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a b s t r a c t

This paper investigates a decentralized supply chain that is composed of one manufacturer and
multiple distributors. The manufacturer produces goods and wholesales them to multiple distributors
and then the distributors sell products to various markets. The entire production period of the
manufacturer is divided into several intervals. The decision-making problem of the entire decentralized
supply chain is presented as a two-echelon coordination game network, in which each decision-
maker can influence decision-making of other levels. A Stackelberg game framework is proposed to
coordinate the decision-making process. And then two nonlinear bi-level programming (BLP) models
are developed to find the optimal equilibrium decision scheme by switching the leader and follower
roles between the manufacturer and the distributors. The models consider the manufacturer’s budget
constraints in each interval and the market demands are affected by distributors’ selling price and
advertising strategies. According to the hierarchy and complexity of bi-level programming problem
(BLPP), a nested bi-level method based on hybrid state transition algorithm is proposed to address
the BLP models, and mapping approximation strategy is utilized to improve computational efficiency.
Finally, the numerical experiments are performed to demonstrate the superiority of the proposed
method in terms of accuracy and computational efficiency.

© 2022 Elsevier B.V. All rights reserved.
1. Introduction

The supply chain consists of independent parties which form
process chain that transforms raw materials into finished prod-
cts and provides them to the end customer. In the operation of
he supply chain, there is competition and cooperation between
ore enterprises and competitors or upper and lower enterprises
t the same time. Increasing competition and globalization of the
arket motivate enterprises to autonomously participate in the
upply chain. Simultaneously, the independence and autonomy
f supply chain participants requires that we must look at the
upply chain system from a decentralized perspective. The de-
entralized supply chain is a new type of organizational system
hose structure and operating characteristics are different from
hose of the traditional supply chain, thereby resulting in dif-
erent cooperative and competitive relationships. Although there
re close dependencies between participants in the decentralized
upply chain, these enterprises still only care about their own
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E-mail address: jituo.tian@csu.edu.cn (J. Tian).
ttps://doi.org/10.1016/j.knosys.2022.108119
950-7051/© 2022 Elsevier B.V. All rights reserved.
gains and losses instead of considering the overall benefits of
the supply chain. Accordingly, each member of the decentralized
supply chain has its own goals and the activities of one supply
chain member will be hindered by other members. Thence, the
decentralized supply chain contains multiple decision-making
stages [1–3], which leads decision-making process to present a
hierarchical characteristic.

The coordination of decentralized supply chains is the focus of
many scholars. Wang et al. [4] designed a cooperation method for
decentralized supply chain based on game theory. Combined with
the coordinating pricing and inventory replenishment strategies,
Boyaci et al. [5] investigated the equilibrium solution when the
demand rate is large enough. Davood et al. [6] studied the prob-
lem of supplier selection in the decentralized supply chain, and
compared the centralized model with the decentralized model. It
was shown that decentralized model can obtain a more stable and
feasible solution while keeping the total cost unchanged. Haque
et al. [7] developed a new bi-level approach to address specific
challenges in coordination and sustainability of the decentralized
supply chain. They applied dominance and Nash game strategies
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o ensure the coordination of supply and demand throughout the
ecentralized supply chain network.
Bi-level programming (BLP) is an effective method to address

he decentralized management issue with two-level structure [8].
istorically, as a branch of mathematical programming, BLP orig-
nated from Stackelberg game theory in the field of economics.
n Stackelberg game theory, two decision makers in BLP make
ecisions one after another, and choose the corresponding strate-
ies according to the other’s possible strategies, thereby ensuring
hat their own benefits are maximized. The final result of the
ame is to achieve the Nash equilibrium, that is, neither party
an get more benefits by adjusting the strategies [9]. The BLP
as broadly similar decision-making process. In general, a bi-level
rogramming problem (BLPP) has upper-level leaders and lower-
evel followers. Members as the leaders make the decision first,
nd the followers determine their optimal responses based on
he decisions of leaders. Then the leaders will adjust the pro-
ramming according to the decision of the follower, and strive to
aximize the profit. This programming process will continuously
perate until no decision makers adjust the decision. The entire
LPP contains two interrelated planning problems at the upper
nd lower levels [10].
Moreover, the BLP method has been widely used to cope

ith real decentralized decision-making problems. Lu et al. [11,
2] combined linear multi-follower BLP and Kth-best approach.
heng et al. [13] used the weak linear BLP to model principal–
gent problem from a pessimistic perspective. Fan [14], Sinha [15]
nd Zhang [16] adopted BLP to solve the toll setting problem.
ostian [17] and Xu [18] combined BLP with environmental eco-
omics. It is noteworthy that the application of BLP in coordinat-
ng the decentralized supply chain has received more and more
ttention. Yu et al. [19] considered inventory management strat-
gy in one manufacturer–multiple retailers supply chain. They
roposed a bi-level model where the manufacturer is the leader
nd retailers are followers. Amirtaheri et al. [20] investigated
decentralized production–distribution supply chain where the
emand is jointly influenced by pricing and advertising policies.
ccording to Stackelberg game theory, they developed two non-
inear BLP models under two power scenarios. Tantiwattanakul
t al. [21] studied the decentralized supply chain with multiple
roducts, multiple periods and multiple retailers. They built a
onlinear BLP model to determine the supplier’s optimal multi-
eriod wholesale price. Luo et al. [22] modeled the coordination
anagement problem in the decentralized supply chain as a
i-level linear programming problem.
Different BLP models have been proposed for decentralized

upply chains, but many of them are linear and cannot accurately
eflect most real-life situations. Moreover, although many sup-
ly chain coordination mechanisms such as two-echelon coordi-
ated pricing, inventory management, joint advertising, ordering
nd transportation problems have been investigated by many
cholars, most of the existing BLP models focus on designing
oordination schemes for single or partial combination problems
nd cannot achieve effective coordination among decentralized
upply chain members. In addition, some key budget constraints
ave been ignored in the previous models. To conform more to
eal life and integrate various issues, this paper investigates a
ecentralized supply chain consisting of one manufacturer and
ultiple distributors, and establishes two nonlinear BLP models
ith budget constraints based on Stackelberg game. In the decen-
ralized supply chain, the manufacturer has traditionally been the
eader. In recent years, however, the dominant force has shifted
rom manufacturers to distributors [23]. Consequently, the two
roposed BLP models take the manufacturer and the distribu-
ors as the leader respectively. In the process of decentralized
ecision-making, the manufacturer and distributors share rele-
ant decision-making information for the propose of maximizing
2

their profits. Although supply chain members are not directly
involved in each other’s decision-making process, their decisions
can affect the subsequent reactions of other members.

Due to the complex interaction of the upper and lower prob-
lems [24], the non-convexity of the search space [25] and the
non-differentiability of the objective function, the solution of the
BLP models face great challenges. Bard [26] proved that BLPP is an
NP-hard problem, and even searching for a local optimal solution
of bi-level linear programming is also an NP-hard problem [27].
The traditional methods to solve BLPP can be roughly divided
into the following categories: (1) single-level reduction based on
Karush–Kuhn–Tucker (KKT) conditions. (2) descent methods. (3)
penalty function methods. These methods impose restrictions on
the mathematical properties of the BLPP [28], such as convexity
and continuous differentiability, so their ability to solve complex
nonlinear BLPP (NBLPP) is severely limited. Hence, the intelligent
algorithms which do not need to strictly follow the classical
assumptions are widely concerned by many researchers. The
application of intelligent algorithms to solve BLPP has two forms:
(1) single-level reduction scheme. (2) nested scheme. Moreover,
due to the use of KKT conditions, single-level reduction scheme
still needs to limit the mathematical nature of the lower-level
problems. Nested method, relatively, is suitable for a wider range
of real-world optimization problems. In order to deal with the
BLPP, Huang et al. [29] utilized a method based on nested struc-
ture. Wang et al. [30] combined two sole improved fruit fly
optimization algorithms and Wan et al. [31] presented a intelli-
gent algorithm which embeds the chaos searching technique into
particles warm optimization. In addition, genetic algorithm [32],
tabu search approach [33], particle swarm algorithm [34] and ant
colony algorithm [35] have been widely developed to solve BLPP.

