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a b s t r a c t

The multivariate time series (MTS) classification is one of the major tasks of time series data mining.
Many methods have been proposed to investigate the MTS classification. Among them, the method
based on feature representation is the most popular and widely used one. However, there exist some
shortcomings for this method, such as unsatisfactory accuracy, being sensitive to noise and not able
to fully make use of time series data attributes. In order to overcome these disadvantages, we propose
a new method called functional deep echo state network (FDESN) for MTS classification that utilizes
two special operators: temporal aggregation and spatial aggregation. In general, the parameters of the
FDESN are determined by random selection, human experience or trial and error. This may increase
the complexity of the FDESN or reduce the accuracy of the FDESN. In this study, a novel bi-level
optimization approach is proposed to optimize the parameters of the FDESN. The parameter selection
problem in the FDESN is transformed into the bi-level optimization problem. The state transition
algorithm (STA) is used to solve the bi-level optimization problem. Finally, the experimental results
show that the proposed method is superior to other methods. In addition, the proposed method is
successfully applied to anode condition identification in aluminum electrolysis. For the aluminum
electrolysis datasets, the proposed method improved the average classification accuracy by about
3.5% compared with the other methods. For a specific aluminum electrolysis dataset ACS2504, the
classification accuracy significantly increased from 77.92% to 82.69% by using the proposed method.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Time series exist widely in all aspects of human activities, such
s meteorological data recorded in different years and months,
arious economic indicators recorded in the economic field, and
ystem operation data recorded in the industrial production pro-
ess. The data sequence obtained from the continuous measure-
ent of a certain variable of the system over a period of time is

he time series. If you measure a single variable of the system, you
ill get a univariate time series (UTS). If you measure multiple
ariables of the system, you will get a multivariate time series
MTS). A time series contains the operation information of the
ystem within a certain period of time. Obviously, compared to
TS, MTS contains more information, so this kind of data is more
orthy of study. MTS classification is one of the major tasks of
ime series data mining and one of the hottest issues in recent
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E-mail address: ychh@csu.edu.cn (C. Yang).
ttps://doi.org/10.1016/j.asoc.2021.107314
568-4946/© 2021 Elsevier B.V. All rights reserved.
years [1]. However, there are two main difficulties in dealing
with multivariate time series classification: (1) the MTS sample
contains complex dynamic features that are difficult to represent;
(2) the relative importance of subsequences in the MTS sample
are different. Hence, it is difficult to deal with it using traditional
machine learning algorithms.

In the last two decades, a lot of research have been carried out
and many methods have been proposed for MTS classification.
Most of these methods can be described as the methods based
on feature representation [2–4]. The main characteristic of these
methods is that some important features extracted from the
original MTS samples are used to train the classifier instead of
the samples. These methods can handle curse of dimensionality
well by reducing the dimensionality of the samples. Górecki
et al. [5] proposed a new approach for MTS classification using a
parametric derivative dynamic time warping distance. Baydogan
et al. [6] provided a novel classifier based on a new symbolic
representation for MTS with several important elements. Mei

et al. [7] proposed a Mahalanobis distance-based dynamic time
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arping measure for MTS classification. Wang et al. [8] proposed
new approach for MTS classification that utilizes recurrent
eural network and adaptive differential evolution algorithm.
owever, there exist some shortcomings for these methods: (1)
nsatisfactory accuracy; (2) time consuming; (3) sensitivity to
oise; (4) insufficient use of time series data attributes.
In recent years, deep learning is a hot field in machine learning

esearch and has been successfully applied to many fields, such
s image recognition, document classification and speech recog-
ition [9–11]. It gradually transforms the initial low-level feature
epresentation into high-level feature representation through
ulti-level processing and complex learning tasks such as classi-

ication. The potential ability of deep learning models to classify
ime series especially MTS has gradually attracted the interest
f the machine learning community [12]. Indeed, the ability of
eep learning to capture the dynamic features and temporal
tructure of MTS is really strong. Many deep learning algorithms
ave been proposed for MTS classification, such as echo state
etwork (ESN), convolutional neural network (CNN) and multi
ayer perceptron (MLP). Among them, the ESN is a relatively
ecent type of recurrent neural networks (RNNs). In general, an
SN consists of an input layer, a hidden layer (i.e. the reservoir),
nd an output layer. The core of the ESN is that it is a sparsely
onnected random RNN. That is, the hidden layer is initialized
andomly and constitutes the reservoir. The ESN can mitigate
he challenges of RNNs by eliminating the need to compute the
radient for the hidden layer which reduces the training time
f these neural networks thus avoiding the vanishing gradient
roblem. Due to the faster training speed and stronger non-linear
pproximation capacity, the ESN is a promising method for MTS
lassification [13–18].
In order to enhance the ability of feature representation, the

