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Abstract—The copper removal process (CRP) aims to
reduce the copper ion concentration in zinc sulphate solu-
tion to a specific range by zinc addition. The satisfaction
of production constraints and minimization of zinc con-
sumption are vital but difficult to achieve. In this article,
the dynamic optimization for CRP is conducted for optimal
zinc control trajectory design considering constraints at
least cost. First, a dynamic optimization problem with both
state and control constraints is constructed for CRP. Then,
a constrained dynamic optimization method is proposed,
where a wavelet-based control parameterization method
and a smooth penalty method are adopted. Specially, a hy-
brid optimization strategy is proposed to achieve a robust
and efficient optimization performance. Numerical exper-
iments are provided to illustrate the effectiveness of the
proposed method. Results show that the proposed method
can produce not only the optimal control trajectory with
a qualified outlet ion concentration but also the less zinc
consumption.

Index Terms—Control vector parameterization (CVP),
copper removal, dynamic optimization, inequality
constraints, state transition algorithm (STA).

I. INTRODUCTION

PURIFICATION of zinc sulfate solution is indispensable in
zinc hydrometallurgy since the existence of impurity ions,

such as copper, cobalt, and nickel, may cause the problems of
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corrosion, product purity, and work hygiene [1]. As the first stage
of solution purification, copper removal process (CRP) is of
considerable importance, which serves to reduce the copper ion
concentration to a precise range by zinc addition for facilitating
the downstream cobalt removal process [2]. It is difficult for op-
erators to make appropriate operation to meet the strict require-
ments of process output, due to the intricate reaction mechanism
and the offline ion concentration measurement. An extremely
conservative strategy commonly used in practice usually leads to
not only excessive zinc powder consumption but also insufficient
outlet copper ions. In order to find an optimal control trajectory
with less zinc consumption within a qualified ion concentration,
the dynamic optimization of CRP was constructed (see [3] and
the references therein).

The optimization problem arising in CRP can be constructed
to a dynamic optimization problem (DOP), whose objective is to
find a time-varying control trajectory corresponding to reducing
production costs for a given process time. More significantly, the
optimization is performed in the presence of various production
constraints, i.e., the intrinsic constraints imposed by the dynamic
system differential equations, the input constraints dictated by
equipment requirements, and the state-dependent constraints
stemming from safety and operability consideration [4].

It is still a challenge to obtain a high-quality solution of DOPs
efficiently, especially when the problem formulation contains
continuous inequality constraints, for three primary reasons.
First, most constrained DOPs are too much complex to be soluble
analytically [5], and therefore they can only be solved by numeri-
cal method with additional parameterization operation. Second,
the state trajectory subjects to constraints at every time point,
and thus an uncountable number of point constraints need to be
satisfied simultaneously. Third, even for the problem without
constraints, the solution quality obtained by numerical method
is not always satisfactory because such optimization problems
involving dynamic systems arising in industrial process are
usually highly nonlinear, multidimensional, and multimodal [6].

Control vector parameterization (CVP) [7] method is widely
used in numerical method to reduce the original infinite-
dimensional problem to a finite-dimensional nonlinear program-
ming (NLP) problem. It only approximates control trajectory
using a finite number of decision variables, commonly with a
uniform piecewise-constant approximation scheme. However, a
uniform parameterization grid has a dilemma that the solution
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quality is strongly dependent on the parameterization resolution
of the control trajectory. The higher resolution brings more
accurate approximation while takes significantly higher com-
putational cost [8]. Moreover, high-frequency control due to the
high resolution will make it difficult and expensive to implement
in practice. In order to make a tradeoff among approximation,
optimization, and operation, a wavelet-based CVP method based
on adaptive refinement strategy suggested in [9] is adopted in
this article to reflect the optimal control trajectory structure with
less decision parameters.