State transition algorithm (STA) [36] is a recently emerging in-
telligent optimization algorithm and exhibits good global search
ability and fast convergence speed. The STA utilizes the state
space expressions in modern control theory as a unified frame-
work for generating candidate solutions, and the specific search
operators are designed according to the requirements of the opti-
mization algorithm’s globality, optimality, and rapidity. As a new
paradigm for solving optimization problems, STA can find the
global optimal solution with higher probability and faster speed
by designing state transformation operators that can generate
geometric neighborhoods with regular shapes and controllable
sizes. This paper proposes a nested algorithm called hybrid bi-
level STA (HBLSTA) based on STA to solve the BLP models of
decentralized supply chain. In terms of nested method, an poor
lower-level solution may cause errors in the optimization of the
BLPP. However, the convergence rate of STA decreases rapidly in
the late iteration. In order to find an accurate lower-level optimal
solution, a large number of iterations will be carried out. Si-
multaneously, gradient-based sequential quadratic programming
(SQP) shows greater advantages in accuracy and convergence
rate when searching for local optimal solutions. Therefore, the
hybrid STA strategy which combines STA and SQP is employed
to ensure that the lower-level solution with sufficiently high
accuracy is found. Furthermore, each upper-level solution cor-
responds to a lower-level problem that needs to be solved, so
the computational efficiency of the nested algorithm is greatly
reduced. The mapping approximation strategy, thence, is applied
to improve computational efficiency. Through the verification of
numerical experiments, the HBLSTA can obtain a equilibrium
solution of the established nonlinear BLP models and effectively
coordinate the decision-making schemes of the manufacturer and
the distributors.

The contribution of the paper can be summarized in the fol-
lowing two aspects:

1. BLP is utilized to model a decentralized supply chain that in-
cludes a manufacturer and multiple distributors. The models not
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Table 1
Summary of related definitions and notations.

Notation Description

The lower level

y ∈ Y Decision vectors and space.
f : Rn

× Rm
→ R Objective function.

gj : X × Y → R, j = 1, . . . , J Constraint functions.
Ω(x) = {y ∈ Y | g(x, y) ≤ 0} Feasible region.
Ψ (x) = {y | y ∈ argmin{f (x, y) | y ∈ Ω(x)}} Reaction set

The upper level

x ∈ X Decision vectors and space.
F : Rn

× Rm
→ R Objective function.

Gi : X × Y → R, i = 1, . . . , I Constraint functions.
M(x) = {x ∈ X | ∃ y such that (x, y) ∈ Ω} Feasible region

BLPP Ω = {(x, y) ∈ X × Y | G(x, y) ≤ 0, g(x, y) ≤ 0} Constraint region
FS = {(x, y) | x ∈ M(x), y ∈ Ψ (x)} Feasible set
only consider the coordination of pricing, advertising, ordering,
transportation and inventory management, but also restrict the
manufacturer’s budget at each interval.

2. A bi-level optimization algorithm based on hybrid STA is de-
eloped to effectively address the formulated models. The hybrid
TA and mapping approximation strategy are utilized to improve
he accuracy and computational efficiency of the algorithm.

The remainder of this paper is organized as follows. Sec-
ion 2 describes a brief introduction of the BLPP. In Section 3,
wo BLP models (Manufacturer–leader & Distributor–leader) are
eveloped by formulating the manufacturer and the distributor
roblems. Section 4 proposes a bi-level optimization algorithm
ased on hybrid STA to solve the BLP models. Section 5 is devoted
o experimental results which is used to verify the effectiveness
f the proposed algorithm and models. Finally, the conclusions
re given in Section 6.

. Mathematical model of BLPP and related concepts

The BLPP contains two levels optimization tasks that have
heir own objectives and constraints. Generally, decision vectors,
bjective functions and constraints of two levels are different
nd lower optimization task is nested within the upper one. In
he context of BLPP, the upper-level decision maker (i.e., the
eader) first specifies a programming, after that lower-level de-
ision maker (i.e., the follower) develops the optimal response
trategy according to full knowledge of the leader’s action. The
eneral formulation for BLPP can be written as follows:

min
∈X,y∈Y

F (x, y)

s.t. Gi(x, y) ≤ 0, i = 1, . . . , I
y ∈ arg min

y∈Y
f (x, y)

s.t. gj(x, y) ≤ 0, j = 1, . . . , J

(1)

where x ∈ Rn, F and Gi represent decision vectors, objective func-
tions and constraints of the upper level, respectively. Meanwhile,
y ∈ Rm, f and gj indicate decision vectors, objective functions and
constraints of the lower level problem respectively. The BLPP is a
NBLPP if one of the objective functions or constraints is nonlinear.

In Eq. (1), the lower-level problem can be regarded as a special
constraint condition of the upper-level problem. For the upper-
level problem, the optimization task is executed with respect to
upper level decision variables x, and the lower-level variables
y exist as parameters. The lower-level variables as parameters
need to be obtained by solving the lower-level optimization prob-
lem. The upper level decision vectors are treated as parameters
while optimizing the lower-level problem, and then the obtained
optimal lower level solution is transferred to the upper level.

Some related definitions and notations are briefly introduced
in Table 1. Ω denotes the constraint region of BLPP, and Ω(x)
represents the feasible region of the lower level for each fixed
3

x ∈ X . For every given x, the follower’s rational reaction set is
shown as Ψ (x). M(x) is the mapping of Ω onto the decision space
of the upper level when the variables of the lower level are fixed.
Finally, the feasible set of BLPP is defined as FS.

3. BLPP in decentralized supply chain

3.1. Problem description

The object of this investigation is the decentralized supply
chain which contains one manufacturer and multiple distributors.
Manufacturers produce products and wholesale them to various
distributors, and then distributors provide products to different
markets whose sizes, geographic locations, selling prices, and the
effects of advertising on prices are different. The manufacturer
decides about the wholesale price, production (replenishment)
interval and the allocation of distributors’ demands. The distribu-
tor, meanwhile, determines the selling price and advertising ex-
penditure in each market. In the framework of Stackelberg game
theory, the decisions of manufacturer and distributors are scat-
tered and mutually interdependent, and their leader and follower
status can be transformed during the decision-making process.
The general decision-making process of the decentralized supply
chain is shown in Fig. 1.

In the proposed BLP models, the leader can obtain all the infor-
mation about the follower, so as to predict the optimal decision
of the follower and makes the policies that maximize the profits.
The models are utilized to find a coordinated decision-making
strategy between the manufacturer and distributors. When the
manufacturer is the leader, the upper-level manufacturer for-
mulates the production and transportation plans by predicting
the optimal response of the distributors, and every distributor
determines the price and advertising expenditures based on the
upper-level interactive information to maximize their profits. The
distributors’ programming also have an impact on the manufac-
turer. When the distributor is the leader the process is similar,
and the difference is that the distributors are fully aware of the
manufacturer’s optimal decision. Additionally, in order to better
describe the demands in different markets, we assume that the
demand function is a joint nonlinear function of selling price and
advertising costs. At the same time, the constraints of inventory
capacity, production capacity and budget are considered.