eep echo state network (DESN) was recently proposed in [19],
hich has multiple hidden layers. The performance of DESN has
een demonstrated in several actual applications. Being com-
osed of a stack of multiple non-linear reservoir layers, the DESN
otentially allows to exploit the advantages of a hierarchical
emporal feature representation at different levels of abstraction,
t the same time preserving the training efficiency typical of
he reservoir computing methodology. In other words, the ability
f the DESN to represent dynamical features at multiple levels
f abstraction allows to capture more naturally the temporal
tructure of the data whenever it is intrinsically characterized
y a multiple time-scales organization. Specifically, the DESN has
hown to outperform the shallow ESN for time series classifica-
ion [20–23]. Gallicchio et al. [22] provided a novel approach to
he architectural design of DESN using signal frequency analysis.
u et al. [24] proposed a novel method based on the wavelet-
enoising algorithm and DESN to improve the prediction accuracy
f noisy multivariate time series. Sun et al. [25] proposed a deep
elief echo state network (DBESN) for time series prediction. In
ddition, some DESN variants have been proposed in recent years.
ong et al. [26] proposed evolving deep echo state networks for
ntelligent fault diagnosis. Li et al. [27] introduced an approach
o pre-train a growing ESN with multiple sub-reservoirs by op-
imizing singular values, based on particle swarm optimization
nd singular value decomposition. Ma et al. [28] proposed a
ovel multiple projection-encoding hierarchical reservoir com-
uting framework called deep projection-encoding echo state
etwork. Although the DESN has a very good ability to capture
he dynamic features of time series, it do not consider the relative
mportance of temporal data at different time steps.

In this paper, by introducing two special operators: tempo-
al aggregation and spatial aggregation, a novel DESN method
alled functional deep echo state network (FDESN) is proposed
or MTS classification, which is inspired by [29]. Temporal ag-
regation mainly accumulates the information from time-varying
2

input signals in the time domain and characterizes the temporal
information of input signals with dynamic weighting functions,
while spatial aggregation aggregates the information from the
inputs, that are time independent, and obtains joint informa-
tion from multiple independent inputs with static weights. The
combination of temporal aggregation and spatial aggregation can
effectively accumulate temporal information in the time dimen-
sion that consider the relative importance of temporal data at
different time steps. The main idea of the FDESN is to map the
information (the neural states and the output weight matrix) of
the last reservoir from the functional space to the real number
space. This mapping makes the FDESN become a true classifier.

The challenge faced by the FDESN is usually related to the
design of its architecture and weights. Specifically, extraction
of compact, equal or extended new data features is related to
both the DESN’s complexity and accuracy. Sometimes, a com-
pact representation may lead to loss of some details about the
original data. Also, an extended representation may engender a
complexity increase. Many other scenarios are also possible. In a
word, the performance of the FDESN is limited by the settings
of its architecture and weights. However, due to the lack of
understanding the property of the hidden layer, the parameters
of the FDESN are difficult to set. In general, the parameters are
set manually by trial and error and there are no precise rules
to choose these parameters. Hence, the parameters of the FDESN
should be optimized through other techniques to improve its per-
formance. Evolutionary algorithms, one of typical representative
of metaheuristics, are inspired from biological evolution facts and
has proven its ability in finding optimal solutions in complex
optimization problems, especially in the parameter optimization
problem. Hence, evolutionary algorithms can used to optimize the
parameters of the FDESN.

At present, many evolutionary algorithms have been devel-
oped for complex optimization problems, which include genetic
algorithm (GA), particle swarm optimization (PSO), differential
evolution (DE) and so on. Recently, a novel nature-inspired
method called state transition algorithm (STA) has emerged in
evolutionary algorithms [30]. The powerful global search ability
and flexibility of the STA have been demonstrated in many real-
world applications [31–35]. The main advantages of the STA
over other EAs are threefold. First, the STA has some control
parameters and the range of candidate solutions it generates is
manageable. In addition, the STA has a simple structure, which
is effective, fast and capable of addressing complex optimiza-
tion problems and also easily suitable for different numerical
optimization problems. Finally, the STA’s strategies including gen-
erating trial solutions, controlling the search direction and range,
and the secondary transition mechanism give it very powerful
exploration and exploitation capabilities. Thus, the STA could be
an effective and efficient method for optimizing the parameters
of the FDESN.

In order to handle the above problem, a novel bi-level op-
timization approach is proposed to optimize the parameters of
the FDESN. First, the parameter selection problem in the FDESN
is transformed into the bi-level optimization problem. In the bi-
level optimization problem, the upper level is to optimize the
architecture-related parameters, and the lower level is to opti-
mize the weight-related parameters. Meanwhile, the objective
of the upper level is to minimize the computational complexity
while maintaining a better classification accuracy, and the objec-
tive of the lower level is to maximize the classification accuracy.
Then the STA is introduced to find the optimal parameters, which
has successfully solved a class of bi-level optimization prob-
lem [32]. Finally, in order to verify the validity of the proposed
method, some comparative experiments are carried out. The ex-

perimental results show that the proposed method outperforms
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Fig. 1. Echo state network model.

ther methods. In addition, the proposed method is successfully
pplied to anode condition identification in the aluminum elec-
rolysis. The novelty and main contributions of this study are
ighlighted as follows:

• By introducing two special operators: temporal aggregation
and spatial aggregation, a novel DESN method called func-
tional deep echo state network (FDESN) is proposed for MTS
classification, which can not only capture the dynamic fea-
tures of the MTS, but also consider the relative importance
of temporal data at different time steps.

• A novel bi-level optimization approach is proposed to op-
timize the parameters of the FDESN. In the upper level,
the architecture-related parameters are optimized by pro-
viding a trade-off between the accuracy and complexity. In
the lower level, the optimized architecture-related parame-
ters are used to optimize the weight-related parameters by
maximizing the classification accuracy.

• The STA is used to solve the bi-level optimization problem.
The upper level optimization problem is handled by the
multi-objective STA (MOSTA), and the lower level optimiza-
tion problem is addressed by a single-objective STA.