To deal with the continuous inequality constraint, some ap-
proaches have been studied in the framework of CVP method.
One traditional approach introduces a slack variable to trans-
form original problem with a state inequality constraint into an
unconstrained one of increased dimension [10]. However, it can
only be applied to problems with special structures. Another
method, called exact penalty method, is more versatile and has
been successfully applied to a wide variety of practical problems.
It involves appending the constraint violation to the cost function
as a penalty term and then constructing an unconstrained penalty
problem. Since the exact penalty functions are nondifferentiable,
a smooth technique is introduced to approximate the penalty
operator for facilitating the subsequent optimization [11].

After parameterization and constraint handling, the existence
of suboptimal local minima is still a troublesome problem when
solving DOPs [12]. The characteristics of highly nonlinear,
multidimensional, and multimodal nature make gradient-based
optimization methods struggle to handle [13], which have good
convergence in local search. To address this issue, a stochastic
global optimization algorithm named state transition algorithm
(STA) [14] is introduced, and its excellent global performance
for solving unconstrained DOPs has been reported. Although
STA converges fast in the initial stage, its convergence speed
decreases considerably in later iterations when reaching a near-
optimal solution. In this article, it is desirable to investigate a hy-
brid optimization method that combines the global search ability
of STA and the local search ability of gradient-based method.

In this article, we intend to find a zinc addition trajectory for
a given operating time such that the outlet copper ion concen-
tration can keep in a desirable range at the most economical
cost. The main contributions of this article are summarized as
follows.

1) A DOP is constructed for CRP to find the optimal con-
trol trajectory of zinc addition for a given time, with
considerations of production constraints.

2) A constrained dynamic optimization method is proposed
to solve the DOPs with continuous state constraints, based
on the wavelet-based CVP method and smooth penalty
method. Specially, a hybrid optimization strategy, which
combines STA and gradient-based method, is investigated
to obtain a robust and efficient optimization performance.

3) The proposed method is successfully applied to solve
the constrained DOP arising in CRP. The dynamic
optimization framework of CRP is shown in Fig. 1.

The remainder of this article is organized as follows.
In Section II, after process analysis and modeling, a DOP
with inequality constraints is constructed for CRP. In Section

Fig. 1. Dynamic optimization of CRP.

Fig. 2. Schematic diagram of the CRP.

III, a dynamic optimization method is proposed for solving
constrained DOPs. Section IV demonstrates the effectiveness of
the proposed method. Finally, Section V concludes this article.

II. DOP OF CRP

A. Process Description and Modeling

In CRP, the separation of copper from the leaching ZnSO4

solution is carried out with two cascaded reactors, as shown in
Fig. 2. It is observed that the leaching solution is fed into two re-
actors continuously and then sent to a thickener for solid–liquid
separation. The first reactor acts as main reactor responsible for
the deposition of most of copper ions, whereas the second reactor
serves as auxiliary for fine-tuning the outlet concentration. Zinc
serves as the cementation agent due to its strong reductive ability.
A set of reactions take place inside two cascaded reactors, and
the chemical reactions are given as follows:

CuSO4 + Zn → ZnSO4 +Cu ↓ (1)

CuSO4 +Cu + H2O → Cu2O ↓ +H2SO4. (2)

The majority of copper ions react with zinc and precipitate
as metallic copper. A portion of the deposited metallic copper
further undergo comproportionation with ionic copper and form
cuprous oxide precipitate.

In practice, the reactor is a typical continuously stirred tank
reactor. On the basis of the principle of material and mass
balance, the dynamic model of CRP can be described by the
following differential equations:

V ĊCu2+,1 = QC in
Cu2+,1 − (Q+ q)CCu2+,1

− V rCu2+,1 (3)

V ĊCu2+,2 = (Q+ q)C in
Cu2+,2

− (Q+ q)CCu2+,2 − V rCu2+,2 (4)