3.2. Notation and model assumption

Table 2 is used to represent the notations employed in BLP
models. The models developed in this paper are based on the
following assumptions:

1. There are several different markets, and the demands in
these markets are jointly affected by advertising expendi-
tures and selling price.
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Fig. 1. The decision-making process of the decentralized supply chain.
Table 2
Notations for BLP models.
Notations Definitions

Parameters (Manufacturer)
Pc Production cost ($/Unit)
Sc Setup cost ($/Setup)
Mh Percentage of inventory holding cost ($/Unit)
G Maximum production capacity (Unit)
Tcj Unit transportation cost from manufacturer to distributor j ($/Unit)
Bs Maximum production budget in each interval ($)

Parameters (Distributor)
Ocj Ordering cost for distributor j ($/Order)
Dhj Percentage of inventory holding cost for distributor j ($/Order)
Cj Inventory capacity of distributor j (Unit)
A Advertising budget limit ($)
Do Products produced in each interval (Unit)
Parameters (Markets)

bk Demand scale parameter of market k (Unit)
αk Price elasticity of market k (1/$)
βk Advertising expenditure elasticity of market k (1/$)
Decision variables (Manufacturer)
pm Wholesale price ($/Unit)
T Production (replenishment) interval
sj Quantity of products shipped from manufacturer to distributor j (Unit)

Decision variables (Distributor)
pd Selling price ($)
ak Advertising expenditure in market k ($)
A

2. Production and replenishment have the same interval, and
each production (replenishment) interval is equal. Besides,
no shortage is allowed.

3. Under the premise of maximizing profits, the manufacturer
and distributors only consider production resources within
the supply chain.

4. The capital budget of manufacturer in each production
(replenishment) interval is limited.

5. The transportation costs of distributors to markets are in-
cluded in the selling price.

.3. Bi-level programming models for decentralized supply chain

Based on the above assumptions and notations, a two-level
ecentralized supply chain with one manufacturer and multi-
le distributors is considered. The manufacturer wholesales the
4

products to distributors at a wholesale unit price (pm). Then, dis-
tributors sell goods to different markets at unit selling price (pd).
t the same time, the demand of each market (Dk(pd, ak)) is a joint

nonlinear function of selling price and advertising expenditure as
follows:

Dk(pd, ak) = bk · p−αk
d · aβkk (2)

where, price elasticity (αk > 1) and advertising expenditure
(0 < βk < 1, βk+1 < αk) elasticity represent the impact of selling
price and advertising expenditure on demand, respectively.

The incomes of the manufacturer and distributors in the whole
planning horizon are respectively denoted by Im and Id as follows:

Im = pm ·

K∑
bk · p−αk

d · aβkk (3)

k=1
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Fig. 2. Inventory levels of the manufacturer and distributors.

Id = pd ·

K∑
k=1

bk · p−αk
d · aβkk (4)

The raw material cost of the manufacturer and the wholesale
cost of the distributors are denoted by Wm and Wd respectively,
we have:

Wm = Pc ·

K∑
k=1

bk · p−αk
d · aβkk (5)

Wd = pm ·

K∑
k=1

bk · p−αk
d · aβkk (6)

When the production interval (replenishment interval) is T ,
the quantity of products produced in each production interval can
be obtained as Q0 = d0 · T , where d0 indicates the total demand
of the markets. Products produced in a interval are delivered to
distributor jwhose total demand in the planning horizon is dj, and
distributor j, therefore, needs to replenish Qj = dj ·Q0/D0 = dj · T
unit of goods in a interval. Taking three distributors as an exam-
ple, the inventory levels of the manufacturer and distributors are
shown in Fig. 2.

According to Fig. 2, it can be seen that the average inventory
levels of the manufacturer and distributors in a interval are
T/2 ·

∑K
k=1 bk · p−αk

d · aβkk and T/2 ·
∑J

j=1 sj, respectively. Con-
sequently, we can get the inventory costs of the manufacturer
and distributors which are denoted by Hm and Hd respectively as
follows:

Hm = T/2 · Mh · Pc ·

K∑
k=1

bk · p−αk
d · aβkk (7)

Hd = pm · T/2 ·

J∑
j=1

sj · Dhj (8)

The manufacturer’s total setup cost and the distributors’ total
order cost are denoted by Cm and Cd respectively:

Cm = 1/T · Sc (9)

Cd = 1/T ·

J∑
Ocj (10)
j=1 f

5

The advertising expenditure of distributors is represented by
Ad as follows:

Ar =

K∑
k=1

ak (11)

In addition, since the distributors’ transportation costs to mar-
kets are included in the selling price, only the manufacturer’s
transportation costs need to be formulated as follows:

Tm =

J∑
j=1

Tcj · sj (12)

According to Eqs. (3)–(12), the net profits of the manufacturer
and distributors are formulated as follows:
PM = Im − Wm − Cm − Hm − Tm

= (pm − Pc) ·

K∑
k=1

bk · p−αk
d · aβkk −

1
T

· Sc

−
T
2

· Mh · Pc ·

K∑
k=1

bk · p−αk
d · aβkk −

J∑
j=1

Tcj · sj

(13)

D = Id − Wd − Cd − Hd − Ad

= (pd − pm) ·

K∑
k=1

bk · p−αk
d · aβkk −

1
T

·

J∑
j=1

Ocj

− pm ·
T
2

·

J∑
j=1

sj · Dhj −

K∑
k=1

ak

(14)

In the manufacturer’s planning level, the objective function
s the maximum net profit PM . The constraints are provided as
ollows: (1) The total demand of markets cannot exceed the max-
mum production capacity of manufacturer

∑K
k=1 bk · p−αk

d · aβkk ≤

. (2) In each interval, the production budget cannot be exceeded
· Pc ·

∑K
k=1 bk · p−αk

d · aβkk ≤ Bs. (3) The quantity of goods
hipped from the manufacturer to the distributors should meet
he capacity of the distributor’s depots 0 ≤ sj ≤ Cj, j = 1, 2, . . . , J .
4) The wholesale price is greater than the production price pm ≥

c · (1 + δM ), where δM is a scaling constant. (5) Production
replenishment) interval meets 0 < T ≤ 1.

On the other hand, the distributors also aim to maximize the
et profit. The constraints are formulated as follows: (1) The
nventory capacity of distributors can meet the total demand of
he markets

∑K
k=1 bk · p−αk

d · aβkk ≤
∑J

j=1 Cj. (2) The total number
f goods purchased by distributors completely meets the demand
f every market

∑J
j=1 sj =

∑K
k=1 bk · p−αk

d · aβkk . (3) The selling
rice is greater than the wholesale price pd ≥ pm · (1+ δD), where
D is a scaling constant. (4) Expenses used for advertising must
e within budget limits 0 ≤ ak ≤ A, k = 1, 2, . . . , K .
When developing the BLP models from the perspective of

anufacturer, the main consideration is to get more profits in the
peration of the supply chain, so the manufacturer is appointed
s the leader and the distributors are the follower. From the
erspective of distributors, instead, the distributors are desig-
ated as the leader and the manufacturer is the follower. In
rder to obtain the maximum profits under the constraints, they
etermine their decision variables separately and formulate ap-
ropriate coordination strategies within the planning horizon of
upply chain.

.3.1. The manufacturer–leader model
The Manufacturer–leader (ML) model assumes that manu-
acturer holds the manipulative power and acts as the leader.
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Fig. 3. A brief framework of the HBLSTA.

ccording to the above mentioned analysis, the ML model can be
xpressed as follows:

max
pm,T ,sj

PM = (pm − Pc) ·

K∑
k=1

bk · p−αk
d · aβkk −

1
T

· Sc

−
T
2

· Mh · Pc ·

K∑
k=1

bk · p−αk
d · aβkk

−

J∑
j=1

Tcj · sj

Subject to
K∑

k=1

bk · p−αk
d · aβkk ≤ G

· Pc ·

K∑
k=1

bk · p−αk
d · aβkk ≤ Bs

≤ sj ≤ Cj, j = 1, 2, . . . , J
pm ≥ Pc · (1 + δM )
0 < T ≤ 1
where pd, ak are solved by the following problem

max
pd,ak

PD = (pd − pm) ·

K∑
k=1

bk · p−αk
d · aβkk −

1
T

·

J∑
j=1

Ocj

− pm ·
T
2

·

J∑
j=1

sj · Dhj −

K∑
k=1

ak

Subject to
K∑

k=1

bk · p−αk
d · aβkk ≤

J∑
j=1

Cj

J∑
j=1

sj =

K∑
k=1

bk · p−αk
d · aβkk

pd ≥ pm · (1 + δD)