• The proposed method is successfully applied to anode con-
dition identification in the aluminum electrolysis.

The remainder of this paper is organized as follows. Section 2
ntroduces deep echo state network, temporal and spatial ag-
regation operators. Section 3 presents the proposed method.
ection 4 provides the experimental results and analysis. Finally,
onclusion is given in Section 5.

. Background

.1. Deep echo state network (DESN)

The echo state network (ESN) is a novel recurrent neural net-
ork (RNN), which uses a sparsely connected structure also called

‘reservoir’’ to form the hidden layer [13]. The ESN’s architecture
s shown in Fig. 1. The characteristics of the ESN are as follows: (1)
t contains a relatively large number of neurons; (2) Connections
etween neurons are randomly generated; (3) The links between
eurons are sparse. An ESN consists of an input layer, a hidden
ayer (i.e. the reservoir), and an output layer. The dynamics of the
SN are defined as follows:

x(t + 1) = f (Winu(t + 1) + Wx(t))
y(t + 1) = g(Woutx(t + 1))

(1)

where u, x and y are the inputs, the internal states and the
outputs, respectively; Win, W and Wout represent the input-to-
reservoir weight matrix, the reservoir weight matrix and the
reservoir-to-output weight matrix, respectively; f and g are the
activation functions of the reservoir and output units, respec-
tively.
3

In the training phase, the matrices Win and W are initialized
randomly. The inputs are projected into the high-dimensional
state spaces in the reservoir, and the matrix Wout can be learned
by linear regression. Thus, training an ESN is both simple and fast,
and the ESN can avoid the vanishing gradient problem and reduce
computational complexity for modeling time series data.

Recently, in order to improve the feature representation ability
of ESN, multi-layered echo state network, also known as deep
echo state network (DESN), was proposed by Malik et al. [19],
which has multiple reservoirs. The reservoirs in the DESN are
serially connected. Hence, each reservoir state relies mainly on
its previous state and the output of its previous reservoir. The
DESN’s architecture is shown in Fig. 2. The dynamics of DESN are
defined as follows:
x1(t + 1) = f (Winu(t + 1) + W1x1(t))
x2(t + 1) = f (Wexter(1)x1(t + 1) + W2x2(t))
...

xM (t + 1) = f (Wexter(M−1)xM−1(t + 1)

+ WMxM (t))

(2)

he output of DESN can be computed as follows:

(t + 1) = g(WoutxM (t + 1)) (3)

hereM is the number of the reservoirs; u, x, y denote the inputs,
he internal states and the outputs, respectively; Win and Wout

epresent the input weight matrix and the output weight matrix,
espectively; Wi (i = 1, . . . ,M) and Wexter(j) (j = 1, . . . ,M−1)
tand for the inner recurrent matrix of each reservoir and the
xternal weight matrix for the jth reservoir and the (j + 1)th
eservoir, respectively; f and g are the activation functions of the
eservoirs and the output, respectively. In this study, the tanh
unction is used as the activation functions of the reservoirs in
he DESN.

.2. Temporal and spatial aggregation operators

Temporal and spatial aggregation operators were first pro-
osed by He and Xu [36], which basically mimic the operating
echanism of the biological brain. The brain can be seen as a

arge network of many neurons. In a brain, each neuron can
eceive and process biochemical signals according to the signal
ime. Between neurons, biochemical signals can be transmitted
rom multiple neurons to others. Temporal aggregation and spa-
ial aggregation are a simulation of these two processes. The
tructures of these two operators are shown in Fig. 3. The tem-
oral aggregation operator is to accumulate the dynamic weight
nformation from an input signal and map it to a real num-
er output. The output of temporal aggregation operator can be
escribed as follows:

=

∫ T

t=0
w(t)u(t)dt (4)

here w(t) is the weight function, u(t) is the input signal and
is the output; T represents the length of the input signal. The
patial aggregation operator is to obtain the information from
ultiple input signals and output a real number. The output of
patial aggregation operator can be described as follows:

= f (
N∑
i=1

wiui − θ ) (5)

here wi is a static weight, N is the number of the input signals,
is a threshold and f is the activation function.
In order to obtain the relative importance of temporal data

t different time steps, the temporal aggregation and spatial
ggregation need to be added to the DESN in this study. They
an project the temporal signals into a real number and make
he DESN become a true classifier.
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Fig. 2. Deep echo state network model.
Fig. 3. (a) The temporal aggregation operator. (b) The spatial aggregation
perator.

. The proposed method

In this section, a novel DESN method called functional deep
cho state network (FDESN) is proposed for MTS classification.
hen the crucial parameters of FDESN are introduced. Finally, a
ovel bi-level optimization approach is proposed to optimize the
arameters of the FDESN.

.1. Functional deep echo state network (FDESN)

The FDESN has four layers: input layer, reservoir layer, spatio-
emporal aggregation layer, and output layer. The structure of
he FDESN is shown in Fig. 4. The difference between FDESN
nd DESN is that FDESN has the spatio-temporal aggregation
ayer. The basic idea behind FDESN is to map the information
the neural states and the output weight matrix) of the last
eservoir from the functional space into the real number space
sing the temporal aggregation operator, and then forms the
iscriminating hyperplane using the spatial aggregation operator.
hese operations make the FDESN become a true classifier.
In the FDESN, the neural states are updated as the same as

q. (2). We use the following equation to represent the updating
ules:
F : RNU × RNR × · · · × RNR  

M

→ RNR × · · · × RNR  
M

x(t) = F (u(t), x(t − 1))
(6)

where F is a function to update the global state of the FDESN. NU
is the size of the input. NR is the size of the reservoir.