Authorized licensed use limited to: Central South University. Downloaded on September 29,2020 at 14:50:52 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: DYNAMIC OPTIMIZATION FOR COPPER REMOVAL PROCESS WITH CONTINUOUS PRODUCTION CONSTRAINTS 7257

where C in
Cu2+,i

, i = 1, 2, and CCu2+,i, i = 1, 2, are the inlet

and outlet concentrations of copper ions, respectively. ĊCu2+,i,
i = 1, 2, is the respective change rate of copper ions concen-
tration in ith reactor. V is the active volume of reactor. Q and
q are the inlet solution flow rate and returned underflow rate.
In particular, based on the kinetic modeling of the competitive–
consecutive reaction, the sedimentation rate of copper ions of
the ith reactor in CRP, rCu2+,i, i = 1, 2, can be modeled by the
following equations:

rCu2+,1 = (k1GZn,1 + k2)V
−1CCu2+,1 (5)

rCu2+,2 = (k1GZn,2 + k3)V
−1CCu2+,2 (6)

where ki, i = 1, 2, 3, denotes kinetic parameters; and GZn,i,
i = 1, 2, denotes the zinc powder addition rate of the ith reactor.

For the sake of simplicity, the dynamic model of the CRP can
be rewritten as follows:

ẋ = A1x+A2x
in + φ(x,u) = F (u(t),x(t), t) (7)

A1 =

[
−V −1(Q+ q) 0

0 −V −1(Q+ q)

]

A2 =

[
V −1Q 0

0 V −1(Q+ q)

]

φ(x,u) =

[
−V −1(k1u1 + k2)x1)

−V −1(k1u1 + k3)x2)

]
where we denote zinc powder addition rate as control vector
u = [GZn,1, GZn,2], the outlet copper ions concentration as
state vector x = [CCu2+,1, CCu2+,2], and the inlet copper ions
concentration as xin = [C in

Cu2+,1, C
in
Cu2+,2]. Note that the inlet

reactant concentration of the #2 reactor is the outlet reactant
concentration of the #1 reactor, namely C in

Cu2+,2 = CCu2+,1.

B. Production Constraints

1) Input Constraints: The addition rates of zinc powder are
the input variables of dynamic system in CRP. Here, we consider
the input constraints that imposed by actuator limitations

umin
i ≤ GZn,i = ui(t) ≤ umax

i , i = 1, 2 (8)

where umin
i and umax

i are the allowed minimum and maximum
rate of zinc powder to be added to the ith reactor.

2) Production Constraints: For facilitating further down-
stream processing, outlet copper ion concentration of CRP
needs to be reduced to a certain range precisely. Therefore, the
state constraint of outlet copper ion concentration of #2 reactor
CCu2+,2 must be satisfied as follows:

Cmin ≤ CCu2+,2 = x2(t) ≤ Cmax (9)

where Cmin and Cmax are the lower and upper bound.
3) Stability Constraints: In CRP, the separation of copper is

carried out with two cascaded reactors gradually. Most of copper
ions are precipitated in the first reactor, and the second reactor
serves as auxiliary for fine-tuning. For better operation and stable
production, copper removal rateRCu2+,1 of the #1 reactor (main

TABLE I
OPERATING CONDITIONS FOR CRP (OVER 90 DAYS)

reactor) should also meet the following constraint:

Rmin ≤ RCu2+,1 =
xin

1 − x1(t)

xin
1

≤ Rmax (10)

where Rmin and Rmax are the lower and upper bound, and xin
1

denotes the inlet copper ions concentration of #1 reactor, so as
to avoid the phenomenon of overreaction or insufficient reaction
in the main reactor.

After three months of process observation and data collection,
the process characteristic of the CRP can be shown in Table I.

C. DOP of CRP

After process analysis and modeling, a DOP of CRP can
be described. The objective is to minimize the zinc addition
consumption during the given time. The control variables are
the feed rates of zinc addition in two stirred reactors. Since the
reactions aim to precipitate the impurity copper, state variable
path constraints must be imposed on the outlet copper ion con-
centration to keep it within a certain range throughout the entire
process. Moreover, for better operation and stable production,
the percentage of the removed copper of the main reactor should
also meet the path constraint.