0 ≤ ak ≤ A, k = 1, 2, . . . , K (15)

According to Eq. (15), the upper-level manufacturer, as the
eader, makes the decision first. Under the production constraints,
he manufacturer determines wholesale price (pm), production
replenishment) interval (T ) and transportation strategy (sj). The
istributers are the follower, who makes decision about sell-
ng prices (pd) and advertising expenditures (ak) according to
he possible strategy of the manufacturer. Next, The roles of
anufacturer and distributors in the planning will be switched.
6

.3.2. The distributer–leader model
Here we consider the distributers as the leader and the manu-

acturer as the follower. Similar to the ML model, the Distributer–
eader (DL) model can be formulated as follows:

max
pd,ak

PD = (pd − pm) ·

K∑
k=1

bk · p−αk
d · aβkk −

1
T

·

J∑
j=1

Ocj

− pm ·
T
2

·

J∑
j=1

sj · Dhj −

K∑
k=1

ak

ubject to
K∑

k=1

bk · p−αk
d · aβkk ≤

J∑
j=1

Cj

J∑
j=1

sj =

K∑
k=1

bk · p−αk
d · aβkk

d ≥ pm · (1 + δD)
≤ ak ≤ A, k = 1, 2, . . . , K
here pm, T , sj are solved by the following problem

max
pm,T ,sj

PM = (pm − Pc) ·

K∑
k=1

bk · p−αk
d · aβkk −

1
T

· Sc

−
T
2

· Mh · Pc ·

K∑
k=1

bk · p−αk
d · aβkk

−

J∑
j=1

Tcj · sj

Subject to
K∑

k=1

bk · p−αk
d · aβkk ≤ G

T · Pc ·

K∑
k=1

bk · p−αk
d · aβkk ≤ Bs

0 ≤ sj ≤ Cj, j = 1, 2, . . . , J
pm ≥ Pc · (1 + δM )

0 < T ≤ 1 (16)

The ML model and DL model are both NBLPPs which are
NP-hard, so a hybrid bi-level state transition algorithm will be
developed in the following section to tackle these problems.

4. The proposed HBLSTA

In consideration of the hierarchical structure characteristics of
the NBLPP, a novel algorithm called HBLSTA with nested struc-
ture is constructed to tackle ML and DL problems. The proposed
algorithm solves the BLPP by simulating the sequential decision-
making procedure of BLPP. HBLSTA contains two levels, where
upper and lower level algorithms can exchange information on
the optimal solutions to the different levels. The STA with pow-
erful global search capability is utilized in upper level to solve
the leader’s problem based on the prediction of the follower’s
response, and a hybrid STA strategy combining STA and SQP is
developed in lower level to solve the follower’s problem and
get the optimal response for the given set of leader’s decision
variables. In addition, in order to improve the computational
efficiency, a mapping approximation strategy is used to reduce
the number of calls to the lower-level optimizer.
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Fig. 4. Solution encoding of the proposed approach.

Fig. 3 depicts a brief framework of the HBLSTA. The upper-
evel STA starts with generating an initial solution (x) for the
eader’s problem and the solution is then taken by the lower-
evel problem. The follower’s optimal response (y∗) is obtained
hrough the combination of hybrid STA and mapping approx-
mation strategies and then returned to the upper level. After
valuating the initial solution for the leader’s problem (x, y∗), the
irst iteration is complete. The process repeats in each iteration
ntil the stop condition is met or the optimal solution for the
pper-level problem (x∗, y∗) is obtained.

.1. Solution encoding

The decision variables of the manufacturer and the distributor
roblems can be coded as an array corresponding to the upper
nd lower level solutions in the algorithm, respectively. In the
L model, the manufacturer’s decision variables pm, T and sj can
e coded as an array x corresponding to the upper-level solution
nd pd and ak of the distributor corresponds to the lower-level
olution y (see Fig. 4). Similarly, the encoding of the solution in
he DL model can be obtained.

.2. Hybrid STA strategy

The STA is an intelligent random global optimization algorithm
hat first proposed by Zhou in 2012. The STA grasps the essence
f the optimization algorithm, and constructed a framework for
olving optimization problems based on structuralism learning.
ecause of the powerful global search capability, simple imple-
entation and few parameters, the STA has shown its superior
erformance in many practical applications, such as nonlinear
ystem identification [37], industrial process optimization [38,
9], machine learning [40,41] and other fields [42,43]. However,
he research on STA has not yet involved the solution of NBLPP.

The basic idea of the STA is to treat a solution as a state, and
he generation and update of the solution as a state transition
rocess. The formula of the framework is as follows:

xk+1 = Ak · xk + Bk · uk (17)

yk+1 = f (xk+1)

7

here, the xk ∈ Rn is the current state. Ak and Bk are state
transition matrices which can be seen as an operator in the op-
timization algorithm. uk represents the information provided by
the current state and the historical state, and f (·) is the objective
function.

The state transformation operators are designed based on
above framework. Especially, there are four basic operators for
local and global search.

(1) Rotation transformation

xk+1 = xk + α ·
1

n · ∥xk∥2
· Rr · xk (18)

here α > 0 is the rotation factor, Rr ∈ Rn×n indicates a ran-
om matrix whose elements are uniformly distributed between
−1, 1], and ∥ · ∥2 is the L2-norm of a vector.

(2) Translation transformation

k+1 = xk + β · Rt ·
xk − xk−1

∥xk − xk−1∥2
(19)

where β > 0 is the translation factor, Rt ∈ R represents a random
variable uniformly distributed between [0, 1].

(3) Expansion transformation

xk+1 = xk + γ · Re · xk (20)

where γ > 0 is called the expansion factor, Re ∈ Rn×n is a random
diagonal matrix whose elements follow a Gaussian distribution.

(4) Axesion transformation

xk+1 = xk + δ · Ra · xk (21)

where δ > 0 is called the axesion factor, Ra ∈ Rn×n is a ran-
dom diagonal matrix whose nonzero elements follow a Gaussian
distribution.

Using STA to address NBLPP in a nested framework, one of
the key issues is that the convergence rate of the algorithm de-
clines rapidly as the iteration progresses. Moreover, it is difficult
to balance global search and local search in the late iteration,
which needs to be avoided in the optimization of the lower-level
problem. Meanwhile, gradient-based algorithms converge quickly
in local search. When solving the optimization problems of the
upper and lower levels, a hybrid STA strategy is introduced in
order to speed up the convergence on the premise of ensuring
accuracy. The hybrid STA is divided into two stages: First, STA
is utilized to find a rough global solution region. Afterwards, a
gradient-based method SQP will be adopted for the purpose of
converging faster to a solution with sufficiently high accuracy in
the found region.

4.3. Mapping approximation method

According to the definitions of the BLPP in Table 1. Ψ (x) can
be understood as the mapping of the upper-level decision and
the corresponding lower-level optimal solution. If the mathe-
matical formula of Ψ -mapping can be determined, the optimal
lower-level solution for a given upper-level solution can be ob-
tained directly without solving the lower-level problem. So that
computational efficiency will be greatly improved.

However, Ψ -mapping is difficult to determine directly, so an
iterative strategy is applied to approximate it. Assuming H is the
hypothesis space. The hypothesis space contains all the functions
that can be used to generate the mapping between the upper-
level decision vector and the optimal lower-level decision vector.
For a given sample consisting of N upper-level points (x) and
corresponding optimal lower-level points (y∗), a mapping ψ̂ ∈ H
is obtained by minimizing the empirical error on the sample as
follows:

ψ̂ = argmin
∑

L(h(xn), y∗

n) (22)

h∈H n∈N
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here L : Rm
× Rm

→ R represents the prediction error, xn is
any given upper-level decision, and y∗

n is corresponding optimal
lower-level solution. The formulation of the prediction error is as
follows :

L(h(xn), y∗

n) = |y∗

n − h(xn)|
2 (23)

It is required too many sample points to directly approximate
Ψ -mapping. Therefore, a local mapping (ψloc) is created for an
upper-level solution (x̃) that needs to obtain the lower-level
optimal solution through the mapping relationship.