The details of the spatio-temporal aggregation layer are pre-
ented as follows. According to Eq. (4), the temporal aggregation
esult of the ith unit in the last reservoir is

ji =

∫ T

wji(t)xi(t)dt (7)

t=0

4

where xi(t) is the neural state of the ith unit in the last reservoir at
time t and wji(t) is the weight from the ith unit to the jth output.
According to Eq. (5), the spatial aggregation of the jth output is
shown as follows:

Σj =

N∑
i=1

ηji (8)

Thus, the jth output is

yj = g(Σj) = g(
N∑
i=1

∫ T

t=0
wji(t)xi(t)dt) (9)

Let N denote the number of neurons in the last reservoir, L
denote the number of classes. The output weight matrix of the
last reservoir at time t is

Wout (t) =

⎡⎢⎢⎣
w11(t) w12(t) · · · w1N (t)
w21(t) w22(t) · · · w2N (t)

...
...

. . .
...

wL1(t) wL2(t) · · · wLN (t)

⎤⎥⎥⎦ (10)

The neural states in the last reservoir at time t is denoted as

x(t) =
[

x1(t) x2(t) · · · xN (t)
]T (11)

Thus, the output could be written as

y = g(
∫ T

t=0
Wout (t)x(t)dt) (12)

From Eq. (12), the output weight matrix of the last reservoir
Wout (t) is a function of time, which represents the discriminating
hyperplane. The goal of FDESN is to find a proper Wout (t) to
classify the samples. The detailed method for learning the Wout (t)
can be seen in [29].

However, the FDESN has many parameters and the perfor-
mance of the FDESN is closely related to these parameters. Hence,
the crucial parameters of FDESN are introduced in the following
subsection.

3.2. The crucial parameters of FDESN

The parameters of the FDESN can be divided into two classes
due to the different properties of the parameters. The first class is
related to the architecture and the second class is related to the
weights. The first class of parameters includes the number of the
reservoirs M , the size of the ith reservoir SRi , input connectivity
rate Cin, the ith reservoir’s internal connectivity rate CRi , the ith
reservoir’s external connectivity rate Cexter(i) and the ith reservoir’s
spectral radius ρi. The second class of parameters includes the
input weight matrix Win, the inner recurrent matrix of the ith
reservoir Wi and the external weight matrix for the ith reservoir
and the (i+1)th reservoir Wexter(i). The function of the first class of
parameters is to determine the architecture of the FDESN and the
range of the second class of parameters. For example, if the size
of the first reservoir SR1 is 100, the inner recurrent matrix of the
first reservoir W 1 is a 100-by-100 matrix. Hence, the first class
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f parameters has important and quantitative influence on the
econd class of parameters, and further affects the performance
f the FDESN. The second class of parameters directly affects the
erformance of the FDESN. The details of these parameters are
resented as follows.
The reservoir layer is an important part of the FDESN, which

s used as the information processing medium to map the in-
ut signals from the low-dimensional input space to the high-
imensional state space. Then the nonlinear relationship between
he input layer and the output layer can be transformed into a
inear relationship between the reservoir layer and the output
ayer. M is the number of the reservoirs in the reservoir layer.
SRi is the number of neurons contained in the ith reservoir.
he bigger M can provide better expression for data description
eanwhile needs more computation. The bigger SRi can describe

he dynamic evolution mechanism of the system while too big
ne will cause the problem of over-fitting. Hence, M and SRi are
he most important parameters affecting the performance of the
DESN.
The connectivity rate represents the sparse degree of the con-

ections among the neurons. In FDESN, there are three connectiv-
ty rates: Cin is the input connectivity rate, CRi is the ith reservoir’s
nternal connectivity rate and Cexter(i) is the ith reservoir’s ex-
ernal connectivity rate. The more connectivity rate, The more
onnections among the neurons. As Jaeger said, the dynamic char-
cteristics of ESN can be satisfied with about 10% connections. But
his is not mandatory and can be tailored to specific issues. In this
tudy, the connectivity rate is among the range of 5–10%.
The spectral radius ρi refers to the maximum absolute value

f the eigenvalue of the internal connection matrix of the ith
reservoir. Since the reservoir is a recursive neural network, it is
inevitable to consider the stability problem. Jaeger pointed out
that the stable operation of ESN can be guaranteed when the
spectral radius is between [0, 1]. But it depends on the specific
problems. In this study, ρi is also among the range of [0, 1].

Besides, Win, Wi and Wexter(i) in the original FDESN are ran-
omly generated and unchanged until the end of the training
rocess. In order to improve the accuracy of the FDESN for MTS
lassification, these three weight matrices will be optimized as
he lower level parameters.

.3. A bi-level optimization approach applied to FDESN

In general, the first class of parameters of the FDESN are de-
ermined by human experience or trial and error. Although it can
chieve good results, it is difficult to choose the best parameters
or complex tasks. On the other hand, Win, Wi and Wexter(i) in
the original FDESN are randomly generated and unchanged until
the end of the training process. This will have an impact on the
training results, causing the performance of FDESN to degrade in
5

Fig. 5. The general scheme of the proposed bi-level optimization approach.

many applications. Hence, a novel bi-level optimization approach
is proposed to optimize the parameters of the FDESN. The general
scheme of it is shown in Fig. 5. The details of this approach are
presented as follows.