In summary, the DOP with continuous inequality constraints
of CRP can be formulated as follows:

min
u(t)

J(u(t)) =

∫ tf

t0

(u1(t) + u2(t))dt (11a)

s.t. ẋ = F (u(t),x(t), t) (11b)

x(t0) = [x1(t0), x2(t0)] (11c)

x2(t)− Cmax ≤ 0 (11d)

Cmin − x2(t) ≤ 0 (11e)

(xin
1 − x1(t))−Rmax · xin

1 ≤ 0 (11f)

Rmin · xin
1 − (xin

1 − x1(t)) ≤ 0 (11g)

umin
i ≤ ui(t) ≤ umax

i , i = 1, 2 (11h)

t ∈ [t0, tf ] (11i)

where F is the differential algebraic equation constraint (7),
describing the nonlinear dynamic process, u(t) denotes the
control variable and x(t) is the state variable, x(t0) is the initial
state of the dynamic system at time t0, and tf is the final time; the
objective function (11a) denotes the zinc addition consumption.
The inequality path constraints (11d)–(11g), namely production
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Fig. 3. Flowchart of the proposed method.

constraints (9) and (10), can be unified as follows:

gi(x(t)) ≤ 0, i = 1, 2, 3, 4. (12)

The optimization problem of CRP is a typical DOP with
high nonlinearity, multidimensional, multimodal nature. Solv-
ing such kind of problem efficiently and accurately remains an
issue, especially with the presence of constraints on both state
and control. In the following section, a constrained dynamic opti-
mization method is proposed to solve the DOPs with continuous
inequality constraints.

III. PROPOSED CONSTRAINED DYNAMIC

OPTIMIZATION METHOD

The proposed constrained dynamic optimization approach
consists of three essential parts. First, a wavelet-based CVP
method is investigated to reduce the original problem to a
finite-dimensional NLP problem. Second, a smooth penalty
function method is suggested to address the continuous equality
constraints. Third, a hybrid optimization strategy based on STA
is proposed to solve the resulting unconstrained NLP problem
robustly and efficiently. The whole framework of the proposed
constrained dynamic optimization method is shown in Fig. 3.

A. Wavelet-Based CVP

With a prescribed parameterization scheme, usually a uniform
piecewise-constant one, the original DOP can be approximated
by a finite-dimensional NLP problem, and then solved by opti-
mization algorithm. However, parameterizing the control vari-
able uniformly always creates a serious flaw. A coarse resolution
always leads to a poor approximation, whereas a fine resolution
always brings overparameterization, which puts a great chal-
lenge not only in the subsequent optimization but also in the
implementation. Focus on above issues, a wavelet-based CVP
suggested in [9] is adopted to generate a nonuniform parameter-
ization scheme, which can assign appropriate resolution locally.

Fig. 4. Illustration of wavelet-based adaptive refinement.

The wavelet-based CVP begins with a rough uniform pa-
rameterization scheme Ω0. Applying this scheme, the con-
trol time horizon will be partitioned by a series of time knot
tp, p = 0, . . ., N , whereN ≥ 1 is the number of the subintervals,
with the knot points satisfying t0 < · · · < tp < · · · < tN = tf .
Then, the control trajectory over the entire time span can be
approximated as follows:

u(t) ≈ ũ(t) =

N∑
p=1

δp(t)ξp, t ∈ [t0, tf ]

δp(t) =

{
1, t ∈ [tp−1, tp],

0, else
p = 0, . . ., N

where [tp−1, tp] is the pth control subinterval and ξp is the
constant control value defined on the pth subinterval. So far,
an optimal parameter selection problem has been yield, where
the control values ξξξ = [ξ1, ξ2, . . ., ξN ] are the decision variables
for the optimization.