In order to create ψloc-mapping, it is necessary to use hybrid
STA to solve the lower-level problems corresponding to some
upper-level members to provide samples. Then, the members
whose Euclidean distance is shortest to x̃ are selected from the
samples to get ψloc-mapping. In addition, the hypothesis space
is restricted to be composed of second-order polynomials, and
thence at least n(n + 1)/2 points are required to approximate
the ψloc-mapping whose upper-level vector is n-dimensional.
Considering the performance of the ψloc-mapping, we use n(n+1)
samples for the approximation.

4.4. Constraints handling and fitness assignment

A BLPP contains two levels of optimization tasks, and there
may be constraints on both levels. HBLSTA uses similar constraint
handling schemes to process the upper and lower constraints.
The main idea is to assigns the feasible solution a higher fitness
value than infeasible one [44]. For the two upper and lower level
solution pairs (xi, yi) and (xj, yj) of the BLPP, the fitness allocation
scheme is as follows:

(1) If both (xi, yi) and (xj, yj) are feasible solutions that can
meet the constraints, the fitness value depends on their
corresponding function value.

(2) If one solution of (xi, yi) and (xj, yj) is feasible and the other
is infeasible, a higher fitness value is given to the feasible
one.

(3) If (xi, yi) and (xj, yj) are infeasible, the fitness value looks
at the overall constraint violation which is the sum of all
equality and inequality constraint violations.

4.5. The HBLSTA for solving BLPP

According to the framework of HBLSTA, the algorithm has a
similar structure to BLPP. The HBLSTA contains the upper and
lower STAs, which are respectively applied to the optimization
tasks of the upper and lower levels in BLPP. In addition, con-
sidering that each upper-level solution corresponds to a lower-
level problem, solving all of these optimization problems will
greatly reduce the computational efficiency. Therefore, the map-
ping approximation strategy is introduced into the lower-level
optimization task to avoid frequently solving of the lower-level
problems. The flowchart of HBLSTA is shown in Fig. 5.

The overall approach of HBLSTA is shown in Algorithm 1.
Using an interactive iteration mechanism, the information of the
upper and lower solutions is constantly updated, and HBLSTA
will find the equilibrium optimal solution of BLPP. The lower-
level optimal solution is obtained by mapping approximation and
hybrid STA, and the specific process of the lower-level hybrid STA
is illustrated in Algorithm 2.

In Algorithm 1, when calculating the fitness value of z1, . . . , zN ,
the upper-level objective function is considered as the fitness
function and the fitness assignment method is in Section 4.4.
The termination criterion is that iteration reaches the MaxIt or
fitness value no longer improves. In Algorithm 2, the lower-level
objective function is considered as the fitness function and the
termination criterion is the same as Algorithm 1.
8

Algorithm 1 The overall approach of HBLSTA.
Input:

The parameters of STA: α, β , γ , δ and SE;
Maximum iteration MaxIt ;

utput:
Optimal solution;

1: Generate N initial feasible upper-level solutions x1, . . . , xN ;
2: For the given upper-level solution xi (i = 1, . . . ,N), solve the

corresponding lower-level optimization problem with algorithm 2
and obtain the lower-level optimal solution y∗

i ;
3: Calculate the fitness value of the initial solutions z1, . . . , zN (zi =

(xi, y∗

i ));
4: Save z1, . . . , zN in the archive A;
5: Choose the solution with the largest fitness value from z1, . . . , zN as

the initial optimal solution z∗;
6: iteration = 0;
7: while The termination criterion is not met do
8: Generate SE candidate states x1, . . . , xSE by the state transforma-

tion operators;
9: For each candidate state xk (k = 1, . . . , SE), obtain the cor-

responding optimal lower-level solutions y∗

k through hybrid STA
optimization or mapping approximation;

0: if the mapping approximation condition is met then
1: Utilize the archive A to construct a local mapping relationship

y = ψloc (x) and directly obtain y∗

k ;
2: else
3: Solve the corresponding lower-level optimization problem

with algorithm 2 and obtain the lower-level optimal solution y∗

k ;
4: Add zk = (xk, y∗

k ) to the archive A;
5: end if
6: Calculate the fitness value of the candidate state corresponding

solutions z1, . . . , zSE ;
7: Update the optimal solution z∗ according to the fitness value;
8: iteration = iteration + 1;
9: end while
0: return optimal solution;

Algorithm 2 The lower level hybrid STA of HBLSTA.
Input:

Initialize parameters of STA: α, β , γ , δ and SE;
Maximum iteration MaxIt ;
upper-level solution xi

utput:
Lower-level optimal solution;

1: Generate initial feasible lower-level solution y0;
2: Calculate the fitness value of y0;
3: Set y0 as the initial lower-level optimal solution y∗;
4: while The termination criterion is not met do
5: Generate SE candidate states y1, . . . , ySE by the state transforma-

tion operators;
6: Calculate the fitness values of y1, . . . , ySE ;
7: Update the lower-level optimal solution y∗ according to the

fitness value;
8: iteration = iteration + 1;
9: end while
0: return lower-level optimal solution;

5. Computational experiments and discussion

This section contains two parts: algorithm performance exper-
iments and model evaluation. A set of benchmark BLPPs are em-
ployed to test the performance of the HBLSTA and then HBLSTA
is utilized to address the proposed BLP models. All experiments
are implemented in MATLAB R2019b with an AMD R9-4900H,
3.30 GHz processor and 8 GB of RAM on a 64-bit Windows 10
operating system.
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Table 3
Parameter setup.
Parameter SE α β γ δ

Value 8 1 1 1 1

5.1. Algorithm performance experiments

The parameter setting of HBLSTA [36] is shown in Table 3. The
P test suite [45] which contains 10 benchmark instances from
P1 to TP10 are tested to evaluate the performance of HBLSTA.
or better comparison, the relevant properties of problems in the
P test suite are shown in Table 4.
In the experiments, the accuracy and efficiency are utilized

s the primary performance indicator. In terms of accuracy, the
bsolute difference between the best known objective value and
he obtained objective value is measured. That is, Accu = |F − F∗

|

and Acc l = |f − f ∗
|, where F∗ and f ∗ are the optimal function

alues of the upper-level and lower-level respectively, and F
nd f are respectively the upper-level and lower-level function
alues obtained by a certain algorithm. In terms of efficiency, the
umbers of function evaluations (denoted by UFEs at the upper
evel and LFEs at the lower level) are reported in the experimen-
al results to compare the computational resources consumed
y different algorithms. Three algorithms including the nested
ilevel evolutionary algorithm (NBLEA) [46], bilevel evolutionary
lgorithm based on quadratic approximations (BLEAQ) [45] and
ilevel evolutionary algorithm based on quadratic approxima-
ions 2 (BLEAQ2) [47] are considered to illustrate the performance
f HBLSTA and for each test problem. NBLEA is a classic nested
 g

9

algorithm which solves the upper-level and lower-level problems
with genetic algorithms. BLEAQ adds strategies such as iterative
local search on the basis of NBLEA to improve the efficiency, and
some lower-level optimal solutions can be obtained directly by
quadratic approximating. BLEAQ2 introduces the optimal value
mapping into BLEAQ for the case of multiple optimal solutions
in the lower level. They are currently more advanced algorithms
for solving NBLPPs. All algorithms are independently run 30 times
and record the Accu, Acc l, UFEs and LFEs. Furthermore, the median
f various indicators is used as the main basis for comparison
hile the best, worst and mean of various indicators are also
tilized to further verify the performance of the algorithms. The
xperimental results are given in Table 5, Table 6, Tables 7 and 8,
espectively.