3.3.1. Upper level: architecture optimization
In the upper level, the main purpose is to tune the

architecture-related parameters in the FDESN. So the decision
variables are the architecture-related parameters, which are de-
noted by a vector x. Based on the analysis in the previous sub-
ection, these parameters affect both computational efficiency
nd computational performance. Hence, different from the tradi-
ional parameter selection, a multi-objective approach is adopted
o consider the contradiction between computational efficiency
nd computational performance. Two objectives are considered,
ncluding the efficiency objective to minimize the computational
omplexity and the performance objective to maximize the clas-
ification accuracy. Thus, the architecture-related parameters are
ptimized in a reasonable manner, considering the computational
omplexity and the classification accuracy at the same time.
The efficiency fitness function consists of the number of the

eservoir’s internal connections in all the reservoirs and the num-
er of the reservoir’s external connections in the reservoir layer,
hown as Eq. (13).

omplexity =

M∑
i=1

SRiCRi +

M−1∑
i=1

SRiCexter(i) (13)

The performance fitness function is to directly compute the clas-
sification accuracy of the FDESN, shown as Eq. (14).

accuracy =
number of correct classifications

(14)

total number of classifications
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t divides into two stages: (1) train the FDESN using the training
ata; (2) obtain a classification accuracy value by using the FDESN
o classify the testing dataset. As can be seen, the upper level
ptimization problem is a multi-objective optimization problem.
ts solution is no longer an optimal solution, but a non-dominant
olution set.

.3.2. Lower level: weights optimization
In the lower level, the main purpose is to tune the weight-

elated parameters in the FDESN. So the decision variables are
he weight-related parameters, which are denoted by a vector y.
he objective is to maximize the classification accuracy. Hence,
q. (14) is selected as the fitness function.
Different from the general bi-level optimization problem, x in

the lower level optimization problem is in the non-dominated
solution set, which is obtained from the upper level. Hence, the
global optimal solution is determined by comparing the fitness
function in the lower level.

3.4. The implementation of the proposed method

Algorithm 1 The pseudo-code of STA-FDESN

Require: Time series dataset D, the parameters of STA and
MOSTA;

1: Set the parameters of STA and MOSTA;
2: Generate the initial candidate solutions of the upper level;
3: Randomly initialize the weights for the FDESN;
4: Apply the MOSTA to solve the upper level optimization

problem;
5: Obtain the upper level initial non-dominated solutions

xBests;
6: for each non-dominated solution do
7: Apply the STA to solve the lower level optimization

problem;
8: Obtain the lower level best solution yBesti for the ith

non-dominated solution;
9: Save the yBesti;

10: end for
11: Get the initial best solution Z = (xBest, yBest) by comparing

the yBesti;
12: while the specified termination criterion is not met do
13: Update the upper level current best non-dominated so-

lutions xBests based on the yBest in the Z by applying the
MOSTA to solve the upper level optimization problem;

14: Obtain the lower level best solution yBesti for the ith non-
dominated solution according to the above for loop (lines
6–10);

15: Update the current best solution Z = (xBest, yBest);
16: end while
17: return Z = (xBest, yBest).

The proposed optimization model is a bi-level, asymmetric
nd nonlinear optimization problem. Because of the powerful
lobal search ability and flexibility of state transition algorithm
STA) [32–35], the STA is used to solve the bi-level optimization
roblem. In order to meet the needs of the upper level opti-
ization problem, multi-objective STA (MOSTA) is adopted to
olve it. MOSTA is a Pareto-based multi-objective optimization
lgorithm, which is developed by Zhou et al. [31]. For the lower
evel optimization problem, the single objective STA is adopted to
olve it. The implementation of the proposed method is presented
s follows.
The proposed method is also called ‘‘STA-FDESN’’, and its

lowchart is shown in Fig. 6. Meanwhile, Algorithm 1 shows the
etails of the STA-FDESN. First, the time series dataset and the
6

Table 1
Description of the MTS datasets in the benchmark experiments.
Datasets Variables Length Classes Samples

Arabic digits 13 4∼93 10 8800
Australian language 22 45∼136 95 2565
Character trajectories 3 109∼205 20 2858
CMU subject 16 62 127∼580 2 58
ECG 2 39∼152 2 200
Japanese vowels 12 7∼29 9 640
Libras 2 45 15 360
Pen digits 2 8 10 10992
Robot failure LP1 6 15 4 88
Robot failure LP2 6 15 5 47
Robot failure LP3 6 15 4 47
Robot failure LP4 6 15 3 117
Robot failure LP5 6 15 5 164
Wafer 6 104∼198 2 1194