As the optimal solution ξξξ∗ under coarse parameterization
grid Ω0 is obtained, a wavelet-based refinement of time grid
turns ON. During the refinement process, the control trajectory
ũ(t) denoted by ξξξ∗ is treated as a signal varying with time.
The wavelet coefficients dj,k of ũ(t) can be obtained through
the fast wavelet transformation [15] with Haar basis. Here, j
denotes the scale that responds to the level of resolution, and k
denotes the translation index. Note that small coefficient, i.e.,
|dj,k| ≤ εd, implies that it only leads to a small change in the
approximated ũ(t), and thus the grid point here can be deleted for
the subsequent optimization. On the other hand, large wavelet
coefficient, i.e., |dj,k| > εd, means that a grid point insertion
should be carried out here on a higher scale to approximate
the strong variation. Here, the threshold εd is a user-specified
parameter depending on the range of control values.

The main idea of this refinement strategy is to insert and delete
the control grid point iteratively, by performing wavelet analysis
on the previous generation’s optimal solution. An example is
shown in Fig. 4 to illustrate the wavelet-based grid refinement
process. It can be seen that the lth optimal solution ξ∗l with
a rough grid Ωl is analyzed, the grid point with small wavelet
coefficient has been deleted (marked by red “× ”), and four grid
points (marked by red “ + ”) have been inserted in scale j = 3.
Thus, a refined grid Ωl+1 is obtained for (l + 1)th generation
optimization.
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Fig. 5. Approximation property of S(y, α).

Based on the wavelet-based CVP method, the original DOP
is approximated by a sequence of optimal parameter selection
problems with continuous state inequality constraints. In the
following section, a smooth penalty method is adopted to handle
the continuous constraints.

B. Smooth Penalty Method

The exact penalty function methods have been widely used
for solving constrained optimization problems. After control
parameterization, by appending the constraint violations to the
cost function through a classic l1 penalty function, a modified
cost function is yield

J1(ξξξ) = J(ξξξ) + ρ

∫ tf

t0

m∑
i=1

max{gi(x(t)), 0}dt (13)

where m is the number of the constraints, ρ > 0 is a penalty pa-
rameter, and control values ξξξ = [ξ1, ξ2, . . ., ξN ] are the decision
variables. However, it is noted that the penalty function max{·, 0}
is not differentiable at boundary point xwhere gi(x) = 0, which
makes the gradient-based optimization struggle to handle. In
order to address this issue, a smooth function [11] is introduced
to approximate the nonsmooth max penalty function

S(y, α) =
1
2

[√
y2 + 4α2 + y

]
(14)

where y = gi(x(t)), and α is a small positive number called
smoothing parameter. The approximation property is shown in
Fig. 5 and described as following formulas:

lim
α→0+

S(y, α) = max{y, 0} (15)

0 < S(y, α)−max{y, 0} ≤ α. (16)

From Fig. 5, it is obvious that there exists a width-varying gap
between S(y, α) and max{y, 0}, and the maximum difference
occurs at y = 0, where constraint is active.

So far, an unconstrained smooth penalty problem has been
yield as follows:

J2(ξξξ) = J(ξξξ) + ρ

∫ tf

t0

m∑
i=1

S{gi(x(t)), α)}dt. (17)

The smoothing factor α plays a critical role to adjust the ap-
proximation level. In order to obtain satisfied smoothing effect,
the smoothing factor α needs to be large, whereas for pursuing
an exact approximation, α should be set as small as possible.
In other word, it facilitates the optimization at the expense of
high approximate accuracy. In order to balance approximation
accuracy and smoothness gradually, α is tend to be small and ρ
is tend to be quite large as the iterations goes by. For the sake of
computational efficiency, α and ρ will be changed at the same
time in next iteration optimization as α∗ = dα and ρ∗ = ρ/d,
where 0 < d < 1 is a specified decrease factor. Note that min-
imizing smooth penalty problem (17) will force the constraint
violation to be small enough as ρ → ∞, and an approximate
optimal solution of original constrained NLP problem can be
obtained with sufficient accuracy as α → 0.