Tables 5 and 6 show the comparison results of the accu-
acy of HBLSTA and other algorithms on different benchmark
nstances. The best result of each test example is marked in bold,
nd because BLPPs always prioritize the interests of the leader,
nly the upper-level objective function value is considered when
arking. From the results, it can be seen that HBLSTA shows

he best performance on all test problems except TP3, but even
n TP3, HBLSTA behaves quite competitively. The performance
f HBLSTA on TP3 differs very little from the best performing
LEAQ and is much more accurate than other two comparison
lgorithms. In addition, note that on the two test problems of
P2 and TP8, although other algorithms can achieve the same
ccuracy as HBLSTA in the upper level, other algorithms will often
all into the local optimal situation in the optimization of the
ower level. Due to the hybrid STA strategy which combines the

lobal search capability of STA with the local search capability of
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Table 4
The relevant properties of problems in the TP test suite.
Test problem Upper-level problem Lower-level problem

Dimension Objective function Constraint Dimension Objective function Constraint

TP1 2 Non-linear,
differentiable,
continuous

With linear
constraints

2 Non-linear,
differentiable,
continuous

Unconstrained

TP2 2 Linear,
differentiable,
continuous

With linear
constraints

2 Non-linear,
differentiable,
continuous

With linear
constraints

TP3 2 Non-linear,
differentiable,
continuous

With non-linear
constraints

2 Non-linear,
differentiable,
continuous

With non-linear
constraints

TP4 2 Linear,
differentiable,
continuous

Unconstrained 3 Linear,
differentiable,
continuous

With linear
constraints

TP5 2 Non-linear,
differentiable,
continuous

Unconstrained 2 Non-linear,
differentiable,
continuous

With linear
constraints

TP6 1 Non-linear,
differentiable,
continuous

Unconstrained 2 Non-linear,
differentiable,
continuous

With non-linear
constraints

TP7 2 Non-linear,
differentiable,
discontinuous

With non-linear
constraints

2 Non-linear,
differentiable,
discontinuous

With linear
constraints

TP8 2 Non-linear,
non-differentiable,
discontinuous

With linear
constraints

2 Non-linear,
differentiable,
continuous

With linear
constraints

TP9 10 Non-linear,
non-differentiable,
discontinuous

Unconstrained 10 Non-linear,
differentiable,
discontinuous

Unconstrained

TP10 10 Non-linear,
non-differentiable,
discontinuous

Unconstrained 10 Non-linear,
differentiable,
discontinuous

Unconstrained
mathematical programming, HBLSTA can improve the accuracy of
the solution when solving the lower-level optimization problem.
For all test problems, the optimization accuracy of the lower layer
of HBLSTA is the highest, which verifies the effectiveness of the
hybrid strategy.

The comparison results of the efficiency of different algorithms
re shown in Tables 7 and 8. It is generally considered that the
alculation resources consumed by the upper and lower level
unction evaluations are the same, and the best result of each test
nstance is also marked in bold. The results show that the sum of
he UFEs and LFEs of HBLSTA is the smallest on the 10 questions,
hich indicates that the calculation efficiency of HBLSTA is the
ighest. The main reason is that the mapping approximation
trategy and hybrid STA strategy used by HBLSTA can greatly
educe the evaluation times of the lower level function.

.2. Model evaluation

In this section, HBLSTA is utilized to solve the proposed BLP
odels (Eqs. (15) and (16)). In order to evaluate the ability of
BLSTA to find the optimal solutions for the two models, 5 prob-
em samples are defined according to the number of distributors
J = 2, 3, 4, 5, 6) and the number of markets (K = 3, 5, 7, 10, 15).
Furthermore, the parameters in the two models are uniformly
distributed. Table 9 shows the domains of the corresponding
parameters for manufacturer, distributors, and markets. The pa-
rameters in each problem sample are randomly selected from the
given domains, and other parameters including G, Cj, Bs and A are
directly dependent on the total induced demand.

The parameter setting of HBLSTA is the same as parameters
in Table 3. In order to validate the performance of HBLSTA in
solving the proposed BLP models, BLEAQ2 is adopted to find near
optimal solutions for problem instances. Each problem sample is
10
Table 5
Accuracy comparison of the HBLSTA with the other three algorithms on the TP
test suite (median).
Pr. Level HBLSTA NBLEA BLEAQ BLEAQ2

TP1 Accu 2.55e−06 5.29e−01 2.60e−05 3.63e−06
Acc l 1.00e−06 9.33e−01 3.34e−05 1.00e−06

TP2 Accu 1.00e−06 1.00e−06 5.00e−00 1.00e−06
Acc l 2.13e−05 1.00e+02 1.00e+02 1.00e+02

TP3 Accu 1.36e−05 8.91e−03 1.09e−05 5.25e−04
Acc l 2.50e−05 1.40e−03 2.50e−05 8.06e−05

TP4 Accu 1.00e−06 2.58e−02 1.19e−05 1.69e−05
Acc l 1.00e−06 4.99e−03 1.70e−06 2.03e−06

TP5 Accu 4.70e−06 5.16e−04 1.90e−04 1.33e−05
Acc l 1.00e−06 2.07e−03 8.88e−04 1.99e−05

TP6 Accu 1.00e−06 6.55e−06 6.57e−06 6.57e−06
Acc l 1.00e−06 3.42e−05 4.03e−06 4.06e−06

TP7 Accu 5.62e−06 1.62e−03 6.76e−04 6.48e−04
Acc l 5.62e−06 1.62e−03 6.76e−04 6.48e−04

TP8 Accu 1.00e−06 1.00e−06 3.23e−06 1.00e−06
Acc l 3.65e−04 1.00e+02 1.00e+02 1.00e+02

TP9 Accu 1.00e−06 3.06e−05 5.54e−05 1.00e−06
Acc l 1.00e−06 1.00e−06 1.00e−06 1.00e−06

TP10 Accu 1.00e−06 3.65e−00 3.62e−05 1.00e−06
Acc l 1.00e−06 1.00e−06 1.00e−06 1.00e−06

run independently 30 times, and the average results are shown
in Tables 10 and 11, respectively.

It can be seen from Table 10 that when HBLSTA and BLEAQ2
are used to solve the ML model, the profits of manufacturer
and distributors obtained by HBLSTA are higher than that of
BLEAQ2. If J = 2, K = 3, the profits of manufacturer and
distributors obtained by HBLSTA and BLEAQ2 are relatively close.
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Table 6
Accuracy comparison of the HBLSTA with the other three algorithms on the TP test suite. (best, worst and mean).
Pr. Level HBLSTA NBLEA BLEAQ BLEAQ2

Best Worst Mean Best Worst Mean Best Worst Mean Best Worst Mean

TP1 Accu 1.00e−06 6.13e−06 2.42e−06 4.33e−03 9.87e−01 6.34e−01 3.88e−06 1.87e−01 8.31e−05 1.00e−06 1.77e−04 8.53e−06
Acc l 1.00e−06 1.00e−06 1.00e−06 2.62e−02 1.47e−00 2.33e−01 8.71e−06 4.13e−04 1.39e−05 1.00e−06 1.00e−06 1.00e−06

TP2 Accu 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06 5.00e−00 2.89e−00 1.00e−06 1.00e−06 1.00e−06
Acc l 6.84e−06 1.00e+02 1.62e+01 4.79e−05 1.00e+02 4.10e+01 8.99e−05 1.00e+02 8.12e+01 7.88e−05 1.00e+02 3.55e+01

TP3 Accu 4.66e−06 5.26e−04 1.93e−05 9.41e−05 7.11e−01 4.23e−03 3.48e−06 5.17e−05 1.68e−05 6.88e−05 7.55e−02 6.81e−04
Acc l 1.00e−06 9.83e−05 1.39e−05 3.48e−05 1.21e−01 3.62e−03 6.40e−06 4.41e−04 2.89e−05 9.60e−06 2.13e−04 8.73e−05

TP4 Accu 1.00e−06 1.00e−06 1.00e−06 4.57e−05 5.72e−00 3.99e−02 6.17e−06 7.20e−04 1.33e−05 4.59e−06 2.44e−04 1.65e−05
Acc l 1.00e−06 1.00e−06 1.00e−06 4.52e−05 8.24e−02 9.63e−03 1.00e−06 4.90e−05 1.25e−06 1.00e−06 6.33e−05 1.10e−06