important related parameters are entered into the algorithm (line
1). Then, the initial candidate solutions of the upper level are
randomly generated and random weights are initialized for the
FDESN (lines 2–3). After that, the set of initial non-dominated
solutions xBests are obtained by using the MOSTA to solve the
upper level optimization problem (lines 4–5). Then, each non-
dominated solution of the upper level is sent to the lower level.
For each non-dominated solution, the current best solution yBesti
of the lower level is obtained by executing the STA to optimize
the lower level optimization problem (lines 6–10). Finally, the
initial best solution Z = (xBest, yBest) is obtained by com-
paring the yBesti according to the lower fitness function (line
11). Afterwards, the same steps are repeated until the specified
termination criterion is met (lines 11–16). It is worth noting that
the lower level optimization is equivalent to a subroutine, which
is to obtain the best solution yBest for the input non-dominated
solutions xBests. Once the upper level obtains the current best
non-dominant solutions xBests, the lower level optimization is
called to obtain the best solution yBest based on the xBests,
and finally Z is obtained by comparing the lower level fitness
function. The process of the upper lower optimization is based
on the current best solution yBest in the current best solution
Z. Hence, the best non-dominant solutions of the upper level
optimization problem are generated based on the yBest, and the
best solution of the lower level optimization problem is generated
based on the xBests. They are the results of the alternating
iterative optimization.

4. Experimental results and analysis

In this section, some benchmarks are first used to evaluate the
performance of the proposed method STA-FDESN, which were ob-
tained from UCI [37] and UCR [38]. Then the STA-FDESN is applied
to identify the anode condition in aluminum electrolysis by clas-
sifying a multivariate time series data named anode current sig-
nals. The nine state-of-the-art algorithms: dynamic time warping
(DTW) [5], derivative dynamic time warping (DDTW) [5], para-
metric derivative dynamic time warping DDDTW [5], Conceptor-
ADE (CADE) [8], COTE [39], CNN [40], DESN, FESN [29] and FDESN
were selected to compare with the STA-FDESN. All experiments
were executed on a personal computer with Intel Core i7 and
16-GB RAM using MATLAB.

4.1. Benchmark test

In the first experiment, fourteen real-world datasets were
used to show the effectiveness of the STA-FDESN. Table 1 shows
the detailed information of these MTS datasets. The names of the
datasets are listed in the first column. The number of variables in
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Fig. 6. The flowchart of the proposed method.
hese datasets ranges from 2 to 62. The length of MTS in each
ataset is different. The number of classes and samples range
rom 2 to 95 and from 47 to 10992, respectively.

In order to investigate the influence of key parameters to
he proposed model’s performance, a series of experiments are
esigned and conducted. Tables 2–4 show the average classi-
ication accuracy (%) of the proposed method under different
ircumstances. Table 2 shows the results of the FDESN’s perfor-
ance comparisons under different numbers of the reservoirs.

t is obvious that the performance of the FDESN varies greatly
ith different reservoirs. However, too many reservoirs of the
roposed model can easily lead to over-fitting. Table 3 shows
he results of the FDESN’s performance comparisons under dif-
erent numbers of neurons. It is clear that the more neurons
he proposed model had, the higher the accuracy. But too many
eurons lead to increase the computational complexity. That is
hy we design a complexity & accuracy objective in the upper
7

Table 2
Comparison of the FDESN’s performance under different numbers of the
reservoirs.
Datasets The number of the reservoirs

1 5 10 15 20

Arabic digits 97.16 99.05 98.65 98.90 98.81
Australian language 72.44 78.95 83.24 81.60 82.46
Character trajectories 96.08 98.36 97.83 97.10 97.66
ECG 85.52 86.56 89.52 88.06 88.04
Japanese vowels 96.10 98.91 97.66 97.81 97.19
Pen digits 96.92 97.67 99.10 98.15 98.02

optimization problem. Table 4 shows the results of the STA-
FDESN’s performance comparisons under multiple random initial-
izations. It is observed that the proposed method is stable in the
experiment.

Next, the proposed method STA-FDESN is compared with nine
state-of-the-art algorithms, including DTW, DDTW, DD , C ,
DTW ADE
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able 3
omparison of the FDESN’s performance under different numbers of neurons.
Datasets The size in each reservoir

100 200 300 400 500

Arabic digits 97.45 97.68 98.23 98.90 99.10
Australian language 76.18 79.88 81.72 83.63 83.66
Character trajectories 96.36 97.17 98.01 98.22 98.46
ECG 86.04 87.06 88.04 88.56 89.52
Japanese vowels 96.41 97.35 97.81 98.13 98.60
Pen digits 97.10 97.75 97.94 98.18 98.90

Table 4
Comparison of the STA-FDESN’s performance under multiple random initializa-
tions.
Datasets Random initialization

1 2 3 4 5

Arabic digits 99.52 99.48 99.36 99.45 99.54
Australian language 85.85 84.60 84.87 84.87 85.46
Character trajectories 98.92 98.78 98.46 98.99 98.64
ECG 90.52 89.52 89.04 90.52 89.52
Japanese vowels 99.07 98.91 99.07 98.44 98.75
Pen digits 99.38 99.21 99.42 99.35 99.18

Table 5
Cross validation classification accuracy (%).
Datasets DTW DDTW DDDTW CADE COTE

Arabic digits 99.81 89.50 99.81 99.23 98.45
Australian language 81.95 72.67 81.52 74.98 80.35
Character trajectories 98.64 98.22 99.09 98.06 98.78
CMU subject 16 96.33 89.33 96.33 99.60 93.57
ECG 81.50 86.00 85.50 88.80 85.52
Japanese vowels 97.97 60.94 97.97 99.00 95.16
Libras 91.39 95.83 95.00 95.84 90.83
Pen digits 99.35 99.39 99.50 98.44 99.25
Robot failure LP1 87.36 77.50 85.14 99.25 88.61
Robot failure LP2 68.00 62.00 68.00 75.82 64.50
Robot failure LP3 71.00 71.00 75.00 75.82 70.83
Robot failure LP4 89.92 79.55 89.92 96.17 85.61
Robot failure LP5 70.70 62.68 71.25 72.65 65.88
Wafer 97.99 90.79 98.08 98.26 97.57