After parameterization and constraint handling, a sequence
of unconstrained NLP problems is yield. In the following sec-
tion, a hybrid optimization strategy is proposed to solve above
problems effectively and efficiently.

C. Hybrid Gradient STA

1) Basic STA: STA is a global stochastic optimization algo-
rithm, which has already exhibited excellent global search ability
for solving various multimodal problems. Therefore, STA has
potential advantages to solve above nonconvex NLP problems.
In STA, a solution to an optimization problem is considered
as a state, and the update of solutions can be treated as state
transition. As generation goes by, the solution will be transferred
to the optimal state by its special transformation operators,
such as rotation, translation, expansion, and axesion. A unified
framework for state transformation can be described as follows:{

xk+1 = Akxk +Bkuk

yk+1 = f(xk+1)

where xk ∈ 
n stands for an n-dimensional solution; uk is a
function ofxk and historical solutions;Ak andBk are state tran-
sition matrices, which can denote different state transformation
operators; f(·) is the fitness function; and yk+1 is the fitness of
state xk+1.

2) HGSTA: Although STA has shown excellent global search
performance, one of the interesting empirical observations we
often observe is that the incremental improvement of such
metaheuristic optimization methods decreases rapidly as the
iterations goes by. In the other words, a significantly increased
computation can only bring minor improvements of objective
function as current optima near the global optima. Meanwhile,
it is known that the gradient-based algorithms can find a local
optima rapidly and accurately, owning to the utilization of gradi-
ent direction. Therefore, in order to accelerate the convergence
speed in the local search phase, a hybrid optimization algo-
rithm, named HGSTA, which combines STA and gradient-based
method, is proposed.

HGSTA is a hybrid optimization algorithm. In the first phase,
STA is used to be responsible for the global search, aiming to
provide a good starting point for next phase. The second phase is
fine-tuning, a gradient-based method is adopted to enhance the
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Algorithm 1: Pseudocode of the Proposed Constrained
Dynamic Optimization Method.

1: Initialize refinement iteration l = 0, j = j0, N = 2j0 ;
2: Obtain the initial rough uniform parameterization gird

Ω0;
3: Initialize N -dimensional solution ξξξ0 randomly;
4: while Stopping criterion I is not met do
5: Set smooth penalty iteration n = 0, α = α0, ρ = ρ0;
6: Transform constrained DOP to constrained NLP

problem under gird Ωl;
7: Transform constrained NLP problem to

unconstrained one (17) by smooth penalty function;
8: Obtain the optimal solution of (17) by STA;
9: while Stopping criterion II is not met do

10: Obtain the optimal solution ξξξ∗l of (17) by SQP;
11: Let α = dα, ρ = ρ/d;
12: Transform constrained NLP problem to

unconstrained one (17) by smooth penalty
function;

13: end while
14: Let l = l + 1, j = j + 1;
15: Obtain the new grid Ωl in scale j with ξξξ∗l−1;
16: end while

local search ability. There are various gradient-based algorithms
and here we use the sequential quadratic programming (SQP)
method for its better behavior [16].

From Fig. 3, it is worth noting that, as the control grid has
been fixed in each generation, STA solves the unconstrained
NLP problem with initial smooth and penalty factors to locate
the optimal solution roughly. Once a near-optimal solution has
been obtained, a more accurate global optima can be found based
on SQP and the iterative smoothing and penalty.

D. Proposed Constrained Dynamic Optimization
Method Procedure

The pseudocode of the proposed constrained dynamic opti-
mization method can be seen in Algorithm 1. It can be seen
that solution accuracy can be improved by not only the iterative
penalty function approximation process in the inner loop but also
the iterative grid refinement process in the outer loop. Therefore,
the robustness, efficiency, and precision can be balanced by
iteration. Note that all iterative optimizations of refinement are
warm-starting.