TP5 Accu 1.63e−06 5.19e−05 8.72e−06 1.08e−05 8.32e−03 4.06e−04 2.87e−05 4.03e−02 4.64e−04 2.41e−06 5.08e−04 8.20e−05
Acc l 1.00e−06 1.00e−06 1.00e−06 4.09e−04 3.47e−02 6.18e−03 7.02e−06 7.95e−03 6.82e−04 5.08e−06 4.33e−04 2.06e−05

TP6 Accu 1.00e−06 1.00e−06 1.00e−06 1.19e−06 8.37e−05 7.09e−06 4.66e−06 9.89e−06 7.63e−06 5.57e−06 6.69e−06 6.58e−06
Acc l 1.00e−06 1.00e−06 1.00e−06 8.43e−06 1.22e−04 3.58e−05 1.91e−06 6.14e−06 3.03e−06 1.26e−06 8.93e−06 3.06e−06

TP7 Accu 3.71e−06 8.72e−06 6.32e−06 7.56e−05 1.06e−02 3.02e−03 4.33e−05 5.74e−03 4.03e−04 8.44e−05 4.09e−03 4.41e−04
Acc l 1.00e−06 4.62e−05 5.69e−06 9.83e−05 7.73e−02 2.01e−03 1.76e−05 4.12e−03 6.16e−04 1.18e−05 3.08e−03 6.17e−04

TP8 Accu 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06 2.23e−06 1.23e−05 3.39e−06 1.00e−06 2.96e−06 1.28e−06
Acc l 1.45e−04 8.64e−04 4.05e−04 7.04e−03 1.00e+02 6.23e+01 8.08e−04 1.00e+02 5.11e+01 6.49e−02 1.00e+02 4.01e+01

TP9 Accu 1.00e−06 1.00e−06 1.00e−06 9.10e−06 2.06e−04 4.16e−05 3.04e−06 1.00e−03 5.81e−05 1.00e−06 1.00e−06 1.00e−06
Acc l 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06

TP10 Accu 1.00e−06 1.00e−06 1.00e−06 4.11e−01 6.07e−00 3.48e−00 3.67e−06 8.99e−05 3.67e−05 1.00e−06 1.00e−06 1.00e−06
Acc l 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06 1.00e−06
Table 7
Efficiency comparison of the HBLSTA with the other three algorithms on the TP
test suite (median).
Pr. Level HBLSTA NBLEA BLEAQ BLEAQ2

TP1 UFEs 1.07e+02 1.26e+03 7.80e+ 02 1.13e+02
LFEs 5.51e+02 1.61e+05 1.50e+ 04 5.75e+02

TP2 UFEs 1.11e+02 3.37e+03 1.43e+03 2.46e+02
LFEs 5.95e+02 2.43e+05 1.45e+04 1.77e+03

TP3 UFEs 1.04e+02 1.48e+03 3.62e+02 1.52e+02
LFEs 5.22e+02 1.21e+05 4.48e+03 5.30e+02

TP4 UFEs 3.01e+02 1.76e+03 2.76e+02 2.93e+02
LFEs 2.72e+03 2.73e+05 1.53e+04 3.31e+03

TP5 UFEs 2.82e+02 3.09e+03 1.30e+03 3.19e+02
LFEs 1.74e+03 1.48e+05 1.57e+04 2.43e+03

TP6 UFEs 1.41e+02 3.28e+02 2.84e+02 1.89e+02
LFEs 7.30e+02 1.81e+05 1.75e+04 1.30e+03

TP7 UFEs 2.60e+02 3.63e+03 4.04e+03 3.14e+02
LFEs 3.31e+03 8.64e+05 2.68e+05 4.23e+04

TP8 UFEs 2.36e+02 2.94e+03 1.45e+03 2.66e+02
LFEs 1.42e+03 3.19e+05 1.23e+04 1.88e+03

TP9 UFEs 2.74e+02 7.42e+02 6.60e+02 2.52e+02
LFEs 2.99e+04 6.65e+05 9.66e+04 3.72e+04

TP10 UFEs 8.29e+02 5.47e+02 6.18e+02 7.77e+02
LFEs 1.92e+05 8.99e+05 4.02e+05 3.01e+05

However, when the numbers of markets and distributors are
increase, the profits of manufacturer and distributors gradually
grow, and HBLSTA shows outstanding performance. In addition,
from the total function evaluations (FEs), it can be seen that
compared with BLEAQ2, HBLSTA can find a better solution with
higher efficiency when solving the ML models.

Table 11 shows the numerical experiment results of the DL
odel. Similarly, HBLSTA can get more profits, no matter at the
anufacturer or distributor level. In terms of algorithm efficiency,
BLSTA requires fewer FEs and is more efficient in solving DL
odel.
The results verify that HBLSTA can effectively solve the BLP

odels we proposed.
11
5.3. Model application

This section is dedicated to introducing the characteristics of
the application of the BLP models (ML and DL) in actual cases.

The novel NBLP models are proposed by combining multiple
coordination strategies and limiting the production budget at
each interval. No relevant studies on the same issue have been
found yet, so there is a lack of comparable data. In fact, in the
model evaluation, we utilize real-world data from a lead-zinc
supply chain in the non-ferrous metallurgy industry to test the
performance of the algorithm. Therefore, the lead-zinc supply
chain is also adopted as a case of our model application.

The parameters of manufacturer, distributors and markets are
randomly selected from the uniform distribution of various pa-
rameters in the lead-zinc supply chain (see Table 9). The results
are shown in Table 12.

In Table 12, the profits obtained by manufacturers, distrib-
utors and the overall supply chain in the ML and DL models
are compared. It can be seen that manufacturer or distributors
who play the leader role in the supply chain can often obtain
higher profits, which is consistent with market rule. At the same
time, although the profits obtained by manufacturers and distrib-
utors in the DL and ML models are quite different, the overall
profits of the supply chain are very close. Moreover, it is worth
noting that the profits of the distributors are much higher than
those of the manufacturer in DL model. From the perspective
of model construction, the main reason is that in the demand
function (Eq. (2)), both advertising expenditure and selling price
are determined by distributors. If distributors occupy the leading
position in the supply chain, they can adjust their strategies to
maximize their own interests. And coupled with the influence of
the demand function, distributors have significant advantages in
the distribution of benefits throughout the supply chain.

The above findings are consistent with cognition in real world.
In the BLP models, the role of the leader is very important,
and the leader with priority decision-making power can often
obtain more profit share in the overall profit of the supply chain.
Therefore, the status of each member in the supply chain must
be reasonably allocated for different situations, and the member
who have priority to maximize profits will play the role of leader.
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Table 8
Efficiency comparison of the HBLSTA with the other three algorithms on the TP test suite. (best, worst and mean).
Pr. Level HBLSTA NBLEA BLEAQ BLEAQ2

Best Worst Mean Best Worst Mean Best Worst Mean Best Worst Mean

TP1 UFEs 1.01e+02 1.65e+02 1.12e+02 1.12e+03 1.33e+03 1.22e+03 7.28e+ 02 7.96e+ 02 7.77e+ 02 1.06e+02 1.86e+02 1.13e+02
LFEs 5.37e+02 5.62e+02 5.52e+02 1.59e+05 1.62e+05 1.61e+05 1.49e+ 04 1.50e+ 04 1.50e+ 04 5.64e+02 5.89e+02 5.72e+02

TP2 UFEs 1.09e+02 1.21e+02 1.12e+02 3.22e+03 3.45e+03 3.36e+03 1.39e+03 1.44e+03 1.42e+03 2.35e+02 2.67e+02 2.42e+02
LFEs 5.89e+02 6.08e+02 5.93e+02 2.43e+05 2.43e+05 2.43e+05 1.45e+04 1.45e+04 1.45e+04 1.76e+03 1.78e+03 1.77e+03