Datasets CNN DESN FESN FDESN STA-FDESN

Arabic digits 98.56 99.16 99.23 98.50 99.52
Australian language 72.83 78.48 81.44 79.53 85.89
Character trajectories 98.25 98.11 98.18 98.08 98.95
CMU subject 16 93.81 95.00 96.90 95.24 100.00
ECG 86.04 86.04 86.54 87.06 90.52
Japanese vowels 97.66 98.13 98.44 97.98 99.07
Libras 93.61 94.72 95.56 93.90 96.67
Pen digits 99.10 98.90 98.55 98.00 99.40
Robot failure LP1 95.67 96.89 98.00 96.78 98.89
Robot failure LP2 70.67 72.67 74.67 70.83 76.67
Robot failure LP3 70.83 72.83 74.67 72.50 76.67
Robot failure LP4 90.61 94.17 95.83 93.26 96.67
Robot failure LP5 70.77 71.39 72.61 70.75 73.84
Wafer 98.07 98.16 98.07 97.99 99.33

COTE, CNN, DESN, FESN and FDESN. In order to make a fair com-
parison for the experimental datasets, the related parameters of
the different methods are set according to the suggestions of their
corresponding literatures. It is worth noting that the parameters
of the FDESN are not set optimally. For each dataset, the 10-fold
cross-validation method is used to evaluate the performance of
the comparative methods.

Table 5 shows the results of the comparative experiments.
t is clear that the STA-FDESN outperforms other methods on
ost datasets. This shows the superiority of the STA-FDESN. Some
henomena can be concluded from Table 5. First, the performance
f the proposed method is better than that of CADE and FESN. The
eason is simple: because the STA-FDESN has multiple reservoirs,
he feature representation capability of the STA-FDESN is more
8

Fig. 7. Upper level: the non-dominant solutions obtained by the MOSTA for the
four datasets.

powerful than that of CADE and FESN. Second, the performance of
the proposed method is better than that of COTE, CNN and DESN.
Because the proposed method introduced the spatio-temporal
aggregation layer, which can consider the relative importance
of multivariate time series data. Third, the performance of the
proposed method is relatively worse than that of DTW, DDTW
and DDDTW on Arabic digits, Character trajectories and Pen digits.
The same characteristic is that these datasets has a large number
of samples. It is probable that too much data may cause the
proposed method to over-fit. Fourth, for the four datasets, that is,
Arabic digits, Character trajectories, Pen digits and Robot failure
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Fig. 8. Iterative curves of the classification accuracy obtained by the proposed
method for the four datasets.

LP1, the classification results of the STA-FDESN is basically close
to the best results. The non-dominant solutions obtained by the
MOSTA for the four datasets are shown in Fig. 7. It is important
to note that the y-coordinate here is the error rate. Because
maximizing accuracy equals minimizing the error rate. It is clear
that the pareto front is obtained by the MOSTA, which is the
optimal results of the trade-off between accuracy and complexity.
Iterative curves of the classification accuracy obtained by the
proposed method for the four datasets are shown in Fig. 8. The
optimization process ends when the generation reaches 30. At
the same time, the best parameter values of the FDESN are
obtained. In addition, the execution time is tracked for some
9

Table 6
Execution times (in seconds) of the comparative methods on some datasets.
Datasets DTW CADE COTE CNN STA-FDESN

Arabic digits 8804 6818 7210 10618 7018
CMU subject 16 78 61 75 92 68
ECG 386 268 296 401 286
Japanese vowels 521 360 411 684 389

Table 7
Comparison of classification accuracy between several evolutionary algorithms
on some datasets.
Datasets Australian language ECG Libras Pen digits

FDESN 79.53 87.06 93.90 98.00
STA-FDESN 85.89 90.52 96.67 99.40
DE-FDESN 83.98 89.04 95.84 99.30
PSO-FDESN 83.90 88.56 95.56 99.20
GA-FDESN 83.47 88.08 95.29 99.10

Table 8
Execution times (in seconds) of the comparative methods on some datasets.
Datasets Australian language ECG Libras Pen digits

STA-FDESN 3225 286 329 1569
DE-FDESN 3659 325 384 1840
PSO-FDESN 3745 336 391 1886
GA-FDESN 4568 381 426 2001

comparative algorithms and comparative results are shown in
Table 6. Although the STA-FDESN takes a little more time than
the CADE , its running time is still acceptable. Hence, in general, the
performance of the proposed method is relatively more superior
than other methods.

To further evaluate the performance of the STA to optimize the
FDESN, a performance comparison between several evolutionary
algorithms on some datasets is carried out. The comparative evo-
lutionary algorithms include differential evolution (DE), particle
swarm optimization (PSO) and genetic algorithm (GA) [41]. Their
related parameters are also set according to the suggestions of
their corresponding literatures. Table 7 shows the results of the
comparative experiments. It is obvious that the STA produces
more effective accuracy results compared to other evolutionary
algorithms. Next, the execution time is tracked for all compara-
tive algorithms and the comparative results are shown in Table 8.
It can be seen that the all the comparative algorithms take a
relative long time to optimize the FDESN, but the STA takes
relatively little time.