For stopping criterion I, it will be triggered by any of the two
conditions (18) and (19), which are formulated as follows:∣∣∣∣Jl − Jl−1

Jl−1

∣∣∣∣ ≤ εs (18)

j > j (19)

where εs is a stopping tolerance, l denotes the refinement itera-
tions, and j is the maximum scale. Equation (18) denotes little
relative improvement of J . It implies that a higher resolution of
the control profile cannot bring a corresponding improvement

of approximation accuracy, and thus it is time to shut down
the iterative refinement. The maximum scale j aims to limit
the minimum operation time of each control value, because
high-frequency control stemming from high solution will make
it difficult and expensive to implement in practice.

For stopping criterion II, two conditions (20) and (21) have
been taken into consideration, which are designed as follows:∣∣∣∣Jn − Jn−1

Jn−1

∣∣∣∣ ≤ εs (20)

n > n (21)

where n denotes the smooth penalty iterations, and n is the max-
imum smooth penalty iteration. The little relative improvement
of J between two iterations indicates that the smooth penalty
function fits the original constrained optimization problem well.
The maximum smooth penalty iteration n is designed to avoid
sinking into the iterations for too long.

IV. EXPERIMENTS AND DISCUSSION

In this section, in order to illustrate the efficiency of the
proposed constrained dynamic optimization method, two cases
of experiments are conducted: 1) a typical constrained DOP
named Jacobson&Lele (J&L) problem and 2) the constrained
DOP arising from CRP. All calculations are carried on MATLAB
(version R2017b) software platform using 3.4 GHz Intel i7 PC
with 8 GB RAM. Initial parameters, such as α0, ρ0, and d, are
selected as 2.5 × 10−5, 1, and 0.1. Termination parameters, such
as εs and n, are set to 1 × 10−5 and 4. The initial and maxi-
mum scales are user specified depending on problem. Parameter
settings in STA can be found in [14].

A. Case I: Typical Industrial Problem

The J&L problem is a typical industrial DOP proposed in [10].
This problem has a path state constraint, and its mathematics
model can be described as follows:

min
u(t)

J = x3(tf )

s.t. ẋ1 = x2

ẋ2 = x2 + u

ẋ3 = x2
1 + x2

2 + 0.005 u2

x1 − 8(t− 0.5)2 + 0.5 ≤ 0

x(0) = [0,−1, 0]T

− 4 ≤ u ≤ 15

t0 = 0, tf = 1.

The computational statistics for each generations are shown
in Table II, where l denotes refinement iteration, j denotes scale,
N denotes subinterval number, and G =

∑m
i=0 max{gi, 0}. The

initial number j0 and maximum scale number j are selected as
3 and 6, respectively.

During the test, the control variable is first discretized into
eight equidistant intervals. After four refinements, the solution is
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TABLE II
ITERATIVE REFINEMENT PROCESS OF THE PROPOSED

CONSTRAINED DYNAMIC OPTIMIZATION METHOD

TABLE III
COMPARISON RESULTS OF CASE I

successively refined. Singular arcs are approximated with higher
solution and flatness is merged, so that a desired approximation
quality can be obtained with less discretization parameters.
Besides, there is no violation of the path constraints because
G = 0 at the end of each inner penalty generation.

Comparison results are shown in Table III. First, it can be
seen that the optimization results of HGSTA are better than STA,
which denotes hybrid optimization has better local optimization
ability. Second, the result from the proposed method is in agree-
ment with the results from the previous literatures, which verifies
the validity of the results. Our result 0.7384 is better than 0.7485
obtained by improved CVP (ICVP) in [17], and much better than
0.79 obtained by orthogonal collocation in [18]. We can use only
26 control subintervals to obtain a satisfactory solution accuracy.
The optimal control trajectory and state profiles of this problem
obtained by the proposed approach are illustrated in Fig. 6. From
Fig. 6(b), it can be seen thatx1 is below its upper bound all along,
which denotes the satisfaction of the path state constraint.