TP3 UFEs 0.99e+02 1.12e+02 1.04e+02 1.46e+03 1.49e+03 1.48e+03 3.56e+02 3.76e+02 3.63e+02 1.49e+02 1.66e+02 1.54e+02
LFEs 5.15e+02 5.25e+02 5.22e+02 1.21e+05 1.21e+05 1.21e+05 4.46e+03 4.49e+03 4.48e+03 5.28e+02 5.35e+02 5.31e+02

TP4 UFEs 2.95e+02 3.11e+02 3.02e+02 1.75e+03 1.77e+03 1.76e+03 2.65e+02 2.80e+02 2.74e+02 2.91e+02 2.96e+02 2.93e+02
LFEs 2.72e+03 2.72e+03 2.72e+03 2.73e+05 2.73e+05 2.73e+05 1.53e+04 1.53e+04 1.53e+04 3.31e+03 3.31e+03 3.31e+03

TP5 UFEs 2.80e+02 2.86e+02 2.83e+02 3.09e+03 3.09e+03 3.09e+03 1.29e+03 1.31e+03 1.30e+03 3.11e+02 3.30e+02 3.20e+02
LFEs 1.74e+03 1.74e+03 1.74e+03 1.48e+05 1.48e+05 1.48e+05 1.57e+04 1.57e+04 1.57e+04 2.42e+03 2.43e+03 2.43e+03

TP6 UFEs 1.33e+02 1.47e+02 1.40e+02 3.25e+02 3.30e+02 3.28e+02 2.78e+02 2.99e+02 2.88e+02 1.77e+02 1.98e+02 1.83e+02
LFEs 7.22e+02 7.32e+02 7.30e+02 1.81e+05 1.81e+05 1.81e+05 1.75e+04 1.75e+04 1.75e+04 1.30e+03 1.31e+03 1.30e+03

TP7 UFEs 2.55e+02 2.80e+02 2.64e+02 3.62e+03 3.63e+03 3.62e+03 4.02e+03 4.04e+03 4.03e+03 3.34e+02 3.01e+02 3.18e+02
LFEs 3.31e+03 3.31e+03 3.31e+03 8.64e+05 8.64e+05 8.64e+05 2.68e+05 2.68e+05 2.68e+05 4.23e+04 4.23e+04 4.23e+04

TP8 UFEs 2.12e+02 2.44e+02 2.36e+02 2.92e+03 2.95e+03 2.94e+03 1.44e+03 1.45e+03 1.45e+03 2.61e+02 2.68e+02 2.66e+02
LFEs 1.42e+03 1.43e+03 1.42e+03 3.19e+05 3.19e+05 3.19e+05 1.23e+04 1.23e+04 1.23e+04 1.86e+03 1.89e+03 1.88e+03

TP9 UFEs 2.65e+02 2.82e+02 2.79e+02 7.22e+02 7.52e+02 7.44e+02 6.52e+02 6.66e+02 6.61e+02 2.48e+02 2.53e+02 2.51e+02
LFEs 2.99e+04 2.99e+04 2.99e+04 6.65e+05 6.65e+05 6.65e+05 9.66e+04 9.66e+04 9.66e+04 3.72e+04 3.72e+04 3.72e+04

TP10 UFEs 8.13e+02 8.40e+02 8.30e+02 5.32e+02 5.59e+02 5.46e+02 6.05e+02 6.31e+02 6.19e+02 7.62e+02 7.88e+02 7.76e+02
LFEs 1.92e+05 1.92e+05 1.92e+05 8.99e+05 8.99e+05 8.99e+05 4.02e+05 4.02e+05 4.02e+05 3.01e+05 3.01e+05 3.01e+05
Table 9
Domains of problem parameters.
Manufacturer Distributors Markets

Parameter Domain Parameter Domain Parameter Domain

Pc [1.2, 2] Ocj [50, 250] bk [30000, 230000]
Sc [50, 250] Dhj [0.05, 0.15] αk [1.5, 2.7]
Mh [0.05, 0.15] βk [0.05, 0.85]
Tcj [0.1, 0.2]
Table 10
Test results for ML model.
Test problem Manufacturer’s profit Distributor’s profit FEs

HBLSTA BLEAQ2 HBLSTA BLEAQ2 HBLSTA BLEAQ2

J = 2, K = 3 55,816 53,822 27,489 27,357 43,410 82,715
J = 3, K = 5 80,150 55,754 42,841 40,653 93,320 113,907
J = 4, K = 7 95,302 80,885 52,860 42,526 103,275 123,783
J = 5, K = 10 123,649 108,124 58,547 47,800 135,248 154,457
J = 6, K = 15 189,996 164,290 81,437 77,616 227,433 241,283
Table 11
Test results for DL model.
Test problem Distributor’s profit Manufacturer’s profit FEs

HBLSTA BLEAQ2 HBLSTA BLEAQ2 HBLSTA BLEAQ2

J = 2, K = 3 80,925 75,110 5,700 3,997 52,267 61,399
J = 3, K = 5 125,757 84,734 5,796 5,277 63,336 73,888
J = 4, K = 7 176,420 126,656 7,651 7,503 103,812 171,429
J = 5, K = 10 236,879 152,674 9,406 9,285 172,129 268,629
J = 6, K = 15 336,427 234,857 14,244 12,524 343,899 482,384
Table 12
Profit comparison in ML and DL models.
Test problem Manufacturer’s profit Distributor’s profit Overall profit

ML DL ML DL ML DL

J = 2, K = 3 63,457 4,880 31,507 89,435 94,964 94,315
J = 3, K = 5 83,315 7,662 57,222 134,970 140,537 142,632
J = 4, K = 7 91,556 12,671 64,390 142,914 155,946 155,585
J = 5, K = 10 126,337 24,387 75,811 177,993 202,148 202,380
J = 6, K = 15 163,822 30,524 83,886 217,037 247,708 247,561
12
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n addition, different impacts on key resources including demand
an also lead to differences in the profits earned by supply chain
embers.

. Conclusion

This paper concentrate on the decentralized supply chain in-
luding one manufacturer and multiple distributors as the re-
earch object. The pricing, inventory management, advertising
nd transportation issues involved in supply chain coordination
ave been investigated and comprehensively considered. Accord-
ng to the characteristics of the decentralized supply chain prob-
em, two BLP models have been established utilizing BLP tech-
ology, which are used to guide the formulation of supply chain
oordination strategies. The market demands in the models are
ffected by the joint nonlinearity of selling price and advertising
xpenditure. Furthermore, the constraints of production budget
n each production interval and advertising budget has also been
oncerned. In addition, in view of the difficulty and inefficiency
f solving BLPPs, a bi-level optimization method (i.e., HBLSTA)
ased on hybrid STA and mapping approximation strategy has
een developed in this paper. After verifying the effectiveness of
he HBLSTA, it has been applied to solve the decentralized supply
hain issues.
According to the numerical experiments of the benchmark

nstances, HBLSTA shows excellent solution accuracy and com-
utational efficiency in solving NBLPPs. Moreover, HBLSTA can
btain an ideal equilibrium solution with higher efficiency when
olving the BLP models of the decentralized supply chain. The
esults of the model evaluation show that in the decentralized
upply chain models, the switching of the leader and follower
oles will lead to differences in the distribution of benefits be-
ween manufacturer and distributors. Normally the supply chain
ember who play the role of leader will get more benefits. At

he same time, the influence of individual members on demand
ill also change the profits they can obtain in the decentralized
upply chain.
In the decentralized supply chain system studied in this paper,

oth upper and lower levels are single-objective optimization
roblems. However, considering the multi-objective problem in
he actual supply chain, how to establish multi-objective BLP
odels and design the corresponding algorithms to guide supply
hain coordination and decision-making could be among inter-
sting future research directions. Furthermore, the pessimistic
ormulations of decentralized supply chain BLP models will also
e an important research work in the future.
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