4.2. Application to anode condition identification in aluminum elec-
trolysis

In aluminum electrolysis, the aluminum reduction cell is a
complex system with multivariable, nonlinear, time delay and
time variation, and its mechanism model is difficult to describe
[35,42–44]. The aluminum reduction cell is usually divided into
four parts: cathode structure, upper structure, bus structure and
electrical insulation, as shown in Fig. 9. As an important part of
the upper structure, anode is one of the most important modules
in the aluminum reduction cell, which is known as the ‘‘heart’’ of
aluminum electrolysis. Since the anode process is closely related
to the quality of aluminum electrolysis production, how to judge
the working conditions of anode is very important. Fortunately,
with the rapid development of sensor technology, anode current
signal appears as a new process variable, which can reflect the
working conditions of anode. The anode current signal is a mul-
tivariate time series data, which usually has 24 variables in a 400
kA cell. If the working condition of anode changes, the anode

current signal changes immediately. Hence, it is a promising
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Fig. 9. Sketch map of an aluminum reduction cell.
able 9
escription of the anode current signals datasets in aluminum electrolysis.
Datasets Variables Length Classes Samples

CS2501 24 150∼200 4 896
ACS2502 24 150∼200 4 756
ACS2503 24 150∼200 3 698
ACS2504 24 150∼200 2 566

Table 10
Cross validation classification accuracy (%).
Datasets DTW DDTW DDDTW CADE COTE

ACS2501 88.62 79.91 85.38 95.20 90.07
ACS2502 83.60 80.42 77.78 87.96 80.16
ACS2503 77.51 72.78 80.66 82.66 75.50
ACS2504 71.55 73.15 74.03 77.92 72.97

Datasets CNN DESN FESN FDESN STA-FDESN

ACS2501 92.19 94.64 91.97 92.97 96.21
ACS2502 83.60 86.38 83.47 84.00 89.02
ACS2503 80.52 83.10 80.95 82.95 85.39
ACS2504 76.50 77.03 76.15 76.85 82.69

method to identify the working condition of anode by classifying
the anode current signals.

In this subsection, four datasets about anode current signals
ere used to illustrate the performance of the proposed method

n this study. These datasets were gathered from an aluminum
lectrolysis plant located in Shandong, China. Table 9 shows the
etailed information of these datasets. Here, the number of vari-
bles is 24, the length of these datasets is from 150 to 200, and
he number of classes and samples range from 2 to 4 and from
0 to 200, respectively. In addition, each sample has one output
lass indicating the working condition of anode (i.e., anode effect,
node slippage, anode deformation and normal anode).
Table 10 shows the results of the comparative experiments. In

ddition, iterative curves of the classification accuracy obtained
y the proposed method for the four datasets are shown in Fig. 10.
t is obvious that the STA-FDESN outperforms other methods on
ll the datasets. Some interesting conclusions can be obtained
rom Table 10. First, the performance of the proposed method is
lso better than that of CADE and FESN. Second, the performance
f the proposed method becomes better with the increase of the
umber of samples. Third, from the relative accuracy rates, we
an see that the performance of the STA-FDESN is significantly
mproved. Hence, in general, the performance of the proposed
10
method is superior than that of other methods in aluminum
electrolysis datasets.

4.3. Discussion

As shown by the experimental results reported in this section,
the proposed method has a significant impact on the precision
of the FDESN model. The bi-level optimization approach has
improved the performance of the FDESN considerably in terms
of precision, stability and robustness. The advantage of the upper
level is that it considers a trade-off between classification and
complexity, not a single objective optimization. This not only
optimizes the architecture of the FDESN, but also maintains a
good precision, while providing diversity for the optimization of
the lower level. In addition, compared to the FDESN without opti-
mization, the robustness of the STA-FDESN is obviously enhanced.
Meanwhile, It can be seen that the multi-layer architecture has
outperformed the single-layer structure in terms of accuracy, in
the majority of benchmark datasets. Thus, the STA-FDESN seems
to be a very important paradigm for providing effective data
representations. Finally, since the proposed approach is bi-level,
the computational complexity may increase. The STA is selected
for the optimization task as it is simple and fast. Also, the training
of the FDESN is very simple and fast as it is based on a non-
iterative linear regression method. Overall, the STA-FDESN has
demonstrated its utility in the complex tasks.

5. Conclusion

In this study, a novel method called functional deep echo state
network (FDESN) was proposed for MTS classification by intro-
ducing temporal aggregation and spatial aggregation. Then the
parameter selection problem in the FDESN was transformed into
the bi-level optimization problem. In the bi-level optimization
problem, the upper level is to optimize the architecture-related
parameters, and the lower level is to optimize the weight re-
lated parameters. Moreover, the STA was introduced to find the
best parameter values of the FDESN. The experimental results
indicated that the proposed method outperforms the other nine
state-of-the-art algorithms. In addition, the proposed method
was successfully applied to anode condition identification in alu-
minum electrolysis. Meanwhile, I think the theoretical analysis of
convergence and stability of the STA-FDESN needs to be further
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Fig. 10. Iterative curves of the classification accuracy obtained by the proposed
method for the four datasets.

strengthened. In the future, the proposed method is expected to
extend for the MTS classification problem with noise.
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