B. Case II: Industrial Experiment of CRP

Here, the proposed constrained dynamic optimization method
is applied to solve the DOP (11) arising in CRP, so that an optimal
operation trajectory of zinc powder addition can be obtained to
precipitate copper ions into desirable concentration range with
less zinc consumption. Three-month-long industry data of actual
CRP were collected so as to verify the proposed approach’s
efficiency and robustness.

CRP is a part of the long process industry of zinc hydromet-
allurgy. The inlet or outlet copper ion concentration can only
be measured every 2 h in the actual CRP, which is the key
indicator of the working condition. In addition, according to the
observation, the solution volumeV and solution flow ratesQ and
q have no obvious fluctuation in 2 h. Therefore, we take 2 h as the

Fig. 6. Optimal results of Case I. (a) Optimal control trajectory.
(b) Optimal state profiles.

TABLE IV
OPERATING CONDITIONS FOR CRP (OVER 2 h)

optimization interval, namely t0 = 0 and tf = 2, where V , Q,
and q remain constant. The dynamic optimization of CRP can be
scheduled for every 2 h, or if there is a significant discrepancy,
new dynamic optimization results will be recomputed based on
the current working conditions and used for the next 2 h.

A dynamic optimization of 2 h is carried out and the working
condition in t0 is shown in Table IV. Note that the #2 outlet
copper ion concentration CCu2+,2 is the key variable, which
should be controlled in 0.2–0.4 g/L rigorously. Since a critical
operation is unreliable in industrial practice under uncertainty, a
back-off of 0.05 is highly desirable such that CCu2+,2 is subject
to 0.25–0.35 g/L in this optimization.

The computational statistics for each generations are shown
in Table V, where N1 and N2 are the subinterval number of u1

and u2. The initial number j0 is selected as 2, and the maximum
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TABLE V
ITERATIVE REFINEMENT PROCESS OF THE PROPOSED

CONSTRAINED DYNAMIC OPTIMIZATION METHOD

Fig. 7. Optimal results of Case II. (a) Optimal control trajectory.
(b) Optimal state profiles.

scale is set to 4 because each zinc powder addition rate should
remain 7 min at least. During the test, the control variable is
first discretized into four equidistant intervals. Faced with such
a multivariable DOP, control variables u1 and u2 are refined
iteratively and respectively. The optimal control trajectory and
state profiles of CRP obtained by the proposed method are
illustrated in Fig. 7.

Comparison results are shown in Table VI. We can see that
the proposed method with HGSTA optimization has better local
search performance than STA. The total zinc dust consumption

TABLE VI
COMPARISON RESULTS OF CASE II

of 2 h under the optimal control is 463.8870 kg, which is much
lower than the average amount of manual operation 510.37 kg.
Thus, there exists a lot of waste of zinc powder in manual
work in the actual industry. In addition, G = 0 in Table V
and Fig. 7 both show that the outlet copper ion concentration
meets the production constraints rigorously, which indicates the
effectiveness of the proposed method.

V. CONCLUSION

In this article, dynamic optimization of CRP was conducted
to find a time-varying zinc addition trajectory such that a de-
sired outlet copper ion quality was achieved at the least zinc
consumption for a given process time. After process analysis
and modeling, a constrained DOP with one control constraint
and two state constraints was constructed for CRP. A novel
constrained dynamic optimization method was proposed to solve
above DOP. First, the original infinite-dimensional problem
was reduced to a finite-dimensional NLP problem based on
wavelet-based CVP method, which can generate a nonuniform
parameterization grid adaptively. Second, a new smooth penalty
function method was used to transform the constrained NLP
problem into a sequence of unconstrained one. Third, a hybrid
optimization strategy named HGSTA, which combines STA and
gradient-based method, was proposed for solving the problem
globally and efficiently. The simulation results showed that the
proposed method has good performance in solving constrained
DOP, and the optimal zinc addition trajectory has promising
applications in CRP.
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