3 15 8.62

STA (5-2)-(1-4)-3 13 8.31
(2-5)-(1-4)-3 13 8.31
(2-5)-(4-1)-3 13 8.31
(5-2)-(4-1)-3 13 8.31
(2-4)-(5-1)-3 15 8.62

STA obtained a solution which can dominate the optimal solutions by enumeration
and CS. From both examples, it is easy to find that some additional optimal solutions
are achieved by STA, as indicated by the bold values.

6 Conclusion

A multiobjective state transition algorithm is presented for a single machine job
shop scheduling problem. In this paper, a complete enumeration approach is used
for pairing the jobs in a fixed sequence. Compared with a greedy-based approach
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Table 6 Comparison results for the set of jobs presented in
Tables 3 and 4

Approach Optimal solutions T C

Complete
Enumeration

(5-7)-(2-6)-(1-3)-(4-10)-(8-9) 39 16.45
(5-7)-(2-6)-(1-3)-(4-8)-(10-9) 40 16.64
(5-7)-(2-6)-(1-3)-(4-8)-(9-10) 40 16.64
(5-7)-(2-6)-(1-4)-(3-8)-(10-9) 41 17.34
(5-7)-(2-6)-(1-4)-(3-8)-(9-10) 41 17.34
(5-2)-(7-4)-(6-1)-(3-8)-(10-9) 43 18.06
(5-2)-(7-4)-(6-1)-(3-8)-(9-10) 43 18.06
(2-5)-(7-4)-(6-1)-(3-8)-(10-9) 43 18.06
(2-5)-(7-4)-(6-1)-(3-8)-(9-10) 43 18.06

CS [7] 2-(7-5)-(6-1)-3-(4-10)-(8-9) 39 14.26
(5-7)-(2-6)-(1-3)-(4-8)-(9-10) 40 16.64
(5-7)-(2-6)-(1-4)-(3-8)-(10-9) 41 17.34
(2-5)-(7-4)-(6-1)-(3-8)-(10-9) 43 18.06
(2-5)-(7-4)-(6-1)-(3-8)-(9-10) 43 18.06
(5-2)-(7-4)-(6-1)-(3-8)-(10-9) 43 18.06

STA (5-7)-(2-6)-(1-3)-(4-10)-(8-9) 39 16.45
(5-7)-(2-6)-(1-3)-(4-10)-(9-8) 39 16.45
(5-7)-(2-6)-(1-3)-(4-8)-(10-9) 40 16.64
(5-7)-(2-6)-(1-3)-(4-8)-(9-10) 40 16.64
(5-7)-(2-6)-(1-4)-(3-8)-(10-9) 41 17.34
(5-7)-(2-6)-(1-4)-(3-8)-(9-10) 41 17.34
(5-2)-(7-4)-(6-1)-(3-8)-(10-9) 43 18.06
(5-2)-(7-4)-(6-1)-(3-8)-(9-10) 43 18.06
(2-5)-(7-4)-(6-1)-(3-8)-(10-9) 43 18.06
(2-5)-(7-4)-(6-1)-(3-8)-(9-10) 43 18.06

used with both the complete enumeration method and the CS, experimental results
show the effectiveness of the proposed algorithm in obtaining the true set of all
Pareto optimal solutions.